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Global Stability of an SIR Model Characterized by
Vaccination and Treatment
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Abstract The global dynamics of a SIR model characterized by both vac-
cination and treatment are considered in the present paper. Global stability
ensures convergence to an equilibrium solution irrespective of the initial state
of infection. Various independent sets of sufficient conditions on parameters
and functional relations are obtained through Lyapunov functionals for stabil-
ity. It is also established how a disease-free environment can be provided by
a proper combination of treatment and vaccination, which is a unique feature
as far as SIR models are concerned, as many of the studies have ignored the
influence of treatment. Results are illustrated with numerical examples and
simulations are provided to visualize the illustrations.
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1. Introduction

Infectious diseases are mainly caused due to disharmonious ecological interaction
amongst microbial infectious agents (bacteria, fungi, parasites, or viruses) and a
host. The disease dynamics are influenced by biological, social, behavioral, cultural
and environmental changes. Intrinsic to the continuous process of globalization and
urbanization, which can build up or ease the hosts exposure to the sources of disease
and consequently its transmission in the population, there is a constant transfor-
mation in the interaction dynamics ( [9]). A critical understanding of transmission
dynamics and the connection between various influencing factors is important for
the coherent development of an effective plan of action for prevention, control and
health assistance. For a field scientist engaged in this activity, it is a difficult ques-
tion in general, to appraise the rate of the spread of disease and the control of
parameters. Also, the affordability of clinical trials and modification costs are an-
other challenge. This situation demands methods/ strategies that have the potential
to deal with the disease outbreak when it is in an active phase.

In this frame of reference, mathematical modelling is able to provide useful in-
sights regarding transmission patterns and the detection of parameters to mitigate
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disease in the population. Mathematical models have the ability to translate bio-
logical, clinical, environmental, epidemiological and social data into mathematical
equations and vice versa. This adaptive nature helps in developing models using
collected information from experimental trials, which can be utilized to study the
epidemiological behavior of the infectious disease and analyze the effectiveness of
interventions taking into consideration several factors that could influence the dy-
namics of the disease transmission. The rational development of effective, low-cost
strategies for prevention and control, health assistance and development of health
policies are essential for guiding public health decision-making [18, 42]. One of the
very popular models used to study infectious diseases is the susceptible, infected
and recovered populations (SIR, for short) model. In this context, mathematical
models have been developed to study about the dynamics of the disease such as
Influenza A [6], Zika [29], Ebola [41], SARS [3, 25], MERS [1, 23], malaria [4, 7],
yellow fever [28], cholera [38], chikungunya [11,26], dengue [13,27,43] and COVID-
19 [8, 10, 16, 21, 24, 30, 34, 40]. One may refer to [2, 5, 12, 14, 15, 17, 19, 20, 33, 37, 39]
for some more models available in literature.

In this paper, we are going to make a detailed analysis of the global dynamics
of an SIR model in which the roles of vaccination and treatment in controlling the
spread of disease are the main focus. The model ( [35]) is described by the following
system of equations:

u
′
= a− bf(u, v)− du− cV (u) + αw,

v
′
= b1f(u, v)− rP (v)− d1v,

w
′
= rP (v)− αw. (1.1)

Here, u(t), v(t), and w(t) represent susceptible, infected, and recovered (by treat-
ment) populations at any time t respectively.

′ =
d

dt
denotes the time derivative of a function.

a ≥ 0 is the rate of growth of the susceptible population, b > 0 denotes the
interaction rate of infected with susceptible, d denotes the rate of susceptible indi-
viduals who are naturally immune to the infection and in no way get infected, c > 0
is the vaccination rate and the parameter α > 0 is the rate at which a recovered per-
son becomes susceptible again as he is not-vaccinated and re-exposed to infection.
0 < b1 ≤ b is the rate of conversion of susceptibles into infected, d1 > 0 is the death
rate of the infected population not at all treated or inadequately treated or beyond
the treatment, r > 0 represents the treatment rate and also recovery rate. f denotes
the infection function which shows how susceptible u are converted into infected v,
V (u) is the vaccination function (depends on susceptible population), and P (v) is
the recovery (by treatment) function of the infected individuals. All these functions
are assumed to be continuous functions over the intervals of definitions.

It was claimed in [35] that several models on the SIR system become special cases
of system (1.1). The model is quite general in this sense. System (1.1) includes a
term that represents the treatment efforts in containing the spread of the disease
(controlling the interaction of the infected population with the susceptible). This
is a unique feature considering SIR models as most of the other studies concentrate
on efforts of vaccination and ignore the influence of treatment. The reason could
possibly be society worries more about epidemics than infectious diseases depending
on the impacts they make. To elaborate, epidemics may not give enough time to
treat, occur suddenly, and are impulsive in nature. On the other hand, infectious
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diseases provide scope for study and examination. Thus, the roles of vaccination and
treatment interchange in epidemics to infectious diseases. In the present scenario of
Covid-19 also, it is useful to reconsider such models with treatment efforts to study
their impact on containing the disease.

Little work is reported on the influence of treatment of the infected population.
Studies of epidemics or disease models have focused on vaccination or measures
based on clinical data etc. It is established in ( [31, 32]) that vaccination alone
cannot handle the spread of disease. It is important to observe that treatment as
an in-patient is better than a quarantine, as it ensures both isolation for an infected
person and treatment for the infection. A fully treated person has a little chance of
reinfection and is no more infectious. Further, it is shown that a proper combination
of treatment and vaccination provides a disease-free environment and neither of the
efforts is completely efficient in eradicating the disease when applied alone.

There are different metrics used in understanding the spread of a disease and
the most accepted one is the basic reproduction number (denoted by R0) which is
the number of secondary infections caused by a primary contact. Usually, R0 < 1
implies that the spread of disease is not effective while R0 > 1 implies the preva-
lence of disease. For mathematical modelers, it is a pleasure to study the stability
aspects of equilibria: (i) stability of a disease-free equilibrium implies eradication
of the disease and (ii) stability of disease equilibrium means the disease prevalence.
Though an estimate of R0 gives an idea of disease spread, it may not provide a
complete picture of the dynamics. In [32], it is established that the control of dis-
ease is difficult even if R0 < 1, for example, in the case of a co-infection due to a
comorbidity such as diabetes. Local stability of equilibria is dependent on the ini-
tial conditions of the system. It helps understand conflicts or control of the disease
environment, when the initial conditions (that is, the initial status of the disease)
are, near the equilibria but it cannot be applied if the information provided is not
near enough to the equilibrium state. On the other hand, the global stability con-
ditions are applicable irrespective of the initial conditions (status of the beginning
or initial spread of disease). Thus, the global stability of disease-free equilibrium
shows that the disease will be eradicated how predominant the disease was initially,
and the global stability of endemic equilibrium urges us to improve the measures
to be taken.

In [35], only the local stability of equilibria is emphasized, the authors expressed
the difficulty in providing conditions for global stability of system (1.1), as it is a very
complex system with at least three nonlinear functions representing the interactions
and conversions. Only one global asymptotic stability condition was obtained, that
too for a special case of the model (1.1) in which all functional relations are assumed
to be linear f(u) = u, P (v) = v and V (u) = u. Though the model is very complex
and involves too many terms, the study in system(1.1) hints that the system has
some stabilizing terms in each equation. Moreover, global stability establishes the
strength of vaccination, treatment, and controlling the spread of disease irrespective
of the situation where it is identified. With this support, we wish to pursue the
global asymptotic stability (GAS, for short) of equilibria of (1.1) in this article.

The paper is organized as follows. Different Lyapunov function(al)s and in-
equality analyses enable us to obtain several sufficient conditions for the global
asymptotic stability of (1.1) in Section 2. We provide examples to illustrate the
results and check for their independence in Section 3. We provide simulations using
ODE23 of MATLAB to provide a pictorial representation of examples. A discussion
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concludes the paper in Section 4.

2. GAS results

The term f(u, v) that represents the conversion of susceptibles into infected is the
main villain that hurdles any attempt to provide global stability results of (1.1). To
simplify this, we let f(u, v) = f(u)v as our first case. This type of assumption is
quite common in biological models inferring that each infected v converts f(u) of
u. For the examples of f(u) one may refer to [35,36]. Different functions popular in
literature are presented in examples. We come back to the general function f(u, v)
a little later in this paper. With this assumption of f , we consider

u
′
= a− bf(u)v − du− cV (u) + αw,

v
′
= b1f(u)v − rP (v)− d1v,

w
′
= rP (v)− αw, (2.1)

with appropriate initial conditions.
Equilibria for this system are given by

a− bf(u∗)v∗ − du∗ − cV (u∗) + αw∗ = 0,

b1f(u
∗)v∗ − rP (v∗)− d1v

∗ = 0,

rP (v∗)− αw∗ = 0. (2.2)

Clearly a solution of (2.2) is (u∗, 0, 0), where u∗ solves du∗+cV (u∗) = a. In [35], it is
shown that a sufficient condition for the existence of such a disease-free equilibrium
is 0 < V (a/d) < ∞ so that the curves a − du∗ and cV (u∗) meet, yielding a u∗

satisfying the above equation.
Also (2.2) has a positive solution yielding an endemic equilibrium for (2.1) that

represents a disease environment. Explicit expressions for equilibrium points are
difficult to obtain at this stage in view of the presence of nonlinear functions in all
the equations. However, we estimate these equilibria for the functions considered
in the illustrative examples provided in a later section. Hence, we assume tacitly,
hereafter, that the equilibria to system (2.1) do exist. Unless specified, we hereafter
designate an equilibrium solution of (2.1) by (u∗, v∗, w∗) whether it is endemic or
disease free.

Using (2.2) in (2.1), we get after rearrangement,

(u− u∗)
′
= −bf(u)(v − v∗)− bv∗(f(u)− f(u∗))− d(u− u∗)

−c(V (u)− V (u∗)) + α(w − w∗)

(v − v∗)
′
= b1f(u)(v − v∗) + b1v

∗(f(u)− f(u∗))− r(P (v)− P (v∗))− d1(v − v∗)

(w − w∗)
′
= r(P (v)− P (v∗))− α(w − w∗). (2.3)

We make the following assumptions on the functions. There exist positive con-
stants L1, L2,M1,M2, N1, and N2 such that

L1 ≤ f(u)− f(u∗)

u− u∗ ≤ L2;M1 ≤ V (u)− V (u∗)

u− u∗ ≤ M2;N1 ≤ P (v)− P (v∗)

v − v∗
≤ N2

(2.4)
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respectively for u ̸= u∗, v ̸= v∗.
We further assume that f is bounded and is such that

f(u) <
rN1 + d1

b1
,∀u. (2.5)

With these assumptions, we shall establish our results.

Theorem 2.1. Assume that the functional relations in (2.1) satisfy conditions (2.4)
and (2.5).The equilibrium solution (u∗, v∗, w∗) of (2.1) is globally asymptotically sta-
ble, provided the parameters satisfy the following inequalities,
(i) B2 < 4p1q1AC, (ii) α2 < 4p2α1A, (iii) r2N2

2 ≤ 4q2α2C,
where A=L1bv

∗+d+cM1, B=max
u≥0

{b1v∗L2 − bf(u)}, C=min
u≥0

{rN1 + d1 − b1f(u)},
p1, p2, q1, q2 and α1, α2 are positive constants, such that p1 + p2 = 1, q1 + q2 = 1,
and α1 + α2 = α.

Proof. We consider the function

U(t) ≡ U(u, v, w) =
1

2
(u− u∗)2 +

1

2
(v − v∗)2 +

1

2
(w − w∗)2.

Clearly, U(u∗, v∗, w∗) = 0 and U(u, v, w) > 0 for (u, v, w) ̸= (u∗, v∗, w∗). Now,
along the solutions of (2.1) using (2.3), we have that the time derivative of U is
given by

U
′
=(u− u∗)[−bf(u)(v − v∗)− bv∗(f(u)− f(u∗))− d(u− u∗)

− c(V (u)− V (u∗))v + α(w − w∗)] + (v − v∗)[b1f(u)(v − v∗)

+ b1v
∗(f(u)− f(u∗)− r(P (v)− P (v∗))− d1(v − v∗)]

+ (w − w∗)[r(P (v)− P (v∗))− α(w − w∗)]

=− d(u− u∗)2 − bv∗(f(u)− f(u∗))(u− u∗)− c(V (u)− V (u∗))(u− u∗)

− bf(u)(u− u∗)(v − v∗) + α(w − w∗)(u− u∗)− d1(v − v∗)2 + b1f(u)(v − v∗)2

− r(P (v)− P (v∗))(v − v∗) + b1v
∗(f(u)− f(u∗))(v − v∗)

− α(w − w∗)2 + r(P (v)− P (v∗))(w − w∗)

=−
[
d+ bv∗

f(u)− f(u∗)

u− u∗ + c
V (u)− V (u∗)

u− u∗

]
(u− u∗)2 − bf(u)(u− u∗)(v − v∗)

+ α(w − w∗)(u− u∗)−
[
d1 − b1f(u) + r

P (v)− P (v∗)

v − v∗
]
(v − v∗)2

+ b1v
∗ f(u)− f(u∗)

u− u∗ (u− u∗)(v − v∗)− α(w − w∗)2

+ r
P (v)− P (v∗)

v − v∗
(v − v∗)(w − w∗)

≤−
[
d+ bv∗L1 + cM1

]
(u− u∗)2 +

[
b1v

∗L2 − bf(u)
]
(u− u∗)(v − v∗)

−
[
d1 + rN1 − b1f(u)

]
(v − v∗)2 + α(w − w∗)(u− u∗)

+ rN2(v − v∗)(w − w∗)− α(w − w∗)2

≤−
[
p1A(u− u∗)2 −B(u− u∗)(v − v∗) + q1C(v − v∗)2

]
−
[
p2A(u− u∗)2 − α(u− u∗)(w − w∗) + α1(w − w∗)2

]
−
[
q2C(v − v∗)2 − rN2(v − v∗)(w − w∗) + α2(w − w∗)2

]
.

(2.6)
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Each term in the right hand side of the above inequality (2.6) is of the form −
[
lx2+

mxy + ny2
]
. We know that the expression lx2 + mxy + ny2 is positive definite if

and only if l > 0, n > 0 and m2 < 4ln and correspondingly, −
[
lx2 +mxy + ny2

]
is

negative definite. Letting l = p1A, m = −B, n = q1C and x = u− u∗, y = v − v∗

and z = w−w∗,and observing that A > 0 by assumptions on parameters and C > 0
follows from (2.5), the first term on the right hand side of (2.6),that is,

−
[
p1A(u− u∗)2 −B(u− u∗)(v − v∗) + q1C(v − v∗)2

]
is negative definite by assumption (i) above. Similarly assumptions (ii) and (iii)
ensure the negative definiteness of the second and third expressions of (2.6). Hence,
the RHS of inequality (2.6) is negative definite, and hence it follows that U ′ < 0
along the solutions of (2.1) (using (2.3)). Thus, U defined above is the Lyapunov
function required and the rest of the argument follows from standard results (c.f.,
[22]). Hence, the equilibrium solution (u∗, v∗, w∗) is globally asymptotically stable.

Remark 2.1. Consider the following rearrangement of (2.6).

U ′ ≤ −p2A(u− u∗)2 +B(u− u∗)(v − v∗)− q1C(v − v∗)2

−p1A(u− u∗)2 + α(u− u∗)(w − w∗)− α1(w − w∗)2

−q2C(v − v∗)2 + rN2(v − v∗)(w − w∗)− α2(w − w∗)2.

Then the negative definiteness of U ′ follows from the conditions on the param-
eters (iv) B2 < 4p2q1AC, (v) α2 < 4p1α1A, (vi) r2N2

2 ≤ 4q2α2C.
Thus, (iv)-(vi) provide another set of sufficient conditions for global asymptotic

stability of the equilibrium solution.
An interested reader may explore further combinations of terms to establish

negative definiteness of U ′. We provide a couple of such conditions as a matter of
fact.

(vii) B2 < 4p1q2AC, (viii) α2 < 4p1α1A, (ix) r2N2
2 ≤ 4q1α2C,

(x) B2 < 4p2q2AC, (xi) α2 < 4p1α1A, (xii) r2N2
2 ≤ 4q1α2C.

We present one more result on stability.

Theorem 2.2. Assume that the functions f, V, P satisfy (2.4) and (2.5). Further,
the parameters satisfy

△ ∼= Min

{
A− B

2
− α

2
, C − rN2

2
− B

2
,
α

2
− rN2

2

}
> 0, (2.7)

where A,B,C are as in Theorem 2.1. Then the equilibrium solution (u∗, v∗, w∗) of
(2.1) is globally asymptotically stable.

Proof. Employing the same Lyapunov functional U in Theorem 2.1 and proceed-
ing, we have from (2.6) that

U
′
≤ − A(u− u∗)2 +B(u− u∗)(v − v∗) + rN2(v − v∗)(w − w∗)

− C(v − v∗)2 + α(u− u∗)(w − w∗)− α(w − w∗)2. (2.8)

Splitting the product term using uv ≤ 1

2
(u2 + v2) and rearranging, we obtain

U
′
≤ −

(
A− B

2
− α

2

)
(u− u∗)2 −

(
C − rN2

2
− B

2

)
(v − v∗)2
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−
(
α

2
− rN2

2

)
(w − w∗)2

≤ − △U, (2.9)

or U
′
+ △U ≤ 0, and the conclusion that U → 0 as t → ∞ follows from theory.

Thus, (u− u∗, v − v∗, w − w∗) → (0, 0, 0) for large t. Therefore, (u∗, v∗, w∗) is
globally asymptotically stable.

Remark 2.2. Notice that Theorem 2.1 and Theorem 2.2 utilize the same Lya-
punov functional and restriction on functional relations to provide two different
sets of parametric conditions for global stability. Splitting of the product term into
different combinations provides the scope for obtaining different sets of conditions
on parameters. This may be seen below. We consider the following arrangements:

1. B(u− u∗)(v − v∗) ≤ B2

2
(u− u∗)2 +

1

2
(v − v∗)2,

2. B(u− u∗)(v − v∗) ≤ 1

2
(u− u∗)2 +

B2

2
(v − v∗)2,

3. rN2(v − v∗)(w − w∗) ≤ r2N2
2

2
(v − v∗)2 +

1

2
(w − w∗)2,

4. rN2(v − v∗)(w − w∗) ≤ 1

2
(v − v∗)2 +

r2N2
2

2
(w − w∗)2,

5. rN2(v − v∗)(w − w∗) ≤ r2

2
(v − v∗)2 +

N2
2

2
(w − w∗)2,

6. rN2(v − v∗)(w − w∗) ≤ N2
2

2
(v − v∗)2 +

r2

2
(w − w∗)2,

7. α(u− u∗)(w − w∗) ≤ α2

2
(u− u∗)2 +

1

2
(w − w∗)2,

8. α(u− u∗)(w − w∗) ≤ 1

2
(u− u∗)2 +

α2

2
(w − w∗)2.

Using combinations of these terms, we obtain as many as eight types of sufficient
conditions as listed below. We may notice that by utilizing combinations of these
terms along with those present in Theorem 2.1 and 2.2, a large number of suffi-
cient conditions are possible for global asymptotically stable of (2.1). The same is
recorded as the following result.

Theorem 2.3. Assume that the functions of (2.1) satisfy the conditions (2.4) and
(2.5). Then the equilibrium solution (u∗, v∗, w∗) is globally asymptotically stable if
any of the following conditions are satisfied.

1. △1
∼= Min

{
A− B2

2
− α

2
, C − rN2

2
− 1

2
,
α

2
− rN2

2

}
> 0;

2. △2
∼= Min

{
A− 1

2
− α

2
, C − rN2

2
− B2

2
,
α

2
− rN2

2

}
> 0;

3. △3
∼= Min

{
A− B

2
− α

2
, C − r2N2

2

2
− B

2
,
α

2
− 1

2

}
> 0;

4. △4
∼= Min

{
A− B

2
− α

2
, C − 1

2
− B

2
,
α

2
− r2N2

2

2

}
> 0;
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5. △5
∼= Min

{
A− B

2
− α

2
, C − r2

2
− B

2
, α− N2

2

2

}
> 0;

6. △6
∼= Min

{
A− B

2
− α

2
, C − N2

2

2
− B

2
, α− r2

2

}
> 0;

7. △7
∼= Min

{
A− B

2
− α2

2
, C − rN2

2
− B

2
, α− 1

2

}
> 0;

8. △8
∼= Min

{
A− B

2
− 1

2
, C − rN2

2
− B

2
, α− α2

2

}
> 0. (2.10)

Proof. Employing the same Lyapunov functional as in Theorem 2.1, splitting the
product term in (2.6) according to 1-8 as in Remark 2.2 and rearranging as in
Theorem 2.2, one may establish the required negative definiteness of the Lyapunov
functional. The rest of the proof is obvious.

Remark 2.3. We remark that parametric conditions of Theorem 2.2 and Theo-
rem 2.3 are further open to improvement. For example, employing the following

inequality ab ≤ ηa2+
1

4η
b2, for any η > 0, in place of ab ≤ 1

2
a2+

1

2
b2, we have that

the parametric conditions of Theorem 2.3 may be modified as

△ ∼= Min

{
A−Bη1 − αη3, C − rN2η2 −

B

4η1
,
α

4η3
− rN2

4η2

}
. (2.11)

using

B(u− u∗)(v − v∗) ≤ B

(
η1(u− u∗)2 +

1

4η1
(v − v∗)2

)
,

rN2(v − v∗)(w − w∗) ≤ rN2

(
η2(v − v∗)2 +

1

4η2
(w − w∗)2

)
,

α(u− u∗)(w − w∗) ≤ α

(
η3(u− u∗)2 +

1

4η3
(w − w∗)2

)
.

Clearly (2.10) is a special case of (2.11) for η1 = η2 = η3 =
1

2
.

The advantage of this inequality is that basing on the strength of the parameters,
we can choose the parameters η′s for manipulating the stability of the equilibrium.
In other words, the new parameter η helps explore more regions of stability for the
system (2.1). This may be observed in examples to be presented in the next section.

We shall now present another couple of criteria for the stability of the equilibrium
solution of (2.1). This time the Lyapunov functional is modified, and conditions on
f, V , and P are assumed as follows.

For positive constants L1, L2,M1,M2, N1 and N2, we assume that

L1|u− u∗| ≤ |f(u)− f(u∗)| ≤ L2|u− u∗|,
M1|u− u∗| ≤ |V (u)− V (u∗)| ≤ M2|u− u∗|,
N1|v − v∗| ≤ |P (v)− P (v∗)| ≤ N2|v − v∗| (2.12)

hold respectively for u ̸= u∗, v ̸= v∗.
We are now in a position to state and prove.
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Theorem 2.4. Assume that the functional relations of (2.1)satisfy the conditions
(2.12). Assume further that the parameters satisfy d+ cM1 + (b− b1)L1v

∗ > 0 and
Min {d1 + (b− b1)f(u)} > 0. Then the equilibrium solution (u∗, v∗, w∗) is globally
asymptotically stable.

Proof. We employ the functional

U(u, v, w) = |u− u∗|+ |v − v∗|+ |w − w∗|.

Then along the solution of (2.1), the upper right derivative of U using (2.3) is given
by

D+U ≤ − bf(u)|v − v∗| − bv∗|f(u)− f(u∗)| − d|u− u∗| − c|V (u)− V (u∗)|
+ α|w − w∗|+ b1f(u)|v − v∗|+ b1v

∗|f(u)− f(u∗)| − r|P (v)− P (v∗)|
− d1|v − v∗|+ r|P (v)− P (v∗)| − α|w − w∗|

≤ − (b− b1)v
∗|f(u)− f(u∗)| − d|u− u∗| − c|V (u)− V (u∗)|

− (b− b1)f(u)|v − v∗| − d1|v − v∗|
≤ − (b− b1)v

∗L1|u− u∗| − cM1|u− u∗| − d|u− u∗|
− (b− b1)f(u)|v − v∗| − d1|v − v∗|

≤ − (d+ cM1 + (b− b1)L1v
∗)|u− u∗| − (d1 + (b− b1)f(u))|v − v∗|

< 0 , (by hypothesis) (2.13)

ThereforeD+U is negative definite, and the rest of the argument follows from earlier
results. Thus, U → 0 for large t. The proof is thus complete.

We shall now consider the general case (1.1), which is (2.1) with f(u, v) instead
of f(u)v. To proceed with global stability, we need the following assumptions on f .
Suppose that there exist two positive constants K1,K2 such that

|f(u1, v1)− f(u2, v2)| ≤ K1|u1 − u2|+K2|v1 − v2|. (2.14)

We recall (1.1) for ready reference

u
′
= a− bf(u, v)− du− cV (u) + αw,

v
′
= b1f(u, v)− rP (v)− d1v,

w
′
= rP (v)− αw. (2.15)

Suppose (u∗, v∗, w∗) is an equilibrium solution of (1.1). Then we have

a = bf(u∗, v∗) + du∗ + cV (u∗)− αw∗,

0 = b1f(u
∗, v∗)− rP (v∗)− d1v

∗,

0 = rP (v∗)− αw∗. (2.16)

Using (2.16) in (2.15) we have

(u− u∗)
′
= −b(f(u, v)− f(u∗, v∗))− d(u− u∗)− c(V (u)− V (u∗)) + α(w − w∗),

(v − v∗)
′
= b1(f(u, v)− f(u∗, v∗))− r(P (v)− P (v∗))− d1(v − v∗),

(w − w∗)
′
= r(P (v)− P (v∗))− r(w − w∗). (2.17)

We shall establish as follows.
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Theorem 2.5. Assume that the interaction function f satisfies (2.14), the vac-
cination function V and recovery function P satisfy (2.12). Then the equilibrium
solution of (u∗, v∗, w∗) of (1.1) is globally asymptotically stable provided the condi-
tions

(i). d+ cM1 > |b1 − b|K1 and (ii). d1 > |b1 − b|K2

hold.

Proof. We employ the same functional as in Theorem 2.4. That is, we consider

U(u, v, w) = |u− u∗|+ |v − v∗|+ |w − w∗|.

Then along the solutions of (1.1), the upper right derivative of U using (2.17) is
given by

D+U ≤− b|f(u, v)− f(u∗, v∗)| − d|u− u∗| − c|V (u)− V (u∗)|+ α|w − w∗|
+ b1|f(u, v)− f(u∗, v∗)| − r|P (v)− P (v∗))| − d1|v − v∗|
+ r|P (v)− P (v∗)| − α|w − w∗|

≤(b1 − b)|f(u, v)− f(u∗, v∗)| − d|u− u∗| − c|V (u)− V (u∗)| − d1|v − v∗|
≤|b1 − b|[K1|u− u∗|+K2|v − v∗|]− d|u− u∗| − cM1|u− u∗| − d1|v − v∗|
≤ − (d+ cM1 − |b1 − b|K1)|u− u∗| − (d1 − |b1 − b|K2)|v − v∗|
<0(by assumption).

By D+U < 0 and employing the standard arguments, one may complete the proof.
Thus, U → 0 for t → ∞. In other words (u, v, w) → (u∗, v∗, w∗) as t → ∞. The
proof is complete.

Remark 2.4. It may be observed that Theorem 2.4 gives a completely different
set of parametric conditions for global stability compared to that of Theorem 2.1,
Theorem 2.2 and Theorem 2.3. Thus, it offers a new stability region for the system
(2.1). On the other hand, Theorem 2.5 provides GAS conditions for a general,
complex system such as (1.1).

Remark 2.5. The behavior of a system depends on the parameters chosen and
the functional relations among the interacting populations. It may be observed
that Theorem 2.1 to Theorem 2.4 present several sets of sufficient conditions on
parameters of system for the global asymptotic stability of the equilibria, of course,
the conditions on functional relations are imposed through (2.4), (2.5), (2.12) or
(2.14) as the case may be. One may notice through simple comparison that the
restrictions on parameters are fewer in Theorem 2.1 when compared to those in
Theorems 2.2 and 2.3. However, all these conditions define different regions of
stability as defined by parametric spaces. Restrictions on parameters are further
eased in Theorem 2.4 through a different Lyapunov path and modified conditions
on functions. In fact, the conditions in Theorem 2.4 are vacuously true due to
the assumptions made on functions and parameters b, b1. Again, some strain on
parameters is necessary in Theorem 2.5 due to the choice of a generalized conversion
function. On the whole, the system may be regarded to have some in-built stability
with properly chosen functional relations and parameters.

Having obtained various GAS conditions for systems (2.1) and (1.1), we illustrate
these results with numerical examples in the next section.
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3. Numerical simulations

In this section, we analyze how the results of Section 2 establish the GAS of equilib-
rium of systems (2.1) and (1.1) by using numerical examples and their simulations.
Before presenting our examples, we observe that the parameter d accounts for the
immunity strength of the susceptible community (d is the rate of removal from the
system or the rate of escape from being infected!). Similarly, d1 (removal rate of
infected population) supports the term corresponding to non-infectious population
who may either do not require any treatment or recover by themselves or be dead.
Neither category contributes to spread of infection. Naturally, larger values of d and
d1 should signify a low infection state. Therefore d and d1 are the dominating pa-
rameters here. The same is reflected by the parametric conditions in all the results
discussed in the previous sections. Further observation of the conditions shows that
the vaccination parameter c and treatment rate r support d and d1 in establish-
ing the stability of equilibria. Thus, our mathematical conditions reflect biological
meanings. We have also noticed in Remark 2.5 that the functional relations f (the
conversion function), V (the vaccination function) and P (the treatment function)
are also contributing to the stability of the system. The following examples support
our observations.

We shall first consider numerical examples for the system (2.1), where f(u, v) =
f(u)v. Our first example studies the asymptotic stability of disease-free equilibrium
and the second one deals with a disease prevailing environment.

Example 3.1. Consider the system

u
′
= 18− 2f(u)v − 5u− 3V (u) + w,

v
′
= f(u)v − 1

2
P (v)− 3

2
v,

w
′
=

1

2
P (v)− w. (3.1)

We choose the functions f(u), V (u) and P (v) in such a way that they satisfy
the inequality (2.4).

Case(i). Let us assume f(u) =
1

1 + e−u
, V (u) = u and P (v) = v. For this

choice of functions, we get L1 = 0.1531, L2 = 0.1799, M1 = 1, M2 = 1, N1 =
1, N2 = 1. Equilibrium solution for this system is (2.248, 0, 0). Calculating the
values of A, B and C from the Theorem 2.1, we get A = 8, B = −1 and C = 1.3340.

By choosing p1 = p2 = q1 = q2 = α1 = α2 =
1

2
, it has been observed that the

system (3.1) satisfies the parametric conditions of Theorem 2.1. Hence, by virtue
of Theorem 2.1, the system is GAS, i.e., the solutions of the system (3.1) converge
to the point (2.248, 0, 0), which is a disease-free equilibrium state. The same may
be observed from the simulations shown in Figure 1.

Case(ii). Choose f(u) =
1

1 + e−u
, V (u) =

u

u+ 1
and P (v) = v. For this choice

of functions, we get L1 = 0.1531, L2 = 0.1799, M1 = 0.1822, M2 = 0.3079, N1 =
1, N2 = 1. This system has an equilibrium solution as (3.1448, 0, 0). The values
of A, B and C from the Theorem 2.1 are A = 5.5465, B = −1 and C = 1.3340.
Substituting these values in Theorem 2.2, we get ∆ = 0.2500 > 0. As the system
(3.1) satisfies the condition of Theorem 2.2, the system (3.1) is GAS. Simulations
of this system with chosen response functions may be seen in Figure 2.
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Figure 1. The Stability of disease-free equilibrium of (3.1) under high system immunity and vaccination
efforts.

Figure 2. Populations approaching a disease free state though vaccination efforts are slowed down.

Remark 3.1. It is observed that the system (3.1) with the functions f(u) =
1

1 + e−u
, V (u) =

u

u+ 1
and P (v) = v satisfies all the conditions of Theorem 2.3

except ∆3 > 0 condition.

It is also observed that, for η1 = 2, η2 = 2 and η3 = 2, this system does not
satisfy the condition (2.11) of Remark 2.3 (as ∆ = −0.67). But as it satisfies
at least one condition of Theorem 2.3 and also the condition of Theorem 2.2, the
system is GAS. Therefore, the GAS conditions derived in Theorem 2.1, Theorem
2.2, Theorem 2.3, and Remark 2.3 are independent of each other.

Example 3.2.

u
′
= 22− 3f(u)v − 3u− 7V (u) + w

v
′
= 3f(u)v − 1

2
P (v)− 3

2
v
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w
′
=

1

2
P (v)− w. (3.2)

We shall choose the functions f(u), V (u) and P (v) in such a way that they
satisfy the inequality (2.12).

Case(i) If f(u) =
1

1 + e−u
,V (u) =

u

u+ 1
and P (v) = v, then L1 = 0.0009

L2 = 0.0516, M1 = 0.2236, M2 = 0.5904, N1 = 1 and N2 = 1. Equilibrium point for
this system is (0.6923, 11.3705, 5.6850). From Theorem 2.5, d+cM1+(b−b1)L1v

∗ =
4.5655 > 0 and Min {d1 + (b− b1)f(u)} = 1.500 > 0. By virtue of Theorem 2.4,
system (3.2) is GAS and the simulations of this system with chosen functions can
be seen in Figure 3.

Figure 3. Prevalence of disease environment under high interaction with infected population and low
community immunity.

Case(ii) By choosing f(u) =
u

u+ 1
, V (u) =

1

1 + e−u
and P (v) =

v

v + 1
, the

values of Lipschitz constants will be L1 = 0.2418 L2 = 0.4837, M1 = 0.0033, M2 =
0.0493, N1 = 0 and N2 = 0.1. Here the equilibrium point is (1.0675, 9, 0567, 0.4503).
The value of d+ cM1 + (b− b1)L1v

∗ = 3.0231 > 0 and Min {d1 + (b− b1)f(u)} =
1.500 > 0. Therefore, by Theorem 2.4, system (3.2) with chosen functions is GAS.
The simulations of this system can be noticed in Figure 4.

Now let us consider the general case of (1.1) where we consider f(u, v) nstead
of f(u)v.

Case(iii) If f(u, v) =
u

u+ v
, V (u) = u and P (v) = v, then Lipschitz constants

will take the values K1 = 1, K2 = 1, M1 = 1, M2 = 1, N1 = 1 and N2 = 1.
Equilibrium point for this system is (2.0485, 1.0060, 0.5030).The value of d+ cM1+
(b − b1)K1 = 10 > 0 and Min {d1 − (b1 − b)K2} = 1.500 > 0. Therefore, by
Theorem 2.5, system (3.2) with chosen functions is GAS. The simulations of this
system can be noticed in Figure 5.

Remark 3.2. In the first example, we have considered the situation where only one-
half of the contacted susceptible population is converted into infected (b1 = 1, b = 2).
Under reasonable rates of removal (d = 5) and vaccination (c = 3), the disease-free
equilibria do exist and are stable in each case. A rise in susceptible population
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Figure 4. Simulations of the system (3.2) showing that infected populations rise due to reduced vacci-
nation efforts.

Figure 5. Stability of solutions to a reduced state of infection under high vaccination and treatment.

(from 2.248 to 3.1448) may be attributed to reduced vaccination efforts (V (u) = u

to
u

u+ 1
). In Example 3.2, all the susceptible population that is contacted by the

infected ones are converted to infected ones (b = b1) at higher rates than in the
previous example. Further, the removal rate is reduced but vaccination efforts are
increased now. A disease environment has prevailed as one may expect! The other
parameters are kept the same in all cases. The conversion function and vaccination
function are reversed in cases (i) and (ii) which resulted appropriate changes in sus-
ceptible population and infected population. A drastic fall in recovered population
may be noticed due to a reduced treatment (linear to sub-linear)! Again a rise in
vaccination and treatment efforts led to a rise in susceptible population, reducing
infected population at the same time.
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4. Conclusion

The interplay among a plethora of factors ranging from pathogen biological prop-
erties to environmental and socio-cultural behavioral conditions necessitates the
development of sophisticated mathematical models for a robust representation of
infectious diseases. A number of models have been proposed, which can broadly
categorize as (i) statistical models, (ii) state-space models and (iii) machine learning
models. The forecasting and non-casting capabilities of these models are explored,
and the results are utilized in establishing effective control strategies and prevention
policies. Even in most cases, the models built and studied concentrated more on
vaccination efforts, often ignoring the treatment part.

In this paper, we consider an SIR model, which includes a term representing the
treatment efforts in containing the spread of disease. The model is quite general in
nature in the sense that many SIR models become special cases of this. The model
equations are framed rigorously with proper assumptions, variables and parame-
ters. Due to the complexity of the underlying interactions, the model is difficult to
study and analyze. Only local stability aspects of the equilibrium are found in the
literature. But the prediction of disease outbreaks and control strategies is effective
when GAS of the equilibrium is established. In the present work, we focused on
establishing the GAS of the endemic disease-free equilibrium.

We began with a particular case wherein the nonlinear function f(u, v) which
describes the interaction between susceptible and infected populations taken the
form f(u, v) = f(u)v. By imposing gradient-type conditions on the response func-
tions, two different sets of GAS conditions are derived. As many as eight sets of
sufficient conditions for GAS are derived utilizing the same Lyapunov functional
but manipulating the product terms. By changing the Lyapunov functional and
suitably modifying the conditions on the functions, another set of sufficient condi-
tions for the GAS is derived. It is observed that the stability regions obtained for
each set of conditions are different. The general case is then considered providing
GAS conditions for the complex system (1.1). Numerical examples are worked out
to illustrate theorems and simulations are carried out for a pictorial representation
of the system behavior. Parametric conditions are discussed in terms of biological
phenomena and impact of vaccination and treatment on the disease dynamics are
discussed.

We intend to link the model with real data, which is a particular utility towards
the design of vaccination and treatment policies. We wish to conduct simulations
and empirical analysis based on real-time data sets and also convey an extensive
comparative investigation of this with the existing models. Having noticed the
influence of parameters on disease dynamics, the estimation and optimization for
desired results would be an interesting subject with large applications. All these
aspects are reserved for our future study.
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