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Pseudo-Differential Operators and T- Wigner
Function on Locally Compact Communicative

Hausdorff Groups

M.I. Yaremenko1,†

Abstract In this article, we consider a harmonic analysis of locally compact
groups and introduce a generalization of the classical cross-Wigner distribution
defined on G× Ĝ by

Wℑ (ψ,φ) (g, ξ) =

∫
G

ξ (h)ψ (τ1 (g, h))φ (τ2 (g, h))dµ (h) .

We construct the so-called Weyl-Heisenberg frame on a locally compact com-
municative Hausdorff group and establish its properties. Thus, we show that
assume Λ and Γ are closed cocompact subgroups of G and Ĝ, respectively,
then, for a given window ϕ ∈ L2 (G), either both systems {mγτλϕ}λ∈Λ, γ∈Γ

and {mκτυϕ}κ∈Λ⊥, υ∈Γ⊥ are Gabor systems in L2 (G), simultaneously, with
the same upper bound, or neither {mγτλϕ}λ∈Λ, γ∈Γ nor {mκτυϕ}κ∈Λ⊥, υ∈Γ⊥

comprises a Gabor system. Finally, pseudo-differential operators on locally
compact groups are studied, we establish that assuming a pseudo-differential

operator Aa corresponds to the symbol a ∈ Wτ,
∞,1

1◦ι−1

(
G× Ĝ

)
then Aa is

bounded operator W p,q
τ (G) → W p,q

τ (G).

Keywords Fourier transform, Wigner function, compact group, pseudo-
differential operator, symbol, Weyl-Heisenberg frame
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1. Introduction (classical theory)

The concept of the pseudo-differential operator is a generalization of the partial
differential operator. The theory of pseudo-differential operators is a fundamental
tool of quantum physics and is widely interweaved in partial differential equations.
The pioneer works belong to J. Kohn, L. Nirenberg, L. Hormander, E. Stein, and
others [18,26].

There are many articles dedicated to pseudo-differential operators and cross-
Wigner functions for some recent issues that the reader may be interested in [1, 2,
11,17,21,22]. In [7], authors consider Wigner analysis of linear operators, replacing
standard Wigner function with the A-Wigner distribution with a symplectic matrix
and developing a theory of global Hormander wavefront. The Gaussian state is
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considered [3] and a more complex system in [20]. The list of references consists of
26 articles.

The Weyl quantization is a correspondence between the set of pseudo-differential
operators Aa closely and densely defined on the Hilbert space and the class of
functions a (x, z) mapping on the phase space Rn × Rn. In its classical form [18],
Weyl quantization is given by

Aa (f) (x) =

∫
Rn

a (x, z) exp (2πix · z) f̂ (z) dz,

where the Fourier transform f̂ of the function f is defined by

f̂ (x) =

∫
Rn

exp (−2πix · z) f̂ (z) dz.

The Weyl quantization is intimately connected with the Wigner transform and
cross-Wigner pseudo-distribution is defined by

W (f, g) (x, y) =

∫
Rn

exp (−2πiy · z) f
(
x+

1

2
z

)
g

(
x− 1

2
z

)
dz

for all f, g ∈ L2 (Rn).
The Weyl transform aW of the symbol a ∈ S′ (Rn ×Rn) is given by

⟨aW f, g⟩ = ⟨a,W (f, g)⟩

for all f, g ∈ L2 (Rn). Then, the twisted product a#b of symbols a and b can be
defined by

a#b (x, y) =

∫
R4n

a (z, u) b (v, w)
exp (4πi (x− z) (y − w))

exp (4πi (x− v) (y − u))
dzdudvdw.

Definition 1.1. The modulation space is a set M∞,1
t (Rn ×Rn) of all functions

σ ∈ S′ (Rn ×Rn) such that

sup
(x,p)∈Rn×Rn

∣∣∣∣(1 + |x|2 + |p|2
) t

2

W (σ, υ) (x, p, y, q)

∣∣∣∣ ∈ L1 (Rn ×Rn)

for every window υ ∈ S′ (Rn ×Rn). The space M∞,1
0 (Rn ×Rn) ≡

M∞,1 (Rn ×Rn) is called a Sjostrand class [17].

Harmonic analysis shows that the modulation spacesM∞,1 (Rn ×Rn) constitute
a Banach algebra with respect to the twisted product.

In the present article, we extend the ideas of classical harmonic analysis and the
theory of pseudo-differential operators to locally compact Hausdorff groups [18]. To
reach this goal we modernize methods of phase-time analysis and employ meth-
ods of convex estimations on Banach spaces. We redefine the T- Wigner pseudo-
distribution by

Wℑ (ψ,φ) (g, ξ) =

∫
G

ξ (h)ψ (τ1 (g, h))φ (τ2 (g, h))dµ (h)

for all g ∈ G and all ξ ∈ Ĝ, which satisfies the Plancherel formula
∥Wℑ (ψ,φ)∥L2(G×Ĝ) ≤ const ∥ψ∥L2(G) ∥φ∥L2(G) for all ψ,φ ∈ L2 (G). We develop a

theory of modulation spaces Mp,q
m (G) on locally compact commutative groups. As

an interesting example, we establish that the Richczek operator Aa with the symbol

a ∈ Wτ,
∞,1
1◦ι−1

(
G× Ĝ

)
is a bounded linear operator from W p,q

τ (G) to W p,q
τ (G).
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2. The short-time Fourier transform

Let G be a locally compact commutative Hausdorff group with the Radon measure
µ on it. Let Ĝ be a dual group that consists of all continuous homomorphisms χ
form G to the circle group S1. These homomorphisms χ : G → S1 are called
characters.

Definition 2.1. A Fourier transform ψ 7→ F (ψ) of the function ψ is defined by

F (ψ) (χ) = ψ̂ (χ) =

∫
G

ψ (g)χ (g) dµ (g)

for all χ ∈ Ĝ.

An inverse Fourier transform of the integrable functionψ̂ on Ĝ is given by

ψ (g) =

∫
Ĝ

ψ̂ (χ)χ (g) dµ̂ (χ)

for all g ∈ G.

Definition 2.2. The short-time Fourier transform Vϕ with respect to the window
ϕ is given by the formula

Vϕψ (g, χ) =

∫
G

χ (h)ψ (h)ϕ (g−1h) dµ (h)

for all g ∈ G and ξ ∈ Ĝ.

We introduce a translation operator τh given by τhψ (g) = ψ
(
h−1g

)
and the

modulation operator mχ by the identity mχψ (g) = ψ (g)χ (g). We write

Vϕψ (g, χ) =
∫
G
ψ (h)mχτgϕ (h) dµ (h)

=
∫
Ĝ
ψ̂ (ξ) τχmg−1 ϕ̂ (ξ) dµ̂ (ξ)

= χ (g)Vϕ̂ψ̂
(
χ, g−1

)
since there is a commutation equality τgmχ = χ (g)mχτg.

Theorem 2.1. Let G be a locally compact Abel-Hausdorff group. For all ψ, φ ∈
L2 (G), then we have the Cauchy–Schwarz inequality

∥Vϕψ∥C0(G×Ĝ) ≤ ∥ψ∥L2(G) ∥ϕ∥L2(G)

and the Moyal equality

∥Vϕψ∥L2(G×Ĝ) = ∥ψ∥L2(G) ∥ϕ∥L2(G) .

Proof. The Moyal equality follows from the Plancherel theory and the first in-
equality can be obtained from the Cauchy-Schwarz theorem with an application of
the limit

lim
(g, χ)→(e, e)

∥mχτgψ − ψ∥ = 0

that holds for all ψ ∈ L2 (G).
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3. The Weyl-Heisenberg frame

Let G be a locally compact Abel-Hausdorff group with the Radon measure µ.
According to Pontryagin’s duality theorem, there is an isomorphism between G

and its double dual group
ˆ̂
G. The Fourier transform of measure is given by

µ̂ (χ) =
∫
G
χ (g) dµ (g).

Let H be a separable Hilbert space.

Definition 3.1. Let (Ω, Σ, µΩ) be a locally compact measurable space where Σ is a
σ-algebra of all µΩ-measurable subsets of Ω. The frame is a set of elements {φk}k∈Ω

that satisfy the condition: for all elements ψ ∈ H, the mapping k 7→ ⟨ψ, φk⟩H is
measurable, and the inequality

A ∥ψ∥2H ≤
∫
Ω

|⟨ψ, φk⟩H |2 dµΩ (k) ≤ C ∥ψ∥2H

holds for some positive constants c and C, which are called a frame lower and upper
bounds.

If the lower and upper bounds coincide and equal one, the frame is called a
Parseval frame.

Definition 3.2. The Weyl-Heisenberg frame for L2 (G) generated by the window
ϕ is a system of functions φ (λ, γ) given by {mγτλϕ}λ∈Λ, γ∈Γ where Λ ⊆ G and

Γ ⊆ Ĝ.

The analysis operator A ϕ : L2 (G) → L2
(
G× Ĝ

)
is defined by

(A ϕψ) (λ, γ) = ⟨ψ (·) , mγτλϕ (·)⟩L2 .

The annihilator K⊥ of normal K ⊂ G is a closed subgroup of Ĝ given by

K⊥ =
{
χ ∈ Ĝ : χ (g) = 1 ∈ S1 ∀g ∈ K

}
.

Theorem 3.1. Let Γ be a closed subgroup of Ĝ such that the quotient group Ĝ/Γ
is a compact metrizable group. Let σ-finite measurable space (Λ, Σ, µΛ) satisfy the
conditions: the mapping h 7→ ϕh and (h, s) 7→ ϕh (s) are measurable. Assume that
for a pair of systems {mγτλϕ}λ∈Λ, γ∈Γ and {mγτλϑ}λ∈Λ, γ∈Γ, the inequalities∫

Λ×Γ

∣∣⟨ψ, mγτλϕ⟩L2

∣∣2 dµΛ×Γ (γ, λ) ≤ C ∥ψ∥2L2

and ∫
Λ×Γ

∣∣⟨ψ, mγτλϑ⟩L2

∣∣2 dµΛ×Γ (γ, λ) ≤ C ∥ψ∥2L2

hold for all functions ψ ∈ L2 (G) with the positive constant C.
Then, for all functions ψ1, ψ2 ∈ L2 (G), the equality

⟨ψ1, ψ2⟩L2 =

∫
Λ×Γ

⟨ψ1, mγτλϕ⟩L2 ⟨mγτλϑ, ψ2⟩L2 dµΛ×Γ (γ, λ)

holds if and only if the equality

δς,e =

∫
Λ

ϕ (gλ−1)ϑ
(
gλ−1ς

)
dµΛ (λ)

holds for almost every g ∈ G and each ς ∈ Γ⊥.



Pseudo-Differential Operators and T- Wigner Function 1035

Proof. The system {mγτλϕ}λ∈Λ, γ∈Γ is not a generalized translation invariant

system. However for the system {mγτλϕ}λ∈Λ, γ∈Γ to be a frame, it is necessary and

sufficient that the system {τλmγϕ}λ∈Λ, γ∈Γ be a frame since τgmχ = χ (g)mχτg.

Now, we must show that if {τλmγϕ}λ∈Λ, γ∈Γ and {τλmγϑ}λ∈Λ, γ∈Γ are two Bessel

systems, then, for all functions ψ1, ψ2 ∈ L2 (G), the equality

⟨ψ1, ψ2⟩L2 =

∫
Λ×Γ

⟨ψ1, τλmγϕ⟩L2 ⟨τλmγϑ, ψ2⟩L2 dµΛ×Γ (γ, λ)

hold if and only if the equality

δβ,e =

∫
Γ

m̂γϕ (χ)m̂γϑ (βχ) dµΓ (γ)

holds for almost every χ ∈ Ĝ and each β ∈ Λ⊥. The convergence and correctness
of integrals follow from the Cauchy-Schwarz inequality.

To make our considerations completely rigorous, we need the following state-
ment. Let H1 and H2 be a pair of separable Hilbert spaces and let U : H2 → H1 be
a unitary mapping; let (Ω1, Σ1, µΩ1) and (Ω2, Σ2, µΩ2) be two measurable spaces;

let {ψk}k∈Ω1
and

{
ψ̃k

}
k∈Ω1

be two systems in H1 and let {φk}k∈Ω2
and {φ̃k}k∈Ω2

be two systems in H2 such that ψk = akUφπ(k) and ψ̃k = akUφ̃π(k) where mapping
π : Ω1 → Ω2 is a pointwise isomorphism and the mapping Ω1 → C : k 7→ ak

so that |ak| = 1 for all k ∈ Ω1. Then for systems {ψk}k∈Ω1
and

{
ψ̃k

}
k∈Ω1

to be

dual with respect to (Ω1, Σ1, µΩ1
), it is necessary and sufficient that the system

{φk}k∈Ω2
and {φ̃k}k∈Ω2

are dual with respect to (Ω2, Σ2, µΩ2
).

Indeed, let {ψk}k∈Ω1
and

{
ψ̃k

}
k∈Ω1

be dual frames. Then we write

⟨ψ,φ⟩ =
∫
Ω1

〈
Uψ, ψ̃k

〉
⟨ψk, φ⟩ dµΩ1 (k)

=
∫
Ω1

〈
Uψ, akUφ̃π(k)

〉 〈
akUφπ(k), φ

〉
dµΩ1

(k)

=
∫
Ω1

〈
ψ, φ̃π(k)

〉 〈
φπ(k), U

∗φ
〉
dµΩ1

(k)

=
∫
Ω2

⟨ψ, φ̃k⟩ ⟨φk, U
∗φ⟩ dµΩ2 (k) ,

where U∗ is the adjoint of U .
Thus, for the system {mγτλϕ}λ∈Λ, γ∈Γ to be a frame, it is necessary and sufficient

that the system
{
τγF

−1τλϕ
}
λ∈Λ, γ∈Γ

is a frame.

Weil’s lemma establishes the possibility of normalization of the measure µG/k

so that the equality∫
G

ψ (g) dµG (g) =

∫
G/K

∫
K

ψ (gh) dµK (h) dµG/K (ġ)

holds for a given measure µK and µG.
By application of the Plancherel theorem and the Weil lemma, we obtain∫

Λ×Γ
⟨ψ1, τλmγϕ⟩L2 ⟨τλmγϑ, ψ2⟩L2 dµΛ×Γ (λ, γ)

=
∫
Γ

∫
Ĝ

∫
Λ⊥ ψ̂1 (χ) ψ̂2 (χβ)m̂γϕ (χ)m̂γϑ (χβ) dµΛ⊥ (β) dµĜ (χ) dµΓ (γ) .
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Therefore, we define a mapping Υ (ψ) : G→ C by

Υ (ψ) (g) =

∫
Λ×Γ

⟨τgψ, τλmγϕ⟩L2 ⟨τλmγϑ, τgψ⟩L2 dµΛ×Γ (λ, γ) .

Since τ̂λψ (χ) τ̂λψ (χβ) = β (λ) ψ̂ (χ) ψ̂ (χβ), we have

Υ (ψ) (g)

=

∫
Γ

∫
Ĝ

∫
Λ⊥

β (g) ψ̂ (χ) ψ̂ (χβ)m̂γϕ (χ)m̂γϑ (χβ) dµΛ⊥ (β) dµĜ (χ) dµΓ (γ) .

Using Fubini’s theorem and Lebesgue’s dominated convergence theorem, we obtain

Υ (ψ) (g) =

∫
Λ⊥

β (g) Υ̂ (β) dµΛ⊥ (β) ,

where we denote

Υ̂ (β) =

∫
Γ

∫
Ĝ

ψ̂ (χ) ψ̂ (χβ)m̂γϕ (χ)m̂γϑ (χβ) dµĜ (χ) dµΓ (γ) .

The sufficiency follows from

Υ (ψ) (e) =
∫
Λ×Γ

⟨ψ, τλmγϕ⟩L2 ⟨τλmγϑ, ψ⟩L2 dµΛ×Γ (λ, γ)

=
∫
Ĝ

∫
Λ⊥ β (e) ψ̂ (χ) ψ̂ (χβ)δβ,edµΛ⊥ (β) dµĜ (χ) = ⟨ψ,ψ⟩ .

Now, we are going to show the necessity of the theorem’s conditions. We assume
that equality

Υ (ψ) (g) =

∫
Λ×Γ

⟨τgψ, τλmγϕ⟩L2 ⟨τλmγϑ, τgψ⟩L2 dµΛ×Γ (λ, γ) = ⟨ψ,ψ⟩

holds for all ψ ∈
{
L2 (G) such that ψ̂ ∈ L∞

(
Ĝ
)}

with the compact support. We

denote the continuous function Ξ (g) = Υ (ψ) (g) − ⟨ψ,ψ⟩ that is identical to zero.

We have Ξ (g) =
∫
Λ⊥ β (g) Ξ̂ (β) dµΛ⊥ (β) where we denote

Ξ (g) =


∫
Ĝ

∫
Γ

∣∣∣ψ̂ (χ)
∣∣∣2 m̂γϕ (χ)m̂γϑ (χ) dµΓ (γ) dµĜ (χ)− ∥ψ∥2 , β = e,∫

Ĝ

∫
Γ
ψ̂ (χ) ψ̂ (βχ)m̂γϕ (χ)m̂γϑ (βχ) dµΓ (γ) dµĜ (χ) , β ̸= e.

Thus, we see that
∫
Γ
m̂γϕ (χ)m̂γϑ (χ) dµΓ (γ) = 1 for almost all χ ∈ Ĝ and∫

Γ
m̂γϕ (χ)m̂γϑ (βχ) dµΓ (γ) = 0 for all β ̸= e.
So, we also have Theorem 3.2.

Theorem 3.2. The conditions of Theorem 2.1 hold if and only if the equality

δθ,e =

∫
Γ

ϕ̂ (χγ)ϑ̂ (χγθ) dµΓ (λ)

holds for almost all χ ∈ Ĝ and for each θ ∈ Λ⊥, namely, the equality

⟨ψ1, ψ2⟩L2 =

∫
Λ×Γ

⟨ψ1, mγτλϕ⟩L2 ⟨mγτλϑ, ψ2⟩L2 dµΛ×Γ (γ, λ)

holds for all functions ψ1, ψ2 ∈ L2 (G).
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4. Wigner and ambiguity functions

For a given window ϕ, the short-time Fourier transform Vϕ can be rewritten in
terms of translation and modulo as follows

Vϕψ (g, χ) =

∫
G

ψ (h)mχτgϕ (h) dµ (h)

for all g ∈ G and ξ ∈ Ĝ.
Let ℑ : G × G → G × G be a measure preserving continuous transformation

given by

u = τ1 (g, h) ,

v = τ2 (g, h)

for all g, h ∈ G, and it satisfies the conditions: first, the equalities τ1 (g, e) =
g, τ2 (g, e) = g hold for all g ∈ G; second, for all g ∈ G, we have h = uv−1 for all
u, v ∈ G; the inverse transformation ℑ−1 : G×G→ G×G is given by

g = τ (g, h) ,

h = uv−1,

where τ continuously maps G×G→ G. The mappings τ1, τ2 and τ are continuous.

Definition 4.1. The T - Wigner function is defined by the formula

Wℑ (ψ,φ) (g, ξ) =

∫
G

ξ (h)ψ (τ1 (g, h))φ (τ2 (g, h))dµ (h)

for all g ∈ G and all ξ ∈ Ĝ.
The T -ambiguity function is defined by the formula

Amℑ (ψ,φ) (h, ξ) =

∫
G

ξ (g)ψ (τ1 (g, h))φ (τ2 (g, h))dµ (g)

for all h ∈ G and all ξ ∈ Ĝ.

Lemma 4.1. Let G be a locally compact commutative group. Then, the T - Wigner
and T-ambiguity functions satisfy the following inequality

∥Wℑ (ψ,φ)∥L∞(G×Ĝ) ≤ ∥ψ∥L2(G) ∥φ∥L2(G)

and
∥Amℑ (ψ,φ)∥L∞(G×Ĝ) ≤ ∥ψ∥L2(G) ∥φ∥L2(G) ,

where all functions ψ,φ ∈ L2 (G).

Now, we suppose that G is a locally compact commutative Hausdorff group

and Amℑ (ψ,φ) ∈ L2
(
G× Ĝ

)
, then the equality ∥Amℑ (ψ,φ)∥L2 = ∥Wℑ (ψ,φ)∥L2

holds for any pair of functions ψ,φ ∈ L2 (G). Indeed, we write the equality

∥Wℑ (ψ,φ)∥L2

=
∫
G

∫
G

∣∣∣ξ (h)ψ (τ1 (g, h))φ (τ2 (g, h))
∣∣∣2 dµ (h) dµ (g)

=
∫
G

∫
G

∣∣∣ξ (h)ψ (τ1 (g, h))φ (τ2 (g, h))
∣∣∣2 dµ (g) dµ (h)

= ∥Amℑ (ψ,φ)∥L2
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which holds for all ψ,φ ∈ L2 (G).
For T-Wigner and T-ambiguity functions, the exact marginals are correct so

that equalities ∫
Ĝ

Wℑ (ψ,φ) (g, ξ) dµ̂ (ξ) = ψ (g)φ (g)

and ∫
G

Wℑ (ψ,φ) (g, ξ) dµ (g) = F (ψ) (ξ)F (φ) (ξ)

hold ψ,φ ∈ L2 (G) and for all g ∈ G and ξ ∈ Ĝ. The proof is similar to the

classical theorem. Next, in L2
(
G× Ĝ

)
we have Âmℑ (ψ,φ) = Wℑ (ψ,φ)for all

ψ,φ ∈ L2 (G).

5. The Feichtinger algebra on the locally compact
groups

In 1979, the Feichtiger algebra S0 (G), which is a special case of the broader concept
of modulation spaces, was introduced by H.G. Feichtinger. The modulation space
Mp,q

m (G) on the locally compact Abelian group is a Banach space with a norm
defined by

Mp,q
m (G) = {ψ : G→ C : ψ ∈ S′ (G) :(∫

Ĝ

(∫
G

|Vϕψ (h, χ)|pm (h, χ)
p
dµ (h)

) q
p

dµ̂ (χ)

) 1
q

<∞

 ,

where the function ϕ is the window, the function m is a non-negative function on
G× Ĝ and the numbers 1 ≤ p, q ≤ ∞.

Definition 5.1. Assume that window ϕ ∈ CC (G) is a non-zero function such that

ϕ̂ ∈ L1
(
Ĝ
)
. The Feichtinger algebra S0 (G) is a set of all elements ψ ∈ L1 (G) that

satisfy the inequality
∫
Ĝ

∫
G
|Vϕψ (h, χ)| dµ (h) dµ̂ (χ) <∞.

Lemma 5.1. The space S0 (G) is topologically embedded in L1 (G).

Indeed, straightforward calculation shows that there exists a constant c depen-
dent on the non-zero window ϕ such that for all ψ ∈ S0 (G), we have

∥ψ∥L1(G) =
∫
G
|ψ (g)| dµ (g)

≤ c
∫
Ĝ

∫
G

∣∣∣∫G ψ (g)χ (h)ϕ
(
gh−1

)
dµ (g)

∣∣∣ dµ (h) dµ̂ (χ)
= c

∫
Ĝ

∫
G
|Vϕψ (h, χ)| dµ (h) dµ̂ (χ) = c ∥ψ∥S0(G) .

So function ψ belongs to L1 (G).
The next theorem determines the class of functions that produce Gabor systems.

Theorem 5.1. Let Λ and Γ be closed subgroups of G and Ĝ, respectively. Then
for any window ϕ ∈ S0 (G), the set {mγτλϕ}λ∈Λ, γ∈Γ constitutes a cocompact Gabor

system in L2 (G) with the bound c (Λ,Γ) ∥ϕ∥2S0(G).
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Proof. Since the functional set CC (G) is dense in the space L2 (G), it is sufficient
to show that∫

Λ×Γ

|⟨ψ, mγτλϕ⟩|2 dµΛ×Γ (λ, γ) ≤ c (Λ,Γ) ∥ϕ∥2S0(G) ∥ψ∥
2
L2(G)

holds for all functions ψ ∈ CC (G) and each window ϕ ∈ S0 (G). Therefore, assume
that ψ ∈ CC (G) and then we estimate

∫
Λ×Γ

|⟨ψ, mγτλϕ⟩|2 dµΛ×Γ (λ, γ)

≤
∫
Λ

∫
Γ⊥

∫
Γ⊥

∫
G/Γ⊥ ψ (gh−1)ψ

(
gh̃−1

)
ϕ
(
gλ−1h−1

)
ϕ
(
gλ−1h̃−1

)
dµG/Γ⊥ (ġ) dµΓ⊥ (h) dµΓ⊥

(
h̃
)
dµΛ (λ)

≤
∫
G/Γ⊥

(∫
Γ⊥

∣∣ψ (gh−1
)∣∣2 ∫

Λ

∫
Γ⊥

∣∣∣ϕ (gλ−1h−1
)
ϕ
(
gλ−1h̃−1

)∣∣∣
dµΓ⊥

(
h̃
)
dµΛ (λ) dµΓ⊥ (h)

) 1
2(∫

Γ⊥

∣∣∣ψ (gh̃−1
)∣∣∣2 ∫Λ ∫Γ⊥

∣∣∣ϕ (gλ−1h−1
)
ϕ
(
gλ−1h̃−1

)∣∣∣
dµΓ⊥ (h) dµΛ (λ) dµΓ⊥

(
h̃
)) 1

2

dµG/Γ⊥ (ġ) .

By the Fubini theorem

∫
Λ

∫
Γ⊥

∣∣∣ϕ (gλ−1h−1
)
ϕ
(
gλ−1h̃−1

)∣∣∣ dµΓ⊥ (h) dµΛ (λ)

=
∫
Λ

∣∣∣ϕ(gλ−1h̃−1
)∣∣∣ ∫Γ⊥

∣∣ϕ (gλ−1h−1
)∣∣ dµΓ⊥ (h) dµΛ (λ)

≤ ∥ϕ∥S0(G) c̃ (Γ)
∫
Λ

∣∣∣ϕ(gλ−1h̃−1
)∣∣∣ dµΛ (λ) ≤ c (Λ,Γ) ∥ϕ∥2S0(G) ,

thus, we have

∫
Λ×Γ

|⟨ψ, mγτλϕ⟩|2 dµΛ×Γ (λ, γ)

≤
∫
G/Γ⊥

(∫
Γ⊥

∣∣ψ (gh−1
)∣∣2 c (Λ,Γ) ∥ϕ∥2S0(G) dµΓ⊥ (h)

) 1
2(∫

Γ⊥

∣∣∣ψ (gh̃−1
)∣∣∣2 c (Λ,Γ) ∥ϕ∥2S0(G) dµΓ⊥

(
h̃
)) 1

2

dµG/Γ⊥ (ġ)

≤ c (Λ,Γ) ∥ϕ∥2S0(G) ∥ψ∥
2
L2(G) .

For any Gabor system {mγτλϕ}λ∈Λ, γ∈Γ, there exists a dual Gabor system

{mκτυϕ}κ∈Λ⊥, υ∈Γ⊥ where Λ⊥ ≡ Ĝ/Λ and Γ⊥ ≡ ̂̂
G/Γ where we employ the Pon-

tryagin duality theory.

Theorem 5.2. Let Λ and Γ be closed cocompact subgroups of G and Ĝ, respec-
tively. Then for a given window ϕ ∈ L2 (G), both systems {mγτλϕ}λ∈Λ, γ∈Γ and

{mκτυϕ}κ∈Λ⊥, υ∈Γ⊥ are Gabor systems in L2 (G), simultaneously, with the same
upper bound or neither {mγτλϕ}λ∈Λ, γ∈Γ nor {mκτυϕ}κ∈Λ⊥, υ∈Γ⊥ comprises Gabor
system.
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6. Realization of pseudo-differential operators on
locally compact groups

Weyl’s correspondence is a correlation between the pseudo-differential operators and
their symbols. Pseudo-differential operators can be considered as a generalization of
partial differential operators on the locally compact commutative Hausdorff groups,
which are presented in the integral form.

We formally define a pseudo-differential operator Aa with the symbol a by

(Aaψ) (g) =

∫
Ĝ

ξ (g) a (g, ξ) ψ̂ (ξ) dµ̂Ĝ (ξ) .

Let ψ ∈ L2 (G). Then we calculate

(Aaψ) (g)

=
∫
Ĝ
ξ (g) a (g, ξ) ψ̂ (ξ) dµ̂Ĝ (ξ)

=
∫
Ĝ

∫
G
ξ (g) a (g, ξ) ξ (h)ψ (h) dµG (h) dµ̂Ĝ (ξ)

=
∫
Ĝ

∫
G

∫
G

∫
Ĝ
â (χ, t)χ (g) ξ (t)ξ (g) ξ (h)ψ (h) dµ̂Ĝ (χ) dµG (t) dµG (h) dµ̂Ĝ (ξ)

=
∫
Ĝ

∫
G
χ (g) â (χ, t)ψ (gt) dµG (t) dµ̂Ĝ (χ)

=
∫
Ĝ

∫
G
â (χ, t)mχτt−1ψ (g) dµG (t) dµ̂Ĝ (χ)

for all g ∈ G.
We assume the symbol a has a compact support and denote

â1 (χ, ξ) =

∫
G

ξ (h)a (h, ξ) dµG (h) .

Next we write

Aa (ψ) (g) =
∫
Ĝ
ξ (g) a (g, ξ) ψ̂ (ξ) dµ̂Ĝ (ξ)

=
∫
Ĝ

∫
Ĝ
χ (g) ξ (g) â1 (χ, ξ) ψ̂ (ξ) dµ̂Ĝ (ξ) dµ̂Ĝ (χ)

=
∫
Ĝ
Aχ (ψ) (g) dµ̂Ĝ (χ) ,

where the multiplier operator Aχ is given by

Aχ (ψ) (g) = χ (g)
∫
Ĝ
ξ (g) â1 (χ, ξ) ψ̂ (ξ) dµ̂Ĝ (ξ)

= χ (g)Aâ1
(ψ) (g) .

Now, we have ∥Aâ1 (ψ)∥L2 ≤ sup
ξ∈Ĝ

|â1 (χ, ξ)| ∥ψ∥L2 and we assume the estimation

sup
ξ∈Ĝ

|â1 (χ, ξ)| ≤ Θ(χ) holds for some positive function of L1
(
Ĝ
)
. Then

∥Aa∥ ≤
∫
Ĝ

Θ(χ) dµ̂Ĝ (ξ) <∞.

Thus, we conclude that the pseudo-differential operator Aa is bounded L2 (G) →
L2 (G).
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Definition 6.1. The twisted product â#b̂ of symbols â, b̂ ∈ L1
(
Ĝ×G

)
is defined

by

â#b̂ (ξ, g) =

∫
G×Ĝ

ξ (h)χ (h)â (χ, h) b̂
(
χ−1ξ, h−1g

)
dµG×Ĝ (h× χ) .

Straightforward calculations yield the following theorem.

Theorem 6.1. Let operators Aa and Ab be corresponded to the symbols â, b̂ ∈
L1
(
Ĝ×G

)
then the product AaAb corresponds to the symbol F−1

(
â#b̂

)
so that

there exists an operator CF−1(â#b̂) such that CF−1(â#b̂) = AaAb.

7. The Richczek operator

In recent years, new methods based on nonlinear representations have found wide
applications for descriptions of nonstationary systems such as cognitive functions of
the brain and the characterization of interactions between cognizing systems. The
synchronicity of interactions correlates with the estimation of the instantaneous
phase of a certain frequency by time-frequency analysis methods. We consider a
representation of the signal defined by the Richaczek distribution.

Natural spaces on which Richaczek distributions perform are modulation spaces
Mp,q

m (G) with the norm defined by

∥ψ∥Mp,q
m (G) =

(∫
Ĝ

(∫
G

|Vϕψ (h, χ)|pm (h, χ)
p
dµ (h)

) q
p

dµ̂ (χ)

) 1
q

.

Similarly, we define the T-modulation space defining the T- Wigner norm.

Definition 7.1. A T-modulation space W p,q
τ (G) is the completion of SC (G) space

with respect to the norm

∥ψ∥W p,q
τ (G) =

(∫
Ĝ

(∫
G

χ (h)
p |Wℑ (ψ,φ) (h, χ)|p dµ (h)

) q
p

dµ̂ (χ)

) 1
q

for each fixed window φ ∈ SC (G).

A Richaczek distribution ℜ (ψ, φ) is given by

ℜ (ψ, φ) (g, ξ) = ξ (g)ψ (g) φ̂ (ξ).

Definition 7.2. A class of admissible functions consists of all nonnegative functions
ϖ defined on G× Ĝ, which satisfy the following conditions:

1. each admissible function ϖ is continuous, even in all coordinates;

2. the inequality ϖ ((g, χ) · (h, ξ)) ≤ ϖ (g, χ)ϖ (h, ξ) holds for all (g, χ) , (h, ξ) ∈
G× Ĝ, and ϖ (e, e) = 1;

3. admissible functions ϖ satisfy the equality

lim
n→∞

ϖ ((g, χ)
n
)

1
n = 1

for all (g, χ) ∈ G× Ĝ.
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We define an antisymmetry operator ι by ι (g, χ) =
(
χ−1, g

)
for all (g, χ) ∈ G×Ĝ.

Definition 7.3. An admissible weight m is a positive function on G × Ĝ that
satisfies the following condition

sup
(g,χ)∈G×Ĝ

m ((g, χ) · (h, ξ)) ≤ cm (g, χ)ϖ (h, ξ)

for all (h, ξ) ∈ G× Ĝ.

Theorem 7.1. Let ϖ be an admissible function then the inequality

∥ℜ (ψ, φ)∥M1,∞
ϖ−1◦ι−1

≤ c ∥ψ∥Mp1,q1
m

∥φ∥Mp2,q2
m−1

holds for all ψ ∈ Mp1,q1
m (G), φ ∈ Mp2,q2

m−1 (G) and all admissible weights m where
1 ≤ pi, qi <∞ and p1 + p2 = p1p2 , q1 + q2 = q1q2.

Proof. Let ψ ∈Mp1,q1
m (G) and φ ∈Mp2,q2

m−1 (G). By Holder inequality calculate

∥ℜ (ψ, φ)∥M1,∞
ϖ−1◦ι−1

= sup
(ξ, h)∈Ĝ×G

ϖ
(
ι−1 (ξ, h)

)−1

∫
Ĝ

∫
G

∣∣Vℜ(ϕ, ϕ)ℜ (ψ, φ) ((g, χ) , (ξ, h))
∣∣ dµG (g) dµ̂Ĝ (χ)

= sup
(ξ, h)∈Ĝ×G

ϖ
(
h, ξ−1

)−1 ∫
Ĝ

∫
G
|Vϕ (ψ) (gh, χ)| |Vϕ (φ) (g, χξ)| dµG (g) dµ̂Ĝ (χ)

= c sup
(ξ, h)∈Ĝ×G

ϖ
(
h, ξ−1

)−1 ∫
Ĝ

∫
G

m (gh, χ) |Vϕ (ψ) (gh, χ)|

|Vϕ (φ) (g, χξ)|m (g, χξ)
−1
dµG (g) dµ̂Ĝ (χ)

≤ c ∥ψ∥Mp1,q1
m

∥φ∥Mp2,q2
m−1

.

Remark 7.1. Theorem 7.1 is a consequence of more general and symmetric equality

Vℜ(α, β) (ℜ (ψ, φ)) ((g, χ) , (ξ, h)) = χ (h)Vα (φ) (g, χξ)Vβ (ψ) (gh, χ),

which holds for all α, β, ψ, φ ∈ L2 (G) and all (g, χ) ∈ G× Ĝ, (h, ξ) ∈ G× Ĝ.

Indeed, let α, β, ψ, φ ∈ L2 (G). Then equalities

Vℜ(α, β) (ℜ (ψ, φ)) ((g, χ) , (ξ, h))

=
∫
Ĝ

∫
G
φ (s) ψ̂ (ς)

ς (s)β̂
(
ςχ−1

)
α (sg−1) ς

(
sg−1

)
χ (sg−1)ξ (s) ς (h)dµG (s) dµ̂Ĝ (ς)

= χ (g)
∫
Ĝ
ψ̂ (ς)β̂

(
ςχ−1

)
ς (gs) dµ̂Ĝ (ς)

∫
G
φ (s) ξ (s)χ (s)α (sg−1)dµG (s)

= χ (h)Vα (φ) (g, χξ)Vβ (ψ) (gh, χ)

hold for all (g, χ) ∈ G× Ĝ, (h, ξ) ∈ G× Ĝ.

Theorem 7.2. For all symbols a ∈ M∞,1
ϖ−1◦ι−1

(
G× Ĝ

)
, the pseudo-differential

operators Aa : Mp,q
ϖ (G) →Mp,q

ϖ (G) are linear bounded integral operators for all
p, q ∈ (1, ∞).
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Proof. Indeed, for all functions ψ ∈Mp1,q1
ϖ (G), φ ∈Mp2,q2

ϖ−1 (G), we estimate

|⟨Aaψ,φ⟩| =
∣∣∫

Ĝ

∫
G
a (h, ξ)ℜ (ψ, φ) (h, ξ) dµG (h) dµ̂Ĝ (ξ)

∣∣
≤ c ∥a∥M1,∞

ϖ−1◦ι−1
∥ψ∥Mp1,q1

ϖ
∥φ∥Mp2,q2

ϖ−1
.

Analogous results are true in T-modulation space W p,q
τ (G).

Lemma 7.1. Let functions ψ ∈ W p1,q1
τ (G) and φ ∈ W p2,q2

τ (G) where 1 ≤
p, q, pi, qi <∞ . Then, the T-Wigner function satisfies the estimation

∥Wℑ (ψ,φ)∥W p,q
τ (G) ≤ c̃ ∥ψ∥W p1,q1

τ (G) ∥φ∥W p2,q2
τ (G)

for all pi, qi < q, i = 1, 2 such that p1
−1 + p2

−1 ≥ p−1 + q−1 and q1
−1 + q2

−1 ≥
p−1 + q−1.

Theorem 7.3. Let an integral operator Aa corresponds to the symbol a ∈
Wτ,

∞,1
1◦ι−1

(
G× Ĝ

)
then Aa is a bounded linear operator from W p,q

τ (G) to W p,q
τ (G).

Proof. The idea of the proof is similar to theorem 7.2, so, we have

|⟨Aaψ,φ⟩| =
∣∣∫

Ĝ

∫
G
a (h, ξ)Wℑ (ψ,φ) (h, ξ) dµG (h) dµ̂Ĝ (ξ)

∣∣
≤ c ∥a∥Wτ,

∞,1

1◦ι−1
∥ψ∥W p1,q1

τ
∥φ∥W p2,q2

τ
,

where we applied Lemma 7.1.
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