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Abstract Based on the properties of Mittag-Leffler function, the behavior
of eigenvalue and the eigenfunction for a class of fractional differential equa-
tions with integral boundary value condition is discussed, and the asymptotic
expression of the eigenfunction is given.
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1. Introduction

In recent years, fractional differential equations have become a hot topic, as they can
describe problems in optical and thermal systems, rheology and material and me-
chanical systems, signal processing and system identification, control and robotics,
and other applications. Many researchers focus on the existence of solutions for
fractional differential equations boundary value problems ( [1,2], [4,5], [7–10]). For
example, in [5], the author considered the existence of solutions for fractional differ-
ential equations with integral boundary conditions. However, the theoretical study
of fractional differential equations is very difficult because of the nonlocal and sin-
gularity of fractional differential operators.

cDα
0+y(t) + f(t, y(t)) = 0, t ∈ (0, 1), α ∈ (2, 3), (1.1)

y(0) = y′(0) = 0, y(1) = λ

∫ 1

0

y(s)ds, (1.2)

where λ is a parameter and cDα
0+y(t) is the standard Caputo fractional derivative.

Using the Guo-Krasnoselskii fixed point theorem, the author obtained the sufficient
conditions on the existence of positive solutions for problem (1.1)-(1.2). On the
other hand, some researchers pay attention to the eigenvalue problem of fractional
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differential equations, see for example [2–4], [6], [12]. In [4], the author mainly stud-
ied the eigenvalue problems of fractional order differential equations with Dirichlet
and Neumann equal boundary conditions.{ cDδ

0+u(t) + λu(t) = 0, t ∈ (0, a), 1 < δ < 2, (1.3)

u(0) = u(a) = 0. (1.4)

According to the properties of Caputo fractional derivative and Riemann-Liouville
fractional integral, using the Laplace transform, the author shows that the eigen-
value of the fractional order differential equations λ > 0 is the zero of f(λ) =
Eδ,2(−λaδ) and the eigenfunction is u(t, λ) = tEδ,2(−λtδ). However, it is difficult
to obtain the exact zeros of f(λ) and their specific distribution, so the further in-
formation of the eigenvalues is not clear, and the specific asymptotic expressions
about eigenvalues and eigenfunctions become an important problem to be solved,
which inspire us to do this work.

Motivated by [4, 5], using the properties of Mittag-Leffler functions ( [10, 11]),
we give the specific asymptotic expressions of eigenvalues and eigenfunctions of the
following problems (1.5)-(1.6).

cDδ
0+u(t) + λu(t) = 0, t ∈ (0, 1), 1 < δ < 2, (1.5)

u(0) = 0, u(1) =

∫ 1

0

u(s)ds, (1.6)

where cDδ
0+u(t) is a Caputo fractional derivative. As in [4], for a given λ, we call that

the nonzero solution u(t) of problems (1.5)-(1.6) is the eigenfunction corresponding
to λ, and λ is the eigenvalue.

In order to facilitate the readers, we give the following definitions and lemmas.

Definition 1.1 (Definition 1.1.1, [4]). The Riemann-Liouville fractional integral of
α > 0 of function y : (0,∞) → R is defined as

Jα
0+y(t) =

1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds.

Definition 1.2 (Definition 1.1.3, [4]). The Caputo fractional derivative of α > 0
of function f : (0,∞) → R is defined as

cDα
0+f(t) := Jn−α

0+ Dn(f(t)) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1
ds.

Definition 1.3 ( [4], [11]). The Mittag-Leffer type function with two parameters
is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
(α, β > 0).

Lemma 1.1 (Lemma 1.1.3, [4]). Semigroup relations of fractional calculus hold

Jα
0+J

β
0+φ(t) = Jα+β

0+ φ(t) in the following circumstances:
(i) β ≥ 0, α+ β ≥ 0, φ(t) ∈ L1(0, 1);

(ii) β ≤ 0, α ≥ 0, φ(t) ∈ J−β
0+ (L1(0, 1));

(iii) α ≤ 0, α+ β ≤ 0, φ(t) ∈ J−α−β
0+ (L1(0, 1)).
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Lemma 1.2 (Theorem 2.1.1, [11]). Let (1) ρ > 1
2 , µ ∈ C, µ ̸= 1, 0,−1,−2, ..., for

ρ = 1, or (2) ρ = 1 and Reµ > 3. Then all sufficiently large (in modulus) zeros zn
of the function Eρ(z;µ) are simple and the following asymptotic formula hold:

zρn = 2πin− τµ
ρ
ln2πin+ lncµ +

dµ/cµ
(2πin)1/ρ

+ (
τµ
ρ
)2
ln2πin

2πin
− τµ

ρ

lncµ
2πin

+ αn,

as n → ±∞, where

αn = O

(
ln|n|

|n|1+1/ρ

)
+O

(
1

|n|2/ρ

)
+O

(
ln2|n|
n2

)
, if ρ >

1

2
.

Lemma 1.3 (Theorem 1.2.1, [11]). For any ρ > 1
2 , µ ∈ C, m ∈ N, the following

asymptotics hold.
If |argz| ≤ min(π, π

ρ ), then

Eρ(z;µ) = ρzρ(1−µ)ez
ρ

−
m∑

k=1

z−k

Γ(µ− k
ρ )

+O(|z|−m−1),

as z → ∞.
If ρ > 1 and π

ρ ≤ |argz| ≤ π, then

Eρ(z;µ) = −
m∑

k=1

z−k

Γ(µ− k
ρ )

+O(|z|−m−1),

as z → ∞.

By substituting α = 1
ρ , β = µ, m = 1 into Definition 1.3 and Lemma 1.3, we

can obtain the following lemma.

Lemma 1.4. Under the conditions of Lemma 1.3, one has

1

ρ
zmEρ(z, µ) = zτµez

ρ

− cµ − dµ
z

+O(
1

z2
),

where cµ = 1
ρΓ(µ− 1

ρ )
, dµ = 1

ρΓ(µ− 2
ρ )
, and τµ = 1 + ρ(1− µ).

Lemma 1.5. The eigenvalues of problem (1.5)-(1.6) are zeros of Eδ,2(−λ)−Eδ,3(−λ)
= 0.

Proof. By the Laplace transformation method, the general solution of (1.5) is
u(t) = c1tEδ,2(−λtδ) + c2Eδ,1(−λtδ), where Eα,β(z)(α = δ > 0, β = 1, 2) is the
two-parameter Mittag - Leffler function, which together with condition (1.6) can
lead to the result by the standard way.

2. Main results and proofs

In order to facilitate the proof of our results, we introduce the following notation:

c2 =
δ

Γ(2− δ)
, c3 =

δ

Γ(3− δ)
, d3 =

δ

Γ(3− 2δ)
,

h1 = (1− δ)2πn ln(2πn)− (1− δ) ln(c2 − c3)(
π

2
− ln(c2 − c3)

2πn
),

h2 = (1− δ)
(
ln(c2 − c3)(ln(2πn) + 1)− nπ2

)
, h3 = ln(c2 − c3) + δ − 1.
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Theorem 2.1. All sufficiently large(in modulus) eigenvalues λn are simple and the
following asymptotic formula holds:

λ
1
δ
n =(−1)

1
δ

(
ln(c2 − c3) +

2h1nπ + (h2 + 1)h3

4n2π2 + h2
3

)
+ (−1)

1
δ

(
2nπ +

h1h3 − 2(h2 + 1)nπ

4n2π2 + h2
3

)
i+ εn,

where lim
n→∞

εn = 0.

Proof. By Lemma 1.5, the eigenvalues of (1.5)-(1.6) satisfy the following equation

Eδ,2(−λ)− Eδ,3(−λ) = 0. (2.1)

Set z = −λ. Then equation (2.1) becomes

δzEδ,2(z)− δzEδ,3(z) = 0.

Further, we have

ez
1
δ +ln(zτ2−zτ3 ) = c2 − c3 +

d2 − d3
z

+O(
1

z2
). (2.2)

Set y = z
1
δ and

z
1
δ + ln(zτ2 − zτ3) = ω. (2.3)

Note that τ2 = 1− 1
δ and τ3 = 1− 2

δ . Then (2.3) can be reduced to

y + (δ − 2) ln y + ln(y − 1) = ω. (2.4)

Let y = ω + r(ω). Noting that r(ω) = o(ω), ω → ∞, by (2.4), one has

r(ω) = (2− δ) ln (ω + r(ω))− ln (ω + r(ω)− 1)

= (1− δ) lnω + (2− δ) ln(1 +
r(ω)

ω
)− ln

(
1 +

r(ω)− 1

ω

)
,

and by the Taylor formula we have

r(ω) =
(1− δ)ω lnω + 1

ω + δ − 1
+ εω,

where εω = O
(

(1−δ)r2(ω)+2r(ω)−1
ω2

)
, and lim

ω→∞
εω = 0. So

y = ω +
(1− δ)ω lnω + 1

ω + δ − 1
+ εω, (2.5)

which together with (2.2) leads to

eω = c2 − c3 +
d2 − d3

z
+O(

1

z2
),

and futher,

ω = 2πin+ ln(c2 − c3 +
d2 − d3

z
+O(

1

z2
))

= 2πin+ ln(c2 − c3) + ln

(
1 +

d2 − d3
c2 − c3

1

z
+O(

1

z2
)

)
= 2πin+ ln(c2 − c3) + αn,
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where αn = ln
(
1 + d2−d3

c2−c3
1
z +O( 1

z2 )
)
, and lim

n→∞
αn = 0.

Therefore, we obtain

lnω = ln(2πin+ ln(c2 − c3) + αn)

= ln(2πin) + ln

(
1 +

ln(c2 − c3)

2πin
+ αn

)
= ln(2πn) +

(
π

2
− ln(c2 − c3)

2πn

)
i+ βn,

where lim
n→∞

βn = 0. Hence,

λ
1
δ
n =(−1)

1
δ

 (1− δ)(2πin+ ln(c2 − c3))
(
ln(2nπ) +

(
π
2 − ln(c2−c3)

2πn

)
i
)

2πin+ ln(c2 − c3) + δ − 1


+ (−1)

1
δ

(
2πin+ ln(c2 − c3) +

1

2πin+ ln(c2 − c3) + δ − 1

)
+ εn

=(−1)
1
δ

(
2πin+ ln(c2 − c3) +

h1i+ h2 + 1

2πin+ h3

)
+ εn

=(−1)
1
δ

(
2nπi+ ln(c2 − c3) +

h1i(2nπ − h3)

4n2π2 + h2
3

+
(h2 + 1)(h3 − 2nπ)

4n2π2 + h2
3

)
+ εn

=(−1)
1
δ

(
ln(c2 − c3) +

2h1nπ + (h2 + 1)h3

4n2π2 + h2
3

+

(
2nπ +

h1h3 − 2(h2 + 1)nπ

4n2π2 + h2
3

)
i

)
+ εn,

where lim
n→∞

εn = 0.

The proof is complete.
In order to more intuitively observe the properties of the eigenvalue of problem

(1.5)-(1.6), the following Figure 1 and Figure 2 are figures of λ
1
δ
n and |λn|

1
δ of

δ = 1.05.
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Figure 1. when δ = 1.05, the distribution of λn

1
δ
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As can be seen from Figure 1, we can clearly see that lim
n→∞

Reλ
1
δ
n = ∞, lim

n→∞
Imλ

1
δ
n

= ∞, where Reλ
1
δ
n and Imλ

1
δ
n represent the real and imaginary parts of λn

1
δ , respec-

tively.

n
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Figure 2. when δ = 1.05, the distribution of |λn|
1
δ

As can be seen from Figure 2, lim
n→∞

|λn|
1
δ = ∞.

The asymptotic representation and properties of the eigenvalues of problem
(1.5)-(1.6) is already clear, so we also hopes to obtain the asymptotic represen-
tation of the eigenfunctions, as shown in Theorem 2.2.

Theorem 2.2. For any m,M ∈ N, the eigenfunction of problem (1.5)-(1.6) can be
approximately expressed as

Ch(t) =



(−1)
1
δ e(−λ)

1
δ t

δλ
1
δ

−
m∑

k=1

(−λ)−kt1−δk

Γ(2−δk) +Rm(−λtδ+1; 1
δ , 2), 1 < δ ≤ 4

3 ,∑
|arg(−λtδ)+2πn|≤ 3π

4 δ

(−1)
1
δ e(−λ)

1
δ te

2π
δ

in− 2π
δ

in

δλ
1
δ

−

M∑
k=1

(−λ)kt1−δk

Γ(2−δk) +RM (−λtδ+1; 1
δ , 2),

4
3 ≤ δ < 2,

where
∣∣Rm(−λtδ; 1

δ , 2)
∣∣ ≤ 2

b+2
2 Γ(b+1)

|λ|m+1a(δ+1)(m+1) ,
∣∣RM (−λtδ+1; 1

δ , 2)
∣∣ ≤ 2

b+2
2 Γ(b+ 3

2 )

|λ|M+1a(δ+1)(M+1) ,

b = δ(s+ 1)− 2 ≥ 0, s = m or M .

Proof. It is easy to know that the eigenfunction of (1.5)-(1.6) is Ch(t) = tEδ,2(−λtδ).
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Set µ, x ∈ C and x ̸= 0. By Theorem 1.4.2 and Theorem 1.5.1 of [11], one has

Eρ(x;µ) =



ρxρ(1−µ)ex
ρ

−
m∑

k=1

x−k

Γ(µ− k
ρ )

+Rm(x; ρ, µ), ρ ∈ [
3

4
, 1],

ρ
∑

|arg x+2πn|≤ 3π
4ρ

(xρe2πinρ)
1−µ

e(x
ρ(e2πinρ))

−
M∑
k=1

x−k

Γ(µ− k
ρ )

+RM (x; ρ, µ), ρ ≤ 3

4
,

where

|Rm(x; ρ, µ)| ≤ 2
b+2
2 Γ(b+1)e(

5
4
π|Imµ|)

|x|m+1
, |RM (x; ρ, µ)| ≤ 2

b+2
2 Γ(b+ 3

2 )e
( 5
4
π|Imµ|)

|x|M+1 , b ≥ 0.

Substituting ρ = 1
δ , µ = 2, x = −λtδ into (2.5), we can obtain Eδ,2(−λtδ) =

E 1
δ
(−λtδ; 2).
So Theorem 2.2 is proved.

Remark. We only obtain the asymptotic expressions of eigenvalues with sufficient
large moduli. For eigenvalues with insufficient modulus, their asymptotic represen-
tation will be studied in our next work.
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