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Complex Dynamical Behaviors of a Leslie-Gower
Predator-Prey Model with Herd Behavior∗

Xiaohui Chen1 and Wensheng Yang1,2,†

Abstract In this paper, we consider a Leslie-Gower predator-prey model
with a square root functional response while prey forms a herd as a form of
group defense. We show that the solution of the system is non-negative and
bounded. By applying the blow-up technique, it can be deduced that the
origin displays instability. Moreover, employing the proof-by-contradiction
approach, we demonstrate that the unique equilibrium point can be globally
asymptotically stable under certain conditions. The sufficient conditions for
the occurrence, stability, and direction of Hopf bifurcation are obtained. We
further explore the conditions for the existence and uniqueness of the limit
cycle. Theoretical results are validated through numerical simulations. Thus,
our findings reveal that herd behavior has an important impact on the Leslie-
Gower prey-predator system.
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1. Introduction

The dynamical behavior between predator and prey plays a crucial role in the fields
of biology, mathematics, and ecology. Establishing mathematical models is the pre-
ferred method for scholars to understand the dynamical behavior of the predator-
prey system. With the advancement of ecology, the development of ecological mod-
els has become increasingly sophisticated. Among the models, the Leslie-Gower
model [1] can be applied to describe the interaction and evolution process of two
species in the ecosystem, illustrating that both prey and predator have their upper
limit on growth rates. This interesting formulation for predator dynamics has been
discussed by Leslie and Gower in [2] and by Pielou in [3]. The general form of the
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Leslie-Gower model is as follows ẋ = r1x(1− x
k )−H(x)y,

ẏ = r2y(1− y
px ),

(1.1)

where y
px in the second equation is called the Leslie-Gower term and p means the

food quality of prey for conversion into predator’s growth.
Since the model (1.1) was proposed, the functional response H(x) describes the

rate at which a predator consumes prey according to the density of prey and has
been widely used in ecological models. However, in many real-world situations,
predators may come together to form groups while searching for prey. This adds
an additional layer of complexity that must be taken into account in the model. To
address these complexities, functional responses that depend on both predator and
prey characteristics have been developed. Integrating complex functional responses
is crucial in comprehending the dynamics of predator-prey interactions and mak-
ing precise predictions about ecosystem stability and biodiversity. There are two
main categories for the exact forms of the functional response: prey-dependent and
ratio-dependent (predator-dependent). This subject has been extensively studied
by scholars of various disciplines [4–11]. Ding and Huang [8] classified the global
dynamics of a ratio-dependent predator-prey model. The functional response takes
the form H(y/x), which depends on the ratio of predator and prey populations.
Many results have been obtained in the study of limit cycles, including dissipative-
ness and permanence, local and global stability, periodic orbits, and various kinds of
bifurcations. Limit cycles are a crucial area of research. It is a periodic oscillation
in predator-prey systems that allows coexistence [12]. This dynamic mechanism
has fascinated many researchers, not only in integer-order differential dynamical
systems but also in fractional-order differential dynamical systems[13–15].

Group defense refers to the herd behavior of prey species gathering in groups to
reduce the probability of being captured by predators. With appropriate assump-
tions about the form and type of prey’s functional responses, the concept of group
defense was considered and modeled in general terms [16]. Freedman and Wolkowicz
[16] also considered Holling type IV functional response. If there is mutual interfer-
ence among predators, it can improve their chances of survival. Ajraldi et al. [17]
accounted for all types of interactions between populations, symbiosis, competition,
and predator-prey interactions. They introduced a non-linear term, the square root
of population density, which took into account the assumption that interactions
occur along the boundaries of the populations. They assumed that x represents
the total quantity of prey inhabiting a specific regular surface, such as circles, and
then the predator at the group boundary consumed prey quantities proportional to√
x. For example, this may be entirely appropriate for herbivores in a large savanna

and their large predators. Based on their findings, the predator-prey model in [17]
shows stable limit cycles and Hopf bifurcation, which are unique features compared
to other predator-prey systems.

The integration of herd behavior of prey into a prey-predator system has also
been studied in reference [18–28]. Braza [18] demonstrated the dynamical behavior
of the origin. Xu et al. [19] proposed the conditions for periodic orbits and the
existence and uniqueness of limit cycles. Bulai et al.[20] proposed replacing the
general exponent α (0 < α < 1) with the exponent 1

2 . The stable solution attained
by the populations is independent of the shape of the herd. In addition, it is
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important to study how prey species protect themselves and their offspring when
predator cooperation becomes stronger. Many researchers [21–23] assumed that
adult prey exhibit group defense as an anti-predator strategy when they are sensitive
to predation and developed a stage-structured predator-prey model dividing the
prey population into two discrete stages (juvenile and adult). Various other classes
of models such as discrete models, as well as multi-scale predator-prey models have
also been investigated [24–28].

Furthermore, the time delay has been and continues to be the subject of much
recent research, for instance, the papers [33–36]. A delayed predator-prey model
with a social behavior for the prey population has been investigated in [36]. Dji-
lali studied the effect of the herd shape for the prey population on the prey and
predator equilibrium densities. The spatial spread of species is widespread in the
real world. Diffusion patterns in some predator-prey systems are a topic of interest
among scholars [37–39]. Cooperating with Leslie Gower, Souna et al. [37] deter-
mined the effect of prey social behavior interaction on the temporal behavior of the
solutions. Mezouaghi et al. [38] highlighted that harvesting generates significant
spatial patterns. Furthermore, Guin et al. [39] showed that cross-diffusion man-
ifests that the prey species resolve a self-defense mechanism to secure themselves
from any attack of the predators.

Based on the motivation from the above articles, we are still using the square
root response function in this paper to describe herd behavior. He and Li [40]
gave the following Leslie-Gower predator-prey model with square root functional
response  ẋ = r1x

(
1− x

k

)
− a

√
xy,

ẏ = r2y
(
1− y

px

)
,

(1.2)

where r1 and r2 refer to the intrinsic growth rates of prey and predator species,
respectively, while k is the carrying capacity of the natural environment, and p
represents the food conversion efficiency from prey to predator growth. a denotes
the predator’s search efficiency for prey.

The above works indicate that the study of square root functional response is of
great practical significance to the predator-prey system. Due to the herd behavior of
prey being taken into account, not all prey populations contribute to the predator’s
natural environment’s carrying capacity. Only the prey located at the boundary
contributes to the predator’s carrying capacity. Therefore, we modify the second
equation of the model (1.2), ẋ = r1x

(
1− x

k

)
− a

√
xy,

ẏ = r2y
(
1− y

p
√
x

)
.

(1.3)

All parameters r1, r2, k, a and p are positive constants in model (1.3).
This paper is organized as follows: in Section 2, we present preliminary results

that include simplification of the model, analysis of equilibria, and boundedness of
the system. Furthermore, the method of proof by contradiction provides adequate
conditions for achieving global stability. In Section 3, we demonstrate that the sys-
tem exhibits Hopf bifurcation. Moreover, we demonstrate the existence of a unique
stable limit cycle under specific conditions. In Section 4, we perform numerical
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simulations using MATLAB software to validate previously established theoretical
findings. The conclusion is given in Section 5.

2. Stability analysis

Letting x̄ = x
k , ȳ = ay√

kr1
, t̄ = r1t, s =

r2
r1
, p̄ = ap

r1
and dropping the bars, we obtain

the following system  ẋ = x(1− x)−
√
xy,

ẏ = sy
(
1− y

p
√
x

)
.

(2.1)

In this section, we establish the boundedness of the solution and examine the sta-
bility of the equilibria in the simplified system (2.1).

2.1. Positivity and boundedness of the solution

To satisfy the biological meaning, in the following, we consider system (2.1) in phase
space

Ω = {(x(t), y(t)) ∈ R2|x > 0, y ≥ 0}.

We note that all solutions of system (2.1) are positive if the initial value is selected
in the interval of R2

+. For system (2.1) with initial conditions x(0) > 0, y(0) > 0,
we have

x(t) = x(0) exp

{∫ t

0

[1− x(u)− y(u)√
x(u)

] du

}
,

y(t) = y(0) exp

{∫ t

0

[s(1− y(u)

p
√
x(u)

)] du

}
,

which shows that all the solutions of system (2.1) are non-negative.

Theorem 2.1. The solutions of system (2.1) are ultimately bounded with an initial
value which satisfies (x0, y0) ∈ Ω for all t > 0.

Proof. From the first equation of system (2.1), we can obtain that

ẋ ≤ x(1− x),

as the initial values are positive. By applying Lemma 2 in [41], we have

lim
t→+∞

supx(t) ≤ 1,

which implies that x(t) will be limited in the interval (0,1].
For any ϵ > 0, there exists T1 > 0 such that x(t) < 1 + ϵ. This, combined with

the second equation of the system (2.1), yields

ẏ ≤ sy

(
1− y

p
√
1 + ϵ

)
for t ≥ T1.

We obtain lim
t→+∞

sup y(t) ≤ p
√
1 + ϵ, letting ϵ → 0 gives lim

t→+∞
sup y(t) ≤ p.

Hence, the solutions of system (2.1) are bounded in Ω for all t > 0.
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2.2. Stability of equilibria

In the following, we will analyze the equilibrium of system (2.1). Compared to
classical predator-prey systems, system (2.1) is not well defined at (0, 0), so this
point is not an equilibrium. It seems that system (2.1) always has a boundary
equilibrium E1(1, 0). The Jacobian matrix J(E1) at E1(1, 0) takes the form as

J(E1) =

−1 −1

0 s

 ,

as Det(J(E1)) = −s < 0, E1 is a saddle point with the x-axis as its two stable
manifolds. There exists a unique unstable manifold of E1 in the interior of R2

+.
This suggests that there is a localized region of equilibrium in the first quadrant,
as the initial values of the predator and prey are located in this area. Even if the
predator population is small, it will not become extinct.

Next, we focus on a unique positive equilibrium E∗(x∗, y∗) of system (2.1) with
x∗ = 1 − p and y∗ = p

√
1− p, where 0 < p < 1. The Jacobian matrix of system

(2.1) at the positive equilibrium E∗(x∗, y∗) is given by

J(E∗) =

 3p

2
− 1 −

√
1− p

sp

2
√
1− p

−s

 .

The determinant and the trace of matrix J(E∗) are

DetJ((E∗)) = s(1− p)

and

Tr(J(E∗)) =
3

2
p− 1− s.

As 0 < p < 1, Det(J(E∗)) is always a positive value, but Tr(J(E∗)) is indefinite.
It follows that E∗ is locally asymptotically stable when p ∈ (0, 2

3 ) or
3p
2 − 1 < s,

p ∈ ( 23 , 1); and unstable when 3p
2 − 1 > s, p ∈ ( 23 , 1).

Due to the presence of the square root functional response, system (2.1) exhibits
distinct dynamical behaviors from the previous system (1.1). Combining the above
results, we obtain the following theorem.

Theorem 2.2. For system (2.1), we have the following conclusions:

(i) If p ∈ (0, 2
3 ) or 3p

2 − 1 < s and p ∈ ( 23 , 1), the unique positive equilibrium
E∗(x∗, y∗) of system (2.1) is locally asymoptotically stable;

(ii) If 3p
2 − 1 > s and p ∈ ( 23 , 1), E

∗(x∗, y∗) is unstable.

As previously stated, since there is no defined origin, we must utilize the trans-
formation dt = p

√
xdτ and continue referring to τ as t to convert system (2.1) into

an equivalent topological system as follows ẋ = px
3
2 (1− x)− pxy,

ẏ = sy (p
√
x− y) .

(2.2)

Theorem 2.3. The origin is unstable for system (2.1).
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Proof. Since the origin is not defined, we cannot determine the qualitative prop-
erty directly. Based on the system’s characteristics, we replace x = 0 with system
(2.2). With simple calculation, we get ẋ = 0 and ẏ = −sy2 < 0. In other words,
x = 0 can be considered as the invariant line of system (2.1). To analyze the qual-
itative behavior at (0, 0), a more efficient approach is to perform a Briot-Bouquet
transformation [42].

Set x = x̄, y = x̄ȳ, dt = x̄
1
2 dτ (still denote τ by t). A straightforward calculation

shows that system (2.2) is converted into the system
dx̄

dt
= px̄

(
1− x̄−

√
x̄ȳ

)
,

dȳ

dt
= ȳ

(
p(x̄+ s− 1) + (p− s)

√
x̄ȳ

)
.

(2.3)

And letting u =
√
x̄, v = ȳ, system (2.3) is rewritten as

du

dt
=

1

2
u
(
p(1− u2)− puv

)
,

dv

dt
= v

(
p(u2 + s− 1) + (p− s)uv

)
,

(2.4)

which is well-defined for all u ≥ 0 and v ≥ 0. System (2.4) has two equilibrium
points at its boundaries which are A(0, 0) and B(1, 0). The Jacobian matrices for
points A and B respectively are

JA =

1

2
p 0

0 p(s− 1)

 , JB =

−p −1

2
p

0 sp

 .

The determinant of JB is negative, indicating that B is a saddle point. When
s < 1, A is a saddle point; when s > 1, it is an unstable node; when s = 1, A is
a repelling saddle-node known from the center manifold theorem. We then use the
inverse Briot-Bouquet transformation, resulting in the conclusion that the origin is
unstable.

2.3. Globally asymptotic stability of E∗

In this subsection, we give sufficient conditions for the global stability of E∗, based
on Theorem 2.2 (i). Before illustrating the globally asymptotic stability of E∗, we
need to show that system (2.1) has no periodic orbits in the region Ω through a
proof-by-contradiction approach. By using a similar approach introduced in [43],
we can obtain the following result.

Lemma 2.1. Suppose that Tr(J(E∗)) < 0. If a periodic solution exists, the orbit
will be locally asymptotically (orbital) stable.

Proof. Let us assume that the system (2.1) has a positive periodic solution Γ (t) =
(x(t), y(t)) in R2

+ with the period T > 0. According to the divergence criterion [44],
we introduce that this periodic solution is locally asymptotically (orbital) stable if∫ T

0

Tr(JΓ )dt < 0.
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We note that∫ T

0

ẋ

x
dt =

∫ T

0

(
1− x− y

√
y

)
dt = 0,

∫ T

0

ẏ

y
dt =

∫ T

0

s

(
1− y

p
√
x

)
dt = 0,

and

Tr(JΓ ) =1− 2x− y

2
√
x
+ s− 2sy

p
√
x

=
1

2

ẋ

x
+ 2

ẏ

y
− s+

1− 3x

2

=
1

2

ẋ

x
+ 2

ẏ

y
− s+

1− 3x∗

2
+

3

2
(x∗ − x)

=
1

2

ẋ

x
+ 2

ẏ

y
− s− 1 +

3p

2
+

3

2
(x∗ − x).

Hence we have∫ T

0

Tr(JΓ )dt =

∫ T

0

(−s− 1 +
3p

2
)dt+

3

2

∫ T

0

(x∗ − x)dt

=

∫ T

0

Tr(J(E∗))dt++
3

2

∫ T

0

(x∗ − x)dt.

Considering E∗ = (x∗, y∗) is a positive equilibrium of system (2.1), we substitute
E∗ into the system (2.1) and obtain the equation y∗ =

√
x∗(1−x∗) and y∗ = p

√
x∗.

So we can rewrite system (2.1) as

ẋ

x
= 1− x+ x∗ − x∗ − y√

x
= −(x− x∗) +

y∗√
x∗

− y√
x

= −(x− x∗) +
y∗(x− x∗)√

x∗x(
√
x+

√
x∗)

− y − y∗√
x

,

(2.5)

ẏ

y
= s− s(y − y∗)

p
√
x

− sy∗

p
√
x
= −s(y − y∗)

p
√
x

+ s

(
y∗

p
√
x∗

− y∗

p
√
x

)
= −s

y − y∗

p
√
x

+ s
(x− x∗)

√
x(
√
x+

√
x∗)

.

(2.6)

Solving equations (2.5) and (2.6) results in the following expression:

x− x∗ = − ẋ

x
+

p

s

ẏ

y
.

From Green’s Formula we obtain that,
∫ T

0
(x− x∗)dt = 0.

Recall that Tr(J(E∗)) < 0. This implies that∫ T

0

Tr(JΓ )dt =

∫ T

0

(−s− 1 +
3p

2
)dt+

3

2

∫ T

0

(x∗ − x)dt < 0,

where Ω is a bounded region surrounded by Γ . This proves Lemma 2.1.

Theorem 2.4. The unique positive equilibrium E∗(x∗, y∗) of system (2.1) is glob-
ally asymptotically stable, if p ∈ (0, 2

3 ) or
3p
2 − 1 < s and p ∈ ( 23 , 1).
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Proof. If there exists a periodic solution, the orbit will be stable with Tr(J(E∗)) <
0 as stated in Lemma 2.1. However, this contradicts the stability of E∗ which is
asymptotically stable. Therefore, system (2.1) does not exhibit any non-trivial pe-
riodic solutions.

Based on Theorem 2.2 (i) and combined with the instability of E1 and the origin,
it can be deduced that the unique positive equilibrium E∗ is locally asymptotically
stable which is equivalent to globally asymptotically stable. This leads to the proof
of Theorem 2.4.

3. Bifurcation analysis

In this subsection, we focus on certain conditions for the existence of Hopf bifurca-
tion and provide proof for the direction of the Hopf bifurcation of the system (2.1).
Furthermore, we investigate the system (2.1) under specific conditions, where it can
only generate a unique limit cycle.

3.1. Hopf bifurcation

We first introduce the following lemma.

Lemma 3.1 ([44]). For a general planar analytic system ẋ = a10x+ a01y + p(x, y),

ẏ = b10x+ b01y + q(x, y),

with ∆ = a10b01 − a01b10 > 0, a10 + b01 = 0, p(x, y) =
∑

i+j≥2 aijx
iyj, and

q(x, y) =
∑

i+j≥2 bijx
iyj, and the matrix

Df(0) =

a10 a01

b10 b01


has a pair of imaginary eigenvalues and the origin will be a weak focus. The Lya-
punov number σ is then given by the formula

σ =− 3π

2a01∆
3
2

{
a10b10(a

2
11 + a11b02 + a02b11) + a10a01(b

2
11 + a20b11 + a11b02)

+ b210(a11a02 + 2a02b02)− 2a10b10(b
2
02 − a20a02)− 2a10a01(a

2
20 − b20b02)

− a201(2a20b20 + b11b20) + (a01b10 − 2a210)(b11 − b02 − a11a20)

+ (a210 + a01b10)
(
3(b10b03 − a01a30) + 2a10(a21 + b12) + (b10a12 − a01b21)

)}
.

The periodic solution is subcritical or supercritical in nature of the value of σ > 0
and σ < 0, respectively.

Next, we will first prove the transversality condition for the occurrence of a Hopf
bifurcation. Then, we calculate the first Lyapunov coefficient σ at the positive
equilibrium point E∗ of system (2.1) to predict the stability of the limit cycle
emerging through a Hopf bifurcation.
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Theorem 3.1. If 3p
2 − 1 = s and p ∈ ( 23 , 1), the system (2.1) undergoes a super-

critical Hopf bifurcation at the positive equilibrium E∗(x∗, y∗).

Proof. Selecting s as the hopf bifurcation parameter when s = 3
2p − 1 ≜ sh, it

will change the stability of E∗ when the parameter passes from one side of s = sh
to the other side.

The Jacobian matrix at the positive equilibrium point E∗ corresponds to the
following characteristic equations

λ2 − β1λ+ β2 = 0, (3.1)

where β1 = Tr(J(E∗)) and β2 = Det(J(E∗)).
When s = sh and β1 = 0, equation (3.1) turns into

λ2 + β2 = 0.

Then, we can obtain a pair of purely imaginary roots as λ1 = i
√
β2, λ2 = −i

√
β2.

Differentiating both sides of equation (3.1) with respect to s results in

2λ
dλ

ds
− λ

dβ1

ds
− β1

dλ

ds
+

dβ2

ds
= 0. (3.2)

By simplifying expression (3.2), we obtain

dλ

ds
=

λ
dβ1

ds
− dβ2

ds
2λ− β1

. (3.3)

Substituting λ = i
√
β2 into equation (3.3),

dλ

ds

∣∣∣∣∣
λ=i

√
β2

=
i
√
β2β̇1 − β̇2

2i
√
β2 − β1

=
2β̇1β2 + β1β̇2

4β2 + β2
1

+ i
2
√
β2 + β̇2 − β1

√
β2

4β2 + β2
1

,

consequently,

Re

(
dλ

ds

)∣∣∣∣∣
λ=i

√
β2

=
2β̇1β2 + β1β̇2

4β2 + β2
1

. (3.4)

Substituting β1 = 3
2p− 1− s and β2 = s

(
p2−3p+2

2

)
into (3.4), we can get

Re

(
dλ

ds

)∣∣∣∣∣
λ=i

√
β2

= −1

8
̸= 0.

In summary, we have verified the transversality condition of the Hopf bifurcation.
Based on Lemma 3.1, now we proceed to calculate the first Lyapunov coefficient σ.
We convert E∗ to the origin by x̄ = x− x∗, ȳ = y − y∗ and Taylor expand system
(2.1) near the origin. Then dropping the bars, the system (2.1) is transformed into

ẋ = a10x+ a01y + a20x
2 + a11xy + a02y

2 + a30x
3

+ a21x
2y + a12xy

2 + a03y
3 + o(|x, y|4),

ẏ = b10x+ b01y + b20x
2 + b11xy + b02y

2 + b30x
3

+ b21x
2y + b12xy

2 + b03y
3 + o(|x, y|4).

(3.5)
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The coefficients of (3.5) are listed as follows.

a10 =
3p

2
− 1, a11 = − 1

2
√
1− p

, a12 = 0,

a01 = −
√
1− p, a20 =

8− 9p

4(p− 1)
, a02 = 0,

a21 =
1

4(1− p)
3
2

, a30 =
8− 9p

4(p− 1)
, a03 = 0,

b10 =
p(3p− 2)

4
√
1− p

, b11 =
3p− 2

2(1− p)
, b12 =

3p− 2

2(1− p)
3
2 p

,

b01 =
1

2
(2− 3p), b20 = −3p(3p− 2)

8(1− p)
3
2

, b02 =
2− 3p

p
√
1− p

,

b21 = −3(3p− 2)

4(1− p)2
, b30 =

15p(3p− 2)

16(1− p)
5
2

, b03 = 0.

Hence, using the formula of the first Lyapunov number σ = − 3πL

2a01∆
3
2

and the

condition 3
2p− 1 = s, we have

σ =

3π

(
− 12 + 8

(√
1− p+ 5

)
p− 2

(
13
√
1− p+ 23

)
p2 + 21

(√
1− p+ 1

)
p3
)

4(p− 1)3p
√

−6p2 + 10p− 4
.

Focus on the numerator of the σ

l ≜ (−12 + 8(
√
1− p+ 5)p− 2(13

√
1− p+ 23)p2 + 21(

√
1− p+ 1)p3). (3.6)

Letting
√
1− p as p̂, (3.6) is turned to

l = 21(p̂+ 1)p3 − 2(13p̄+ 23)p2 + 8(p̂+ 5)p− 12

= 21p3 + 40p− 12 + p̂(21p2 − 26p+ 8)p

= l1 + p̂l2,

where l1 = 21p3 + 40p − 12, and l2 = (21p2 − 26p + 8)p. Under the condition of
p ∈ ( 23 , 1), both p̂ and l2 are positive. By simple calculation, we can also see that
the derivative of l1 with respect to p is always positive over the range p ∈ ( 23 , 1).

l1 = 21p3 + 40p− 12,

it follows that
dl1
dp

= 63p2 + 40 > 0,

and

l1|p= 2
3
=

28

9
.

Therefore, it follows that l1 > 0.
However, the denominator of σ is negative for p ∈ ( 23 , 1),

4(p− 1)3p
√
−6p2 + 10p− 4 = 4(p− 1)3p

√
−2(3p− 2)(p− 1) ≤ 0,

indicating that σ < 0. Therefore, we can infer that system (2.1) undergoes a
supercritical Hopf bifurcation, leading to the emergence of a stable limit cycle from
the equilibrium point E∗ when s passes through sh. Thus, we have demonstrated
the validity of Theorem 3.2.
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3.2. The conditions of generating one limit cycle

In this subsection, we give the following lemmas leading to the proof of the existence
of a unique limit cycle under certain conditions.

Lemma 3.2. System (2.1) has at least one limit cycle if 3p
2 − 1 > s and p ∈ ( 23 , 1)

hold.

Proof. In the previous discussion, we obtained system (2.2), which is topologi-
cally equivalent to the system (2.1), implying that both systems exhibit identical
dynamical behaviors. Under the conditions 3p

2 −1 > s and p ∈ ( 23 , 1), E
∗ is unstable.

It’s noticed that ẏ|x=0 = −sy2 < 0 and ẋ|y=0 = px
3
2 (1− x) > 0 (x < 1).

Let L1 : x− 1 = 0, L2 : y − p = 0, then

dx

dt

∣∣∣∣∣
x=1

= −py < 0,

dy

dt

∣∣∣∣∣
y=p

= sp2(
√
x− 1) < 0 (x < 1).

Using the Poincaré–Bendixson Theroem [45], system(2.1) has at least one limit
cycle if 3p

2 − 1 > s and p ∈ ( 23 , 1) hold.

Lemma 3.3. If the conditions 3
2p − 1 > s and p ∈ ( 23 , 1) hold, system (2.1) has

at most one closed orbit in the interior of the first quadrant. Moreover, the closed
orbit is stable if it exists.

Proof. Next, we will apply transformations to the system(2.2) whose method
is similar to that used in [46]. This will simplify the system (2.2) into the form
of a generalized Liénard system, then utilize the modified Z.F. Zhang’s theorem
proposed in [47]. Z.F. Zhang’s theorem was first proposed in [48].

Denote F0(x) = px
3
2 (1 − x), F1(x) = px, G1(x) = sp

√
x, G2(x) = −s, and

E(x) =
(G2(x)− F ′

1(x))

F1(x)
= −s−p

px . From system (2.2), we can obtain equations:

y∗ = p
√
x∗ =

√
x∗(1 − x∗). Subsequently, we employ the transformation shown in

[46] to eliminate the cross-term xy,

x = x, ỹ = F0(x)− F1(x)y;

x = x, u = ỹ exp

(∫ x

x∗
E(w)dw

)
, dt̃ = exp

(
−
∫ x

x∗
E(w)dw

)
dt;

x = x, v = u− F0(x) exp

(∫ x

x∗
E(w)dw

)
+ F0(x

∗);

x = x̂, ŷ = ln

(
1− v

F0(x∗)

)
, dt̂ = −F0(x

∗)dt̃,

still denoting x̂, ŷ and t̂ as x, y, and t, respectively. With this notation, we have
transformed system (2.2) into a Liénard system as follows

ẋ = Φ(y)− F (x),

ẏ = −g(x),
(3.7)
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where

Φ(y) = ey, F (x) =
F0(x)

F0(x∗)
exp

(∫ x

x∗
E(w)dw

)
,

g(x) =
F1(x)G1(x) + F0(x)G2(x)

F0(x∗)F1(x)
exp

(∫ x

x∗
E(w)dw

)
≜

Q(x)

F0(x∗)
exp

(∫ x

x∗
E(w)dw

)
.

Here

Q(x) = G1(x) +
F0(x)G2(x)

F1(x)
= sp

√
x− s

√
x(1− x),

where F0(x
∗) = p2(x∗)

3
2 > 0, Q(x∗) = sy∗ − s y∗

√
x∗

√
x∗ = 0. Note that all transfor-

mations are one-to-one correspondences on R+. As a result, the systems described
in (3.7) and (2.2) exhibit topological equivalence. Next, we will discuss the con-
ditions under which system (3.7) has only one limit cycle. After the transforma-
tion, E∗(x∗, y∗) is mapped to (x∗, 0) of system (3.7). Obviously, we can know that
Φ′(y) = ey > 0, g(x∗) = 0 and (x−x∗)g(x) > 0 for x > 0 and x ̸= x∗. In conclusion,
we have satisfied conditions (i) and (ii) in Theorem 1.1 of [47].

Then, it can be determined that

f(x) = F ′(x) =
f1(x)

F0(x∗)
exp

(∫ x

x∗
E(w)dw

)
,

f1(x) = F ′
0(x) + F0(x)E(x) =

3

2
p(1− x)

√
x+ (p+ s)(x− 1)

√
x− px

3
2

=
1

2

√
x (p+ 2s(x− 1)− 3px) ,

f1(x
∗) =

1

2
p
√
1− p(3p− 2− 2s) > 0 (

3

2
p− 1 > s, p ∈ (

2

3
, 1)).

The above calculation indicates that f(x∗) > 0. On the contrary

d

dx

(
f(x)

g(x)

)
=

p+ 2s(x− 1)− 3px

2s(x+ p− 1)
≜ h(x),

and 3
2p− 1 > s implies 2s− 3p+ 2 < 0, so that

h′(x) =
p(2− 3p+ 2s)

2s(x+ p− 1)2
< 0, h(0) =

2s− p

2s(1− p)
<

3p− p− 2

2s(1− p)
=

2(p− 1)

2s(1− p)
< 0.

The root of h(x) is x0 = 2s−p
2s−3p < 2p−2

2s−3p < 0. So we can obtain that d
dx (

f(x)
g(x) ) < 0

for 0 < x ̸= x∗. Therefore, the assumption (iii) of Theorem 1.1 of [20] is satisfied.
This proves Lemma 3.3.

Theorem 3.2. If 3p
2 − 1 > s and p ∈ ( 23 , 1), E∗(x∗, y∗) is unstable and system

(2.1) has a unique stable limit cycle.

Proof. Lemma 3.2 and Lemma 3.3 provide the conditions for system (2.1) to
have only one stable limit cycle, which are 3p

2 − 1 > s and p ∈ ( 23 , 1). This proves
Theorem 3.2.

Therefore, system (2.1) has at most one closed orbit if it exists. Furthermore,
the conditions above imply that the equilibrium E∗ is unstable. Hence, the limit
cycle is stable if it exists.
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4. Numerical simulations

In this section, we will validate our previous theoretical analysis through numerical
simulations conducted in MATLAB R2016a. To accomplish this, we will measure
the following parameter set for system (2.1).

Example 4.1. We select specific values for the parameters, which are presented
below.

In Figure 1,

s = 0.0575, p = 0.635, E∗(0.23, 0.36928),

with the following three initial conditions (x(0), y(0)) respectively:

• Initial 1: (0.215, 0.35),
• Initial 2: (0.3, 0.33),
• Initial 3: (0.5, 0.2).

0 20 40 60 80 100 120 140 160 180 200
t

0.2

0.3

0.4

0.5

0.6

0.7

0.8
x(initial 1)
y(initial 1)
x (initial 2)
y (initial 2)
x (initial 3)
y (initial 3)

Figure 1. The equilibrium point E∗(0.23, 0.36928) is locally asymptotically stable for s = 0.0575,

p = 0.635 ∈ (0, 3
2 ).

In Figure 2,

s = 0.2, p = 0.7777, E∗(0.2223, 0.36668),

with the same three initial conditions (x(0), y(0)) in Fig.1.

The time series diagram illustrated in Figure 1 and Figure 2 effectively captures
the properties of stability and long-term trends around the E∗ of the model (2.1)
over an extended time. According to Theorem 2.4, the parameter p lies in (0, 2

3 ),
and the only positive equilibrium E∗ is globally asymptotically stable in Figure 1.
Next, in Figure 2, the parameter satisfies the conditions 3p

2 − 1 < s and p ∈ ( 23 , 1),
which enables us to achieve a similar outcome of global asymptotic stability of E∗.
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0 100 200 300 400 500 600 700 800 900 1000
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x(initial 1)
y(initial 1)
x (initial 2)
y (initial 2)
x (initial 3)
y (initial 3)

Figure 2. The equilibrium point E∗(0.2223, 0.36768) is locally asymptotically stable for s = 0.2 > sh =

0.16655, p = 0.7777 ∈ ( 3
2 , 1).

Example 4.2. For a numerical simulation of Hopf bifurcation, we consider the fol-
lowing values of parameters: s = 0.166549 and p = 0.7777, with an initial condition
(x, y) = (0.215, 0.35) near the E∗ in Figure 3.

As previously discussed, we have calculated that the Hopf bifurcation occurs
at a critical value of sh equal to 0.16655 through simple calculations. By selecting
different values of s around the critical value and performing numerical simulations,
we obtain the following results: for s = 0.166549 < 0.16655, the equilibrium point
E∗ = (0.2223, 0.36668) is an unstable focus with a stable limit cycle with σ ≈
−960.642 < 0. Next, the time series diagram is depicted in Figure 3.

Our numerical simulations verify the validity of Theorem 3.2.

0 500 1000 1500
t

0.15

0.2

0.25

0.3

0.35

0.4

x
y

Figure 3. The equilibrium point E∗(0.2223, 0.36768) becomes unstable and a Hopf bifurcation occurs

for s = 0.166549 < 0.16655 = sh, p = 0.7777 ∈ ( 3
2 , 1).

5. Conclusion

In this paper, we investigate the dynamics of a Leslie-Gower predator-prey model
with herd behavior. Compared to the system (1.1) without herd behavior, the
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proposed system exhibits more complex behaviors. We first show that the solution of
the proposed system (2.1) is non-negative and bounded. Secondly, by analyzing the
Jacobian matrices of each equilibrium point, the stability of the equilibrium points
of the system (2.1) is analyzed in detail. Subsequently, we deduce that the origin
exhibits instability with the blow-up technique. Then, the proof-by-contradiction
approach provides conditions for global stability of positive equilibrium E∗. Thirdly,
we obtain the conditions for the occurrence of Hopf bifurcation and the existence
of a unique stable limit cycle. Finally, we validate our previous theoretical analysis
through numerical simulations.

In Section 2, by using dimensionless variables and parameters, the system (1.3)
transforms into the system (2.1). Notably, we substitute the parameters p̄ = ap

r1
and s = r2

r1
into Theorem 2.4 and Theorem 3.2, which can further derive the condi-

tions and establish the equivalence between system (2.1) and system (1.3). From a
biological perspective, we provide further explanation of our model (1.3).

(i) The conditions in Theorem 2.4

p ∈ (0,
2

3
) or

3p

2
− 1 < s and p ∈ (

2

3
, 1) in system (2.1)

⇐⇒ 3ap

2
< r1 + r2 in the system (1.3).

The following scenarios may occur when the prey gather together in herds and
adopt a group defense strategy.

When the growth rate of prey surpasses that of the predator, the predator’s
ability to capture prey decreases due to herd behavior but still allows the predator
to catch more prey. The predator’s carrying capacity is related to the prey, thereby
limiting the prey’s population’s growth indefinitely.

On the other hand, if the intrinsic growth rate of the prey is relatively smaller
than that of the predator, then the predator may capture less prey. The herd
behavior of prey prevents the extinction of prey.

In other words, the situations mentioned above, the food conversion efficiency or
the predator’s search efficiency is small. In addition, we demonstrate that as long
as the sum of the intrinsic growth rates of the prey and the predator is sufficiently
large, both species can survive and their populations can remain stable near the

equilibrium point E∗( r1−ap
r1

, ap
r1

√
r1−ap

r1
) of system (1.3).

(ii) The conditions in Theorem 3.2

3p

2
− 1 > s and p ∈ (

2

3
, 1) in system (2.1)

⇐⇒ 3ap

2
> r1 + r2 in system (1.3).

Conversely, the sum of the intrinsic growth rates of the prey and the predator
is relatively small, while the predator’s search ability or food conversion efficiency
improved. In this case, the system (1.3) generates a unique and stable limit cycle.
This implies that the predator and prey can oscillate periodically to survive together.

When comparing our results with those in [40], we observe both commonalities
and differences between the models (1.2) and (1.3). The dynamical behavior of
the two models exhibits similar results with the stability and unique limit cycle of
the systems, even under different conditions. Different from our model (1.3), the
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condition in model (1.2) is that the growth rates of predator and prey respectively
correspond to a threshold, and the sizes of r1 and r2 need to be discussed respec-
tively. However, for model (1.3), we only need to consider the size of r1 + r2 and
the threshold value 3ap

2 to obtain similar results. Furthermore, by exploring the
various values for the predator’s search efficiency for prey a and the food conversion
efficiency from prey to predator growth p, we can also observe that different a and
p have an important impact on the dynamical behavior of the system (1.3).

For further study, we will consider herd behavior not only in prey but also in
other terms of the system through different modeling approaches. Such a model
would be more realistic and provide more information on the interactions between
predators and prey. Inspired by reference [49, 50], we can introduce the term diffu-
sion, exploring its significant impact on system dynamics. Additionally, imprecise
parameters [51] can also be considered in biological models to provide valuable
insights into various spatial patterns.
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