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The Global Dynamics for a Stochastic SIR
Epidemic Model with Vaccination

Shan Gao1 and Xiaoqi Sun1,†

Abstract A new stochastic SIR epidemic model with vaccination is estab-
lished and its dynamical behavior is analyzed. Considering the random effects
of vaccination rates and mortality in this model, it is demonstrated that the
extinction and persistence of the virus is only correlated with the threshold
Rs

0. If Rs
0 < 1, the disease dies out with probability one. And if Rs

0 > 1, the
disease is stochastic persistent in the means with probability one. In addi-
tion, the existence and uniqueness of a smooth distribution are proven using
the Itôs formula, and the sufficiency criterion is obtained using the Lyapunov
function. Finally, the accuracy and efficiency of the stochastic SIR epidemic
model with vaccination in predicting disease transmission trends were verified
through simulation. Unlike the singularity of stochastic perturbations in ex-
isting infectious disease models, the innovation of this paper is in the addition
of multiple stochastic perturbations, especially distinguishing the stochastic
perturbations of mortality under vaccination, which are used to study the
dynamics of the model.
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1. Introduction

It is well known that infectious diseases have been the number one killer threaten-
ing human life and health. In particular, the spread of COVID-19 has caused great
impact on human life and health in recent years. Thus, the prevention and control
of infectious diseases have become urgent problems for all countries. And the anal-
ysis of infectious diseases requires the establishment of corresponding mathematical
models. Therefore, studying how to develop a realistic mathematical model is of
great practical significance. The use of mathematical models for the analysis of
infectious diseases has yielded a wealth of results. For example, Wen considered
that the disease has temporary immunity and proposed the SIR model [1]. And
the author ingeniously constructed Lyapunov function to investigate the stabiliza-
tion of the equilibrium point. In [1], it proved the stability problem related to
the equilibrium point and obtained conclusions that when R0 < 1, the disease-free
equilibrium is globally asymptotically stable regardless of time delay. But when
R0 > 1, the endemic equilibrium is existent while the disease-free equilibrium gets
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unstable. Peijiang Liu, Din Anwarud and Zenab [2] are devoted to the study of the
dengue epidemic model. They used a randomly perturbed dengue fever model and
information intervention factors. Qualitative analysis was conducted on the positive
solutions of the model based on stochastic differential equations. By constructing
Lyapunov functions, a basic recurrence number scheme is introduced to ensure the
exponential stability.

With the development of biotechnology, experts found that vaccination can ef-
fectively slow down the diffusion of infectious diseases and thus reduce morbidity
and mortality [3–5]. Therefore, vaccination has become an effective measure to
prevent various infectious diseases. Over time, more experts are considering vac-
cination as a factor when studying infectious diseases [6–8]. In 2014, Chauhan S,
Misra O P and Dhar J introduced vaccination rates in their original SIR model [9].
In this paper, the linear stability and global stability of the two models were ad-
dressed, and the existence of disease-free and epidemic equilibrium points of the
two models were compared. It was analyzed that the local and global stability
of the model is determined by the underlying reproduction number. Afterward,
Mauŕıcio de Carvalho João P. S [10] introduced logistic growth into the SIR model
and combined it with vaccination, studying the bifurcation issues of the model.
Finally, a parameter space (R0, p) was established to evaluate the proportion of
vaccinated individuals necessary to eliminate the the disease and to conclude how
the vaccination may affect the outcome of the epidemic. In 2023, the paper [11]
further considered the reduction of vaccine costs and proposes several options of
the stochastic SIR epidemics model with limited treatment. It demonstrated the
efficiency of different vaccination strategies. Finally, a method was presented to
obtain the optimal vaccination strategy that minimizes the cost functional. After-
wards, Changjin Xu investigated the infectious disease model, using COVID-19 as
an example [12]. The study considered factors such as incubation times, vaccine
effectiveness, and quarantine periods in the spread of the virus in symptomatically
contagious individuals. Additionally, nonlinear analysis was employed to illustrate
some findings concerning the ergodic aspect of the stochastic model.

Indeed, regardless of the infectious disease model utilized for analysis, white
noise originating from real-life environments will inevitably impact the model to
some extent. Din Anwarud developed and analyzed a random hepatitis B model con-
sidering propagation coefficient delay and CTL immune response categories through
research. He investigated whether the model has a unique global solution and fur-
ther analyzed the extinction and persistence of the disease. The research proved
that the ergodic stationary distribution exists under certain conditions. From this,
it can be inferred that white noise plays an important role in controlling infec-
tion [13]. Hence, the study of stochastic epidemic models becomes more relevant.
Consequently, an increasing number of researchers have incorporated random distur-
bances into infectious disease models and analyzed various system properties such
as stability [14–18]. For instance, in [19], Khan T et al. proposed a stochastic model
for novel coronaviruses based on the assumption that only transmission rates fluctu-
ate stochastically, and used Lyapunov functions to find conditions for extinction and
persistence. The paper [28] provided insights into the impact of information cam-
paigns on the spread of stochastic hepatitis. In [21], the authors also considered
the random fluctuations in infection and recovery rates caused by environmental
and weather variations. They proposed a stochastic infectious disease model that
incorporates vaccination and saturation treatment. They then applied the random



A Stochastic SIR Epidemic Model with Vaccination 1093

maximum principle and a four-step approach to investigate the stochastic optimal
vaccination problem for the SIR model with saturation treatment. Building on the
conclusion of [19], the paper [22] demonstrated the conditions for extinction and per-
sistence of SARS-CoV-2 viral disease by combining multiple random sources. Later,
the existence of stochastic persistence and smooth distribution of the stochastic epi-
demic model has been investigated [23–25, 27, 28]. Among them, Yiliang Chen et
al. studied the SIQ model on the basis of considering isolation factors and random
disturbances, and discussed the extinction and persistence of the model as well as
the sufficient conditions for stationary distribution. Based on the characteristics of
the disease and the underlying assumptions, Din Anwarud [28] also formulated the
associated deterministic model for which the threshold parameter is calculated. The
model was further extended to a stochastic model and it is well-justified that the
model is both mathematically and biologically feasible by showing that the model
solution exists globally, bounded stochastically and is positive. By utilizing the
concepts of stochastic theory and by constructing appropriate Lyapunov functions,
developed the theory for the extinction and persistence of the disease. Further, it
is shown that the model is ergodic and has a unique stationary distribution. The
stochastic bifurcation theory is utilized and a detailed bifurcation analysis of the
model is presented.

Taking into account the factors mentioned earlier, this paper puts forward a
novel approach which incorporates independent Brownian motion to introduce ran-
dom perturbations to natural mortality and vaccination rate. This aims to enhance
the accuracy of predicting the future dynamic behavior of the model.

First, we incorporate the vaccination rate into the general model, and the specific
formulation of the model is outlined below,

S
′
= A− µS − β(1− u)IS − uS + ζR,

I
′
= β(1− u)IS − (µ+ α+ϖ)I,

R
′
= uS +ϖI − (µ+ ζ)R.

(1.1)

where S(t) stands for a susceptible community, I(t) stands for a infectious commu-
nity, R(t) stands for a recovery community. A represents the input rate of S(t),
while β is the transmission rate between community S(t) and I(t). The natural
death rate of S(t), I(t) and R(t) is denoted by µ, α is the disease-related mortality
rate of I(t), u is the population vaccination rate, ϖ is the recovery rate of I(t),
and ζ is the rate where individuals return to S(t) from R(t). All parameters are
non-negative.

At the same time, this paper adds random disturbance to the model and as-
sumes that the mortality rate under vaccination and non vaccination is different,
respectively, denoted by α2 and α3. Then, we further define µ1 = µ, µ2 = µ + α2

for the convenience. Finally, we incorporate randomness into model (1.1), by using
µ1 → µ1 + σ1dW1(t), µ2 → µ2 + σ2dW2(t), µ3 → µ3 + σ3dW3(t), u → u + σ4dW4

instead of the parameters u and µi(i=1,2,3). On some probability space (Ω,F ,P ),
Wi(t)(i=1,2,3,4) are independent standard Brownian motion and the intensity of
Wi(t) is σi > 0(i=1,2,3,4).

Thus, this paper establishes the following stochastic SIR epidemic model with
multi-parameters white noises perturbations and the vaccination. The specific model
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is as follows.

dS(t) = [A− µ1S − β(1− u)IS − uS + ζR]dt+ σ1SdW1(t) + σ4(βIS − S)dW4(t),

dI(t) = [β(1− u)IS − µ3I −ϖI]dt− σ4βISdW4(t) + σ3IdW3(t),

dR(t) = (uS − µ2R+ϖI − ζR)dt+ σ4SdW4(t) + σ2RdW2(t).

(1.2)

The objective of this paper is to investigate the extinction and persistence and
the stationary distribution of model (1.2) applying stochastic theories, formulas, and
constructing suitable Liapunov function. This paper establishes a set of adequate
preconditions to guarantee the extinction and persistence in the mean of the model
with probability one, as well as the existence of a unique stationary distribution for
model (1.2).

Apart from other studies, this study is the incorporation of random perturba-
tions in the mortality rates for both vaccinated and unvaccinated populations, along
with the inclusion of multiple types of white noise disturbances rather than a single
one. This enhances the accuracy of the model for real-life applications. Addition-
ally, the existence of steady-state distributions of the model is investigated, and the
variations of compartments under random perturbations are analyzed using MAT-
LAB for various infectious disease scenarios. We sincerely hope you can review it
again.The content of this paper is roughly distributed as below. In Part 2, some nec-
essary preliminaries and useful lemmas are mainly given. In Part 3, the conditions
on the extinction and persistence in the mean with probability one for model (1.2)
are described and shown. In Part 4, the unique stationary distributional properties
of the model (1.2) are described and demonstrated. In Part 5, we use MATLAB to
simulate the influence of vaccination and random disturbance on the model.

2. Materials and methods

2.1. Preliminaries and lemmas

Lemma 2.1. For specific model (1.1), let R0 = Aβ(1−u)
(µ+ϖ+α)(u+µ) . There are two con-

clusions below.
(1) If R0 < 1, there is only one disease-free equilibriumc defined by

E0 = ( A(u+ζ)
uµ−(u+µ)(u+ζ) , 0,

uA
uζ−(u+µ)(u+ζ) ) in model (1.1) and it is globally asymptoti-

cally stable.
(2) If R0 > 1, 2µ − ζ > 0 and (2µ − ϖ)(u − ϖ) − u(α + u − ϖ) < 0, there is
an endemic equilibrium defined by E∗ = (S∗, I∗, R∗) in the model (1.1) and it is
globally asymptotically stable.

S∗ =
A

(u+ µ)
, I∗ = [A(1− 1

R0
) +

(u+ϖ + α)(µ+ ζ)− ζϖ

u+ ζ
],

R∗ =
1

µ+ ζ
[

uA

R0(u+ µ)
+ϖI∗].

Proof. By calculating the Jacobian matrix of the system at the equilibrium E0,
the result indicates that it is locally asymptotically stable if R0 < 1 and is unstable
if R0 > 1. To prove the global stability of E0, we construct the Liapunov function
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V s.t. V = I and derive that,

V
′
= [β(1− u)S − (µ+ϖ + α)]I ≤ [

βA(1− u)

u+ µ
− (µ+ϖ + α)]I ≤ 0.

In the above equation, V = 0 only when I = 0. In this model (1.1), R
′
(t) =

uS+ϖI−(µ+ζ)R, R→ 0 as t→ 0. Thus, R
′
(t) = A−µS−uS+ζR can be equated

to R
′
(t) = A− (µ+ u)S. Therefore, based on the equation above, it is evident that

S → A
u+µ . It can also be that when I = 0, all solutions in this model tend to the

disease-free equilibrium E0. According to the LaSalle Invariant Set Theorem in [29],
the disease-free equilibrium E0 = ( A

u+µ , 0, 0) is globally asymptotically stable.
Consider the Liapunov function

V =
u(α+ u−ϖ)− (2µ− ζ)(u−ϖ)

βu(1− u)
[I − I∗ − I∗ln

I

I∗
] +

2µ− ζ

2u
(R−R∗)2

+
u(α+ u−ϖ)− u(α+ u−ϖ)− (2µ− ζ)(u−ϖ)

2uα
(N −N∗)2

+
1

2
[−(N −N∗)− (R−R∗)]2.

Obviously, V is a positive definite function. Next, take the derivative of V , we have

V
′
=− u(α+ u−ϖ)− (2µ− ζ)(u−ϖ)

u
(I − I∗)2

− [
(2µ− ζ)(u+ µ+ ζ)

u
+ (u+ µ+ ζ)](R−R∗)2

− [
µ(2µ− ζ)(u− ζ)

uα
](N −N∗)2.

Based on the Liapunov theorem [30], the endemic equilibrium can be obtained
globally asymptotically stable, due to the negative qualitative nature of V

′
.

Lemma 2.2. When an initial value of (S(0), I(0), R(0)) ∈ R3
+ is arbitrarily given,

model (1.2) has a distinctive global positive solution (S(t), I(t), R(t)). In other
words, when t ≥ 0, the solution (S(t), I(t), R(t)) stays in R3

+ with probability one.

Proof. Firstly, we adopt the nonlinear incidence rate IS/f(I), where f(I) is con-
tinuously differentiable with f(0) = 1 and f

′
(I) ≥ 0. So we consider the following

model.

dS(t) = [A− µ1S − β(1− u)IS

f(I)
− uS + ζR]dt+ σ1SdW1(t) + σ4(βIS)dW4(t),

dI(t) = [
β(1− u)IS

f(I)
− µ3I −ϖI]dt− σ4βISdW4(t) + σ3IdW3(t),

dR(t) = (uS − µ2R+ϖI − ζR)dt+ σ4SdW4(t) + σ2RdW2(t).

Since the coefficients of the equation are locally Lipschitz continuous, for any
given initial value (S(0), I(0), R(0)) ∈ R3

+, there is a unique local solution (S(t), I(t),
R(t)) ∈ R3

+ on t ∈ [0, τe), where τe is the explosion time. To show that this solu-
tion is global, we must demonstrate that τe = ∞. Define the stopping time τ◦ by
τ◦ = inf{t ∈ [0, τe) : S(t) ≤ 0 or I(t) ≤ 0 or R(t) ≤ 0}.
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ϕ denotes the empty set, and we set infϕ = ∞. We have τ◦ ≤ τe. So, if we can
show that τ◦ = ∞, then for all t ≥ 0, we have τe = ∞ and (S(t), I(t), R(t)) ∈ R3

+.
Assume that τ◦ < ∞, then there exists a K such that P{τ◦ < K} > 0. Next,
define a C2-function V (S, I,Q) = lnSIQ. For all t ∈ [0, τ◦), according to the Itô

′
s

formula, we get

dV (S, I,R) = [
A

S
− µ1 −

βI(1− u)

f(I)
+

1

2
σ2
1 +

1

2
σ2
4(βI − 1)2]dt+ σ1dW1

+ σ4(βI − 1)dW4 + [
β(1− u)S

f(I)
− µ3 −ϖ − 1

2
(σ4βS)

2 +
1

2
σ2
3 ]dt

− σ4βSdW4 + σ3dW3 + [u
S

R
− µ2 +ϖ

I

R
− ζ +

1

2
(σ4

S

R
)2

+
1

2
σ2
2 ]dt+ σ4

S

R
dW4 + σ2dW2

= [
A

S
− µ1 −

βI(1− u)

f(I)
+

1

2
σ2
1 +

1

2
σ2
4(βI − 1)2 +

β(1− u)S

f(I)

− µ3 −ϖ − 1

2
(σ4βS)

2 +
1

2
σ2
3 + u

S

R
− µ2 +ϖ

I

R
− ζ +

1

2
(σ4

S2

R2
)

+
1

2
σ2
2 ]dt+ σ1dW1 + σ4(βI − 1)dW4 − σ4βSdW4 + σ3dW3

+ σ4
S

R
dW4 + σ2dW2,

where f(I) is used, and we have

dV (S, I,R) ≥ [−βI(1− u)− µ1 − µ3 −ϖ − 1

2
σ2
4β

2S2 − µ2 − ζ]dt+ σ1dW1

+ σ4(βI − 1)dW4 − σ4βSdW4 + σ3dW3 + σ4
S

R
dW4 + σ2dW2.

Let M(S, I,R) = −βI(1− u)− µ1 − µ3 −ϖ − 1
2σ

2
4β

2S2 − µ2 − ζ, then

dV (S, I,R) ≥M(S, I,Rdt+ σ1dW1 + σ4(βI − 1)dW4 − σ4βSdW4 + σ3dW3

+ σ4
S

R
dW4 + σ2dW2.

So,

V (S, I,R) ≥ V (S(0), I(0), R(0)) +

∫ t

0

M(S(u), I(u), R(u))du+ σ1W1(t) + σ2W2(t)

+ σ3W3(t) + σ4

∫ t

0

[
S(u)

R(u)
+ β(u)I(u)− 1]dW4(u).

We know that some components of (S(τ◦), I(τ◦), R(τ◦)) equal 0. So
limt→τ◦ V (S(t), I(t), R(t)) = −∞. Letting t→ τ◦, we have

−∞ ≥ V (S(0), I(0), R(0)) +

∫ τ◦

0

M(S(u), I(u), R(u))du+ σ1W1(t) + σ2W2(t)

+ σ3W3(t) + σ4

∫ t

0

[
S(u)

R(u)
+ β(u)I(u)− 1]dW4(u) > −∞,

which leads to contradictions. So we have τ◦ = ∞, and the translation certification
completes.
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Lemma 2.3. Let (S(t), I(t), R(t)) be the solution of model (1.2) that has an initial
value (S(0), I(0), R(0)) ∈ R3

+. Then

lim
t→∞

sup(S(t) + I(t) +R(t)) <∞. (2.1)

Furthermore,

lim
t→∞

sup(S(t) + I(t) +R(t)) ≤ A

µ1
. (2.2)

Proof.

d(S + I +R) = [A− µ1(S + I +R)− α2R− α3I]dt+ σ1SdW1(t) + σ2RdW2(t)

+ σ3RdW3(t),

(2.3)

where α3 = µ3 − µ1 ≥ 0 and α2 = µ2 − µ1 ≥ 0.
By integrating the above equation, we obtain

S(t) + I(t) +R(t) =
A

µ1
+ [S(0) + I(0) +R(0)− A

µ1
]e−µ1t − 2βu

∫ t

0

SIe−µ1(t−s)ds

− α2

∫ t

0

R(s)e−µ1(t−s)ds− α3

∫ t

0

I(s)e−µ1(t−s)ds

+ σ1

∫ t

0

S(s)e−µ1(t−s)dW1(s)

+ σ2

∫ t

0

R(s)e−µ1(t−s)dW2(s) + σ3

∫ t

0

I(s)e−µ1(t−s)dW3(s)

≤ A

µ1
+ [S(0) + I(0) +R(0)− A

µ1
]e−µ1t +M(t).

(2.4)

M(t) = σ1

∫ t

0

S(s)e−µ1(t−s)dW1(s) + σ2

∫ t

0

R(s)e−µ1(t−s)dW2(s)

+ σ3

∫ t

0

I(s)e−µ1(t−s)dW3(s).

Clearly, M(t) is a continuous local martingale with M(0) = 0. Define

Y (t) = Y (0) +A(t)− U(t) +M(t),

where

Y (0) = S(0) + I(0) +R(0), A(t) =
A

µ1
(1− e−µ1t),

U(t) = (S(0) + I(0) +R(0)(1− e−µ1t).

By (2.4), when t ≥ 0, we have S(t) + I(t) +R(t) ≤ Y (t).
Obviously, when t ≥ 0, A(t) and U(t) are continuous adapted increasing pro-

cesses, and A(0) = U(0) = 0. So according to Theorem 1.1.2 in [31], it holds that
lim
t→∞

Y (t) <∞. Therefore, the result (2.1) is established. Set

M1(t) =

∫ t

0

S(s)dW1(s),M
∗
1 (t) =

∫ t

0

e−µ1(t− s)S(s)dW1(s),
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M2(t) =

∫ t

0

R(s)dW2(s),M
∗
2 (t) =

∫ t

0

e−µ1(t− s)R(s)dW2(s),

M3(t) =

∫ t

0

I(s)dW3(s),M
∗
3 (t) =

∫ t

0

e−µ1(t− s)I(s)dW3(s).

Due to the quadratic variations

< M1(t),M1(t) > =

∫ t

0

S2(t)ds ≤ (sup
t≥0

S2(t))t,

< M∗
1 (t),M

∗
1 (t) > =

∫ t

0

e−2µ1(t−s)S2(t)ds ≤ (sup
t≥0

S2(t))t,

and according to the large number theorem for martingales(See [31]), the following
two equations hold

lim
t→∞

1

t
M1(t) = 0, lim

t→∞

1

t
M∗

1 (t) = 0. (2.5)

Similarly, we also have

lim
t→∞

1

t
M2(t) = 0, lim

t→∞

1

t
M∗

2 (t) = 0, lim
t→∞

1

t
M3(t) = 0, lim

t→∞

1

t
M∗

3 (t) = 0. (2.6)

And because

< M(t) > =
σ1
t

∫ t

0

∫ s

0

e−µ1(s−u)S(u)dW1(u)ds

+
σ2
t

∫ t

0

∫ s

0

e−µ1(s−u)R(u)dW2(u)ds

+
σ3
t

∫ t

0

∫ s

0

e−µ1(s−u)I(u)dW3(u)ds

=
σ1
µ1t

[

∫ t

0

S(u)dW1(u)−
∫ t

0

e−µ1(t−u)S(u)dW2(u)]

+
σ2
µ1t

[

∫ t

0

R(u)dW2(u)−
∫ t

0

e−µ1(t−u)R(u)dW2(u)]

+
σ3
µ1t

[

∫ t

0

I(u)dW3(u)−
∫ t

0

e−µ1(t−u)I(u)dW3(u)],

from (2.5) and (2.6), we obtain that lim
t→∞

< M(t) >= 0 holds.

From (2.4), we have

lim
t→∞

1

t

∫ t

0

(S(0) + I(0) +R(0)− A

µ1
)e−µ1sds

= lim
t→∞

1

µ1t
(S(0) + I(0) +R(0)− 1

µ1t
(1− e−µ1t) = 0.

The above demonstrates the validity of conclusion (2.2). This concludes the proof.
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Lemma 2.4. Let (S(t), I(t), R(t)) be the solution of model (1.2) and model (1.2)
meets the following prerequisites:
(1)Model (1.2) is with an initial value (S(0), I(0), R(0)) ∈ R3

+.
(2)N(t) = S(t) + I(t) +R(t).
Then

< S(t) >=
(µ2 + ζ)A

µ1(µ2 + ζ) + µ2u
− µ3(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
< I(t) > +H(t), (2.7)

< N2(t) > =
A

µ1
< N(t) > −α2

µ1
< R(t)N(t) > −α3µ1 < I(t)N(t) >

+
σ2
1

2µ1
< S2(t) > +

σ2
3

2µ1
< I2(t) > +B(t),

(2.8)

where

B(t) =
σ2
µ1t

∫ t

0

R(s)N(s)dW2(s) +
σ3
µ1t

∫ t

0

I(s)N(s)dW3(s)

+
σ1
µ1t

∫ t

0

S(s)N(s)dW1(s) +
1

2µ1t
(N2(t)−N2(0)),

(2.9)

and

H(t) = − µ2σ4
[µ1(µ2 + ζ) + µ2u]t

∫ t

0

S(s)dW4(s) +
σ2(µ2 + ζ)− µ2σ2
[µ1(µ2 + ζ) + µ2u]t

∫ t

0

R(s)dW2(s)

+
µ2

[µ1(µ2 + ζ) + µ2u]t
[R(t)−R(0)] +

σ1
t

µ2 + ζ

µ1(µ2 + ζ) + µ2u

∫ t

0

S(s)dW1(s)

+
σ3
t

µ2 + ζ

µ1(µ2 + ζ) + µ2u

∫ t

0

I(s)dW3(s)

− µ2 + ζ

t[µ1(µ2 + ζ) + µ2 + ζu]
[S(t) + I(t) +R(t)− (S(0) + I(0) +R(0))].

(2.10)

Proof. By applying the Itôs formula [32] and utilizing equation (2.3), we establish
the validity of the following equation

dN2(t) = LN2(t)dt+ 2N(t)[σ1SdW1(t) + σ2RdW2(t) + σ3IdW3(t)], (2.11)

where

LN2(t) = 2AN(t)− 2µ1N
2(t)− 2α2R(t)N(t)− 2α3I(t)N(t) + σ2

1S
2(t) + σ2

2R
2(t)

+ σ2
3I

2(t).

Next, integrating both sides of equation (2.11) from 0 to t, we have

N2(t)−N2(0) = 2A

∫ t

0

N(s)ds− 2µ1

∫ t

0

N2(s)ds− 2α2

∫ t

0

R(s)N(s)ds

− 2α3

∫ t

0

I(s)N(s)ds+ σ2
1

∫ t

0

S2(s)ds+ σ2
2

∫ t

0

R2(s)ds

+ σ2
3

∫ t

0

I2(s)ds+ 2σ1

∫ t

0

S(s)N(s)dW1(s)

+ 2σ2

∫ t

0

R(s)N(s)dW2(s) + 2σ3

∫ t

0

I(s)N(s)dW3(s).

(2.12)
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Then, both sides of equation (2.12) are divided by t. So the following equation
holds

< N2(t) > =
A

µ1
< N(t) > −α2

µ1
< R(t)N(t) > −α3

µ1
< I(t)N(t) > +

σ2
1

2µ1
< S2(t) >

+
σ2
2

2µ1
< R2(t) > +

σ2
3

2µ1
< I2(t) > +B(t),

where B(t) is already given in equations (2.9). So from the above analysis, equation
(2.8) can be obtained.

Next, by integrating both sides of the third equation in model (1.2) simultane-
ously, we obtain the following equation

R(t)−R(0) = u

∫ t

0

S(s)ds− µ2

∫ t

0

R(s)ds+ϖ

∫ t

0

I(s)ds− ζ

∫ t

0

R(s)ds

+ σ4

∫ t

0

S(s)dW4(s) + σ2

∫ t

0

R(s)dW2(s)

= u

∫ t

0

S(s)ds− (µ2 + ζ)

∫ t

0

R(s)ds+ϖ

∫ t

0

I(s)ds+ σ4

∫ t

0

S(s)dW4(s)

+ σ2

∫ t

0

R(s)dW2(s),

(2.13)

< R(t) > =
u

µ2 + ζ
< S(t) > +

ϖ

µ2 + ζ
< I(t) > +

σ4
(µ2 + ζ)t

∫ t

0

S(s)dW4(s)

+
σ2

(µ2 + ζ)t

∫ t

0

R(s)dW2(s)−
1

(µ2 + ζ)t
(R(t)−R(0)).

(2.14)

Based on integrating equation (2.3) from 0 to t, and dividing both sides of the
equation by t, the following equation is obtained

1

t
[S(t) + I(t) +R(t)− (S(0) + I(0) +R(0))] = A− µ1 < S(t) > −µ3 < I(t) >

− µ2 < R(t) >

+ σ1
1

t

∫ t

0

S(s)dW1(s)

+ σ2
1

t

∫ t

0

R(s)dW2(s)

+ σ3
1

t

∫ t

0

I(s)dW3(s).

Consequently,

< S(t) > =
A

µ1
− µ3

µ1
< I(t) > −µ2

µ1
< R(t) > +

σ1
µ1t

∫ t

0

S(s)dW1(s)

+
σ2
µ1t

∫ t

0

R(s)dW2(s) +
σ3
µ1t

∫ t

0

I(s)dW3(s)

− 1

µ1t
[S(t) + I(t) +R(t)− (S(0) + I(0) +R(0))].

(2.15)
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By substituting (2.14) into (2.15), we obtain

< S(t) >=
(µ2 + ζ)A

µ1(µ2 + ζ) + µ2u
− µ3(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
< I(t) > +H(t),

where H(t) is already given by equation (2.3) in (2.10), equation (2.7) can be
derived.

Lemma 2.5. (see [25]) Supposing there exist functions Y ∈ C(R+ × Ω, R+) and

Z ∈ C(R+ × Ω, R+) that satisfy lim
t→∞

Z(t)
t . Moreover, when t ≥ 0, there are two

constants v0 > 0 and v > 0 such that lnY (t) = v0t − v
∫ t

0
Y (s)ds + Z(t), then

lim
t→∞

inf 1
t

∫ t

0
Y (s)ds = v0

v .

3. Results

3.1. Persistence and extinction

In order to investigate the dynamics of the proposed system, firstly, we are concerned
about the solution being non-negative. In the following part, we make a proper
Lyapunov function to verify the qualitative analysis of globally positive solutions of
model (1.2). Define

RS
0 =

2Aβ(1− u)(µ1 + u+ 1
2σ

2
1 +

1
2σ

2
4)

σ2
4β

2A2 + σ2
3(µ1 + u+ 1

2σ
2
1 +

1
2σ

2
4) + 2(µ3 +ϖ)(µ1 + u+ 1

2σ
2
1 +

1
2σ

2
4)

2
.

Theorem 3.1. Assume that σ1 = 0 and a11, a22 > 0 (the definition of a11, a22 will
be given later) in model (1.2). Let (S(t), I(t), R(t)) be the solution of system (1.2)
with initial value (S(0), I(0), R(0)) ∈ R3

+. If RS
0 > 1, then lim

t→∞
inf < S(t) >>

0, lim
t→∞

inf < I(t) >> 0, lim
t→∞

inf < R(t) >> 0.

In other words, model (1.2) must be stochastic.

Proof. By using Itôs formula, the following equation holds

dlnI(t) = (βS − βSu− µ3 −ϖ +
1

2
σ2
4β

2S2 − 1

2
σ2
3)dt− σ4βSdW4(t) + σ3dW3(t).

(3.1)

By integrating equation (3.1) over the interval from 0 to t, and then dividing both
ends of the equation by t, we arrive at the following equation

lnI(t)− lnI(0)

t
= (β − βu) < S(t) > −(µ3 +ϖ) +

1

2
σ2
4β

2 < S2(t) > −1

2
σ2
3

− σ4β
1

t

∫ t

0

S(s)dW4(s) + σ3
1

t
W3(t).

(3.2)
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Further, by means of equation (2.7), we have

lnI(t)− lnI(0)

t
=

(µ2 + ζ)A(β − βu)

µ1(µ2 + ζ) + µ2u
− (µ2 + ζ)µ3(β − βu) + µ2(β − βuϖ)

µ1(µ2 + ζ) + µ2u

< I(t) > +(β − βu)H(t)− (µ3 +ϖ)− 1

2
σ2
4β

2 < S2(t) >

− 1

2
σ2
3 − σ4β

1

t

∫ t

0

S(s)dW4(s) + σ3
1

t
W4(t).

(3.3)

From (2.8) in Lemma 2.4, when σ1 = 0,we obtain

< N2(t) >≤ A

µ1
+

σ2
2

2µ1
< R2(t) > +

σ2
3

2µ1
< I2(t) > +B(t). (3.4)

Similarly, from Lemma 2.3, for solution (S(t), I(t), R(t)) of model (1.2), there exists
a constant M > 0 which makes I(t) ≤ M holds. At the same time, R(t) ≤ M a.s.
for t ≥ 0. Therefore, the following can be deduced from (3.4),

< N2(t) >≤ A

µ1
< N(t) > +

Mσ2
2

2µ1
< R(t) > +

Mσ2
3

2µ1
< I(t) > +B(t). (3.5)

Secondly, equation (2.2) has been proved in Lemma 2.3, thus it is possible to obtain
that for any small ε > 0 there exists T > 0 such that the following inequality holds

< N(t) ><
A

µ1
+ ε, (3.6)

for all t ≥ T .
When t ≥ T , by replacing (2.14) and (3.6) into (3.5), it can be found that the

following inequality holds,

< N2(t) > ≤ A

µ1
(
A

µ1
+ ε) + (

Mσ2
3

2µ1
+
Mσ2

2

2µ1
− ϖ

µ2 + ζ
) < I(t) >

+
Mσ2

2u

2µ1(µ2 + ζ)
< S(t) > +T (t) +B(t),

(3.7)

where

T (t) =
Mσ2

2σ4
2µ1(µ2 + ζ)t

∫ t

0

S(s)dW4(s) +
Mσ2

2σ2
2µ1(µ2 + ζ)t

∫ t

0

R(s)dW2(s)

− Mσ2
2

2µ1(µ2 + ζ)t
[R(t)−R(0)].

(3.8)

From Lemma 2.4, by substituting (2.7) into (3.7), we have

< N2(t) > ≤ A

µ1
(
A

µ1
+ ε) + (

Mσ2
3

2µ1
+

Mσ2
2ϖ

2µ1(µ2 + ζ)
) < I(t) >

+
Mσ2

2u

2µ1

A

µ1(µ2 + ζ) + µ2u

− Mσ2
2u

2µ1(µ2 + ζ)

µ3(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
< I(t) >

+
Mσ2

2u

2µ1(µ2 + ζ)
H(t) + T (t) +B(t).
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Replacing (3.8) into (3.3), when t ≥ T , due to < S2(t) >≤< N2(t) >, the following
inequality can be further obtained

lnI(t)− lnI(0)

t
≥ (µ2 + ζ)A(β − βu)

µ1(µ2 + ζ)µ2u
− (β − βu)[(µ2 + ζ)µ3 + µ2ϖ]

µ1(µ2 + ζ) + µ2u
< I(t) >

+ (β − βu)H(t)− (µ3 +ϖ)− 1

2
σ2
3 + σ4β

1

t

∫ t

0

S(s)dW4(s)

− 1

2
σ2
4β

2 A

µ1
(
A

µ1
+ ε)− 1

2
σ2
4β

2[
Mσ2

3

2µ1
+

Mσ2
3ϖ

2µ1(µ2 + ζ)
] < I(t) >

+ σ3W3(t)
1

t
− 1

2
σ2
4β

2Mσ2
2u

2µ1

A

µ1(µ1 + ζ) + µ2u

+
1

2
σ2
4β

2[
Mσ2

2u

2µ1(µ2 + ζ)

µ3(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
] < I(t) >

− 1

2
σ2
4β

2(T (t) +B(t)).

Consequently, for all t ≥ T,

[
(β − βu)[(µ2 + ζ)µ3 + µ2ϖ]

µ1(µ2 + ζ) + µ2u
+
σ2
4β

2

2
(
Mσ2

3

2µ1
+

Mσ2
3ϖ

2µ1(µ2 + ζ)

− σ2
4β

2Mσ2
2u

4µ1(µ2 + ζ)

µ3(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
] < I(t) >

≥ (µ2 + ζ)A(β − βu)

µ1(µ2 + ζ) + µ2u
− 1

2
σ2
3 + σ4β

1

t

∫ t

0

S(s)dW4(s) + σ3
1

t
dW3(t)

+ (β − βu)H(t)− (µ3 +ϖ)− 1

2
σ2
4β

2 A

µ1
(
A

µ1
+ ε)

− 1

2
σ2
4β

2Mσ2
2u

2µ1

A

µ1(µ2 + ζ) + µ2u
− 1

2
σ2
4β

2 Mσ2
2u

2µ1(µ2 + ζ)
H(t)

− 1

2
σ2
4β

2(T (t) +B(t)).

(3.9)

According to the large number theorem and Lemmas 2.3 and 2.4 mentioned above,
the following equations hold based on (2.9), (2.10) and (3.8)

lim
t→∞

B(t) = 0, lim
t→∞

H(t) = 0, lim
t→∞

1

t
(lnI(t)− lnI(0)) = 0,

lim
t→∞

T (t) = 0, lim
t→∞

1

t

∫ t

0

S(s)dW4(s) = 0, lim
t→∞

W3(t) = 0.

Therefore, due to the arbitrariness of ε and the fact from (3.9), eventually the
following inequality holds,

lim
t→∞

< I(t) > ≥ 1

P
[
(µ2 + ζ)A(β − βu)

µ1(µ2 + ζ) + µ2u
− (µ3 +ϖ)− 1

2
σ2
3 −

1

2
σ2
4β

2 A

µ1
(
A

µ1
+ ε)

− 1

2
σ2
4β

2Mσ2
2u

2µ1

A

µ1(µ2 + ζ) + µ2u
]

=
X

P
(Rs

0 − 1) > 0,
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where

P = [
(β − βu)[(µ2 + ζ)µ3 + µ2ϖ]

µ1(µ2 + ζ) + µ2u
+

1

2
σ2
4β

2(
Mσ2

3

2µ1
+

Mσ2
2ϖ

2µ1(µ2 + ζ)
)

− σ2
4β

2

2

Mσ2
2u

2µ1(µ2 + ζ)

µ3(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
] > 0,

X =
a11a12
a21a22

,

a11 = 2Aµ2
1(µ2 + ζ)(β − βu)− [µ1(µ2 + ζ) + µ2u][2µ

2
1(µ3 +ϖ) + σ2

4β
2A(A+ µ1u)],

a12 = σ2
4β

2A2 + (µ1 + u+
1

2
σ2
1 +

1

2
σ2
4)

2[σ2
3 + 2(µ3 +ϖ)] > 0,

a21 = 2µ2
1[µ1(µ2 + ζ) + µ2u] > 0,

a22 = (µ1 + u+
1

2
σ2
1 +

1

2
σ2
4)[Aβ(1− u)− σ2

3(µ1 + u+
1

2
σ2
1 +

1

2
σ2
4)− 2(µ3 +ϖ)]

− σ2
4β

2A2.

From the first equation of model (1.2), the following equation holds,

S(t)− S(0)

t
=

1

t

∫ t

0

(A− µ1S − βIS − βuIS − uS + ζR)dt

+
σ4
t

∫ t

0

(βI(s)S(s)− S(s))dW4(s)

≥ A− (βM + µ1 + βuM) < S(t) > +
σ4
t
M4(s),

(3.10)

where

M4(t) =

∫ t

0

(βIS − S)dW4(s) =

∫ t

0

βISdW4(s)−
∫ t

0

SdW4(s) =M1
4 (t) +M2

4 (t).

The following quadratic variations are made

< M1
4 (t),M

1
4 (t) > =

∫ t

0

β2S2(s)I2(s)ds ≤ β2M4t,

< M2
4 (t),M

2
4 (t) > =

∫ t

0

S2(s)ds ≤ L2t.

And by the large number theorem for martingales, it is found that

lim
t→∞

M1
4 (t) = 0, lim

t→∞
M2

4 (t) = 0.
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Then, lim
t→∞

1
tM4(t) = 0.

Consequently, it follows further from Lemma 2.3 and equation (3.10) that

lim
t→∞

inf < S(t) >≥ A

βM + µ1 + βuM
> 0.

From the third equation of model (1.2), the following equations hold,

R(t)−R(0)

t
= u < S(t) > −(µ2 + ζ) < R(t) > +ϖ < I(t) > +

σ4
t

∫ t

0

S(s)ds

+
σ2
t

∫ t

0

R(s)ds,

lim
t→∞

inf < R(t) > =
u

µ2 + ζ
lim
t→∞

inf < S(t) > +
ϖ

µ2 + ζ
lim
t→∞

inf < I(t) >

≥ Au

(µ2 + ζ)(βM + µ1 + βuM)
+
X

P
(Rs

0 − 1) > 0.

This demonstrates that model (1.2) must be persistent. The proof is complete.

Theorem 3.2. Assume σ4 = 0 in model (1.2). Let (S(t), I(t), R(t)) be the solution
of system (1.2). The following two conditions are met
(1)The initial value of system (1.2) is (S(0), I(0), R(0)) ∈ R3

+,
(2)Rs

0 > 1.
Then the model exhibits the following properties,

lim
t→∞

< I(t) >

=
2A(β − βu)(µ2 + ζ)− 2(µ3 +ϖ)µ1 − 2uµ2(β − βu)S∗ − σ2

3µ1(µ2 + ζ)

2µ2ϖ(β − βu)

:= I∗,

lim
t→∞

< R(t) >=
u

µ2 + ζ
S∗ − ϖ

µ2 + ζ
I∗ := R∗,

lim
t→∞

< S(t) >=
A(µ2 + ζ)

µ1(µ2 + ζ) + µ2u
− µ3(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
I∗ := S∗.

Proof. According to Itôs formula, the following equation holds

d(lnI +
β − βu

µ1
N) =[(β − βu)S − (µ3 +ϖ)− 1

2
σ2
3 ]dt+ σ3dW3(t)

+
β − βu

µ1
(A− µ1S − µ3I − µ2R)dt+

β − βu

µ1
σ3IdW3(t)

+
β − βu

µ1
σ2RdW2(t) +

β − βu

µ1
σ1IdW1(t)

=[
β − βu

µ1
A− (µ3 +ϖ)− 1

2
σ2
3 ]dt−

β − βu

µ1
µ2Rdt+ σ3dW3(t)

+
β − βu

µ1
σ1SdW1(t)+

β − βu

µ1
σ2RdW2(t)+

β − βu

µ1
σ3IdW3(t).

(3.11)
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Integrate both ends of the above equation (3.11) and divide by t, which has

1

t
(lnI(t) +

β − βu

µ1
N(t))− 1

t
(lnI(0) +

β − βu

µ1
N(0))

=
β − βu

µ1
A− (µ3 +ϖ)− 1

2
σ2
3 −

β − βu

µ1
µ2 < R(t) >

− β − βu

µ1
µ3 < I(t) > +σ3

1

t
W3(t)

+
β − βu

µ1t
σ1

∫ t

0

S(s)dW1(s) +
β − βu

µ1t
σ2

∫ t

0

R(s)dW2(s)

+
β − βu

µ1t
σ3

∫ t

0

I(s)dW3(s).

Meanwhile, deriving from (2.14), the subsequent equation is obtained

1

t
lnI(t) =

β − βu

µ1
A− (µ3 +ϖ)− 1

2
σ2
3 −

β − βu

µ1
µ2

u

µ2 + ζ
< S(t) >

− β − βu

µ1
µ2

ϖ

µ2 + ζ
< I(t) > −β − βu

µ1
µ3 < I(t) > +J(t),

where

J(t) =
1

t
(lnI(0) +

β − βu

µ1
N(0)− β − βu

µ1
N(t))

− β − βu

µ1
µ2

σ2
(µ2 + ζ)t

∫ t

0

R(s)dW2(s) +
β − βu

µ1
µ2

1

(µ2 + ζ)t
(R(t)−R(0))

+ σ3
1

t
W3(t) +

β − βu

µ1t
σ1

∫ t

0

S(s)dW1(s) +
β − βu

µ1t
σ2

∫ t

0

R(s)dW2(s)

+
β − βu

µ1t
σ3

∫ t

0

I(s)dW3(s)−
β − βu

µ1
µ3

σ4
(µ2 + ζ)t

∫ t

0

S(s)dW4(s).

And according to the large number theorem for martingales and Lemma 2.3 men-
tioned above, it is clear that lim

t→∞
J(t) = 0. Thus, from Lemma 2.5, it can be

deduced that

lim
t→∞

< I(t) >

=
2A(β − βu)(µ2 + ζ)− 2(µ3 +ϖ)µ1(µ2 + ζ)− 2uµ2(β − βu)S∗ − σ2

3µ1(µ2 + ζ)

2µ2ϖ(β − βu)

:= I∗.

Among them, the definition of S∗ will be given later.
Furthermore, from equation (2.14) it follows that

lim
t→∞

< R(t) >=
u

µ2 + ζ
S∗ − ϖ

µ2 + ζ
I∗ := R∗,

and from (2.7) we further obtain

lim
t→∞

< S(t) >=
A(µ2 + ζ)

µ1(µ2 + ζ) + µ2u
− µ2(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
I∗ := S∗.
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Particularly, when σi = 0(i = 1, 2, 3, 4), then the stochastic model (1.2) is
degenerated into the specific model (1.1). At the same time, we have

Rs
0 = R0 =

Aβ(1− u)

(µ+ϖ + α)(u+ µ)
.

From Theorem 3, when R0 > 1 for any solution (S(t), I(t), R(t)) of model (1.1)
with initial value (S(0), I(0), R(0)) ∈ R3

+, it follows

lim
t→∞

< S(t) >=
A

(u+ µ)R0
, lim
t→∞

< I(t) > (3.8)

= [A(1− 1

R0
) +

(u+ϖ + α)(µ+ ζ)− ζϖ

u+ ζ
],

lim
t→∞

< R(t) >= (
uA

(u+ µ)R0
+ϖI∗)

1

µ+ ζ
.

Hence, Theorem 3.2 on the stochastic model (1.2) can be considered as an extension
of the conclusion (2) of Lemma 2.1 on the specific model (1.1).

Theorem 3.3. Let (S(t), I(t), R(t)) be the solution of model (1.2), where (S(0), I(0),
R(0)) ∈ R3

+ is the initial value of the model. Assume either of the two criteria below
holds
(A) b11b22 > 0, Rs

0 < 1 (the definition of b11b22 will be given later);

(B)
(β − βu)2

2σ2
4β

2
− (µ3 +ϖ)− 1

2
σ2
3 < 0.

Then the infectious people I(t) almost certainly dies out exponentially. In other

words, if condition (A) is satisfied, then lim
t→∞

sup lnI(t)
t ≤ χ(Rs

0 − 1)(χ will be given

later). And lim
t→∞

sup lnI(t)
t ≤ (β−βu)2

2σ2
4β

2 − (µ3 +ϖ)− 1
2σ

2
3 < 0 a.s. if (B) holds.

Proof. If condition (A) is satisfied, and based on equations (2.6) and (3.6), the
following inequalities hold,

lnI(t)

t
≤ (µ2 + ζ)A(β − βu)

µ1(µ2 + ζ) + µ2u
− (β − βu)[µ3(µ2 + ζ) + µ2ϖ]

µ1(µ2 + ζ) + µ2u
< I(t) >

+ (β − βu)H(t)− (µ3 +ϖ)− 1

2
σ2
4β

2[
(µ2 + ζ)A

µ1(µ2 + ζ) + µ2u

− µ3(µ2 + ζ) + µ2ϖ

µ1(µ2 + ζ) + µ2u
< I(t) > +H(t)]2

− 1

2
σ2
3 + σ4β

1

t

∫ t

0

S(s)dW4(s) + σ3W3(t)
1

t
+
lnI(0)

t

≤ A(µ2 + ζ)(β − βu)

µ1(µ2 + ζ) + µ2u
+ (β − ββu)H(t)− (µ3 +ϖ)− 1

2
σ2
3

+ σ4β
1

t

∫ t

0

S(s)dW4(s) + σ3
1

t
W3(s).
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According to the large number theorem for martingales and Theorem 3.1, the fol-
lowing inequality holds,

lim
t→∞

sup
lnI(t)

t
≤ A(µ2 + ζ)(β − βu)

µ1(µ2 + ζ) + µ2u
− (µ3 +ϖ)− 1

2
σ2
3 .

Thus, it follows that,

lim
t→∞

sup
lnI(t)

t
≤ χ(Rs

0 − 1) < 0,

where

χ =
b11b12
b21b22

,

b11 = A(µ2 + ζ)(β − βu)− (µ3 +ϖ + σ2
3)[µ1 + (µ2 + ζ) + µ2u],

b12 = σ2
4β

2A2 + (µ1 + u+
1

2
σ2
1 +

1

2
σ2
4)

2[σ2
3 + 2(µ3 +ϖ)],

b21 = 2[µ1(µ2 + ζ) + µ2u],

b22 = (µ1 + u+
1

2
σ2
1 +

1

2
σ2
4)[Aβ(1− u)− σ2

3(µ1 + u+
1

2
σ2
1 +

1

2
σ2
4)− 2(µ3 +ϖ)]

− σ2
4β

2A2.

If condition (B) is valid, the following inequalities hold from (3.2),

lnI(t)

t
≤ lnI(0)

t
+ (β − βu) < S(t) > −(µ3 +ϖ)− 1

2
σ2
4β

2 < S2(t) > −1

2
σ2
3

+ σ4β
1

t

∫ t

0

S(s)dW4(s) + σ4
1

t
W3(t)

=
lnI(0)

t
+

(β − βu)2

2σ2
4β

2
− (µ3 +ϖ)− 1

2
σ2
3 −

1

2
σ2
4β

2(< S(t) > −β − βu

σ2
4β

2
)2

+ σ4β
1

t

∫ t

0

S(s)dW4(s) + σ4
1

t
W3(t)

≤ lnI(0)

t
+

(β − βu)2

2σ2
4β

2
− (µ3 +ϖ)− 1

2
σ2
3

+ σ4
1

t
β

∫ t

0

S(s)dW4(s) + σ3
1

t
W3(s).

From the above equation, it is clear that the following holds

lim
t→∞

sup
lnI(t)

t
≤ (β − βu)2

2σ2
4β

2
− (µ3 +ϖ)− 1

2
σ2
3 < 0.

4. Stationary distribution

The following section studies the existence of the unique stationary distribution of
model(1.2).
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First, let X(t) be an autonomousMarkov process in Rd, which can be expressed
as the solution of the below stochastic differential equation [33]:

dX(t) = b(X)dt+

k∑
r=1

gr(X)dBr(t). (4.1)

The diffusion matrix of equation (4.1) is

Λ(x) = (λij(x), λij(x)) =

k∑
r=1

gir(x)g
j
r(x).

Lemma 4.1. (see [22])This is defined by the existence of a bounded domain U ∈ Rd

with a regular boundary that meets the requirements of (i) and (ii) below.
(i) In the domain U ∈ Rd and its vicinity, the minimum eigenvalue of the diffusion
matrix Λ(x) is bounded far from zero.
(ii)If x ∈ Rd \ U , the mean time τ at which a path issuing from x reaches the set
U is finite, and sup

x∈K
Exτ <∞ for every compact subset K ∈ Rd.

Then, the Markov process X(t) of equation(4.1) has a stationary distribution
µ(·) with density in Rd. Assume that f(·) is an integrable function about measure
µ. Then for any x ∈ Rd, we have

Px lim
T→∞

1

T

∫ T

0

f(X(t))dt =

∫
Rd

f(x)µ(dx) = 1.

When there is no stochastic perturbation in the model (1.2), that means σi =
0, (i = 1, 2, 3, 4), then model (1.2) becomes the specific model,

S
′
= A− βIS + βuIS − (µ1 + u)S + ζR.

I
′
= βIS − (µ3 +ϖ)I.

R
′
= uS +ϖI − (µ2 + ζ)R.

(4.2)

Let R̃0 = βA
βAu+(u+µ1)(µ3+ϖ) . What can be proved is that model (4.2) has a unique

endemic equilibrium (S∗, I∗, R∗) when R̃0 > 1, where

S∗ =
µ3 +ϖ

β − βu
,

I∗ =
A(µ2 + ζ)− (µ2 + ζ)(µ1 + u)S∗ + uζS∗

β(µ2 + ζ)S∗ − u(µ2 + ζ)βS∗ − ζϖ
,

R∗ =
−A+ (βS∗ − uβS∗)I∗ + (µ1 + u)S∗

ζ
.

Define the constants

λ1 = (−1− a1)σ
2
2 − (a3 + a2I

∗)σ2
4 + a3(µ1 + u− σ2

1) + µ1,

λ2 = (−1− a3)σ
2
3 + (a3 + 1)µ3 + a3ϖ,

λ3 = (−1− a1)σ
2
2 + a1(µ2 + ζ) + µ2,

E =
σ2
3

2
I∗ + d1(S

∗)2 + d2(I
∗)2 + d3(R

∗)2,

d1 = 2(σ2
1 + σ2

4) + σ2
4I

∗, d2 = 2σ2
3 , d3 = 2σ2

2 ,
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where

a1 =
µ1 − µ3

u−ϖ
,

a2 =
[(µ2 + µ3)(u−ϖ)−ϖ(µ1 − µ3)](µ3 +ϖ + µ1 + u) + ζ(u−ϖ)(µ1 + µ3)

βζ(u−ϖ)(1− u)
,

a3 =
(µ2 + µ3)(u−ϖ)−ϖ(µ1 − µ3)

(u−ϖ)ζ
.

Now, we concern the existence and uniqueness of the stationary distribution for
model (1.2).

Theorem 4.1. Let R̃0 = βA
βAu+(u+µ1)(µ3+ϖ) > 1, which satisfies the following two

inequalities

λi > 0, E < min{λ1S∗, λ2I
∗, λ3R

∗}. (4.3)

Then model (1.2) has a unique stationary distribution and ergodic property.

Proof. First, the definition of the Lyapunov function is as follows [28],
V (S, I,R) = a1V1(R) + a2V2(I) + a3V3(S, I) + V4(S, I,R),
where

V1 =
1

2
(R−R∗)2, V2 = I − I∗ln

I

I∗
,

V3 =
1

2
(S + I − S∗ − I∗)2, V4 =

1

2
(S + I +R− S∗ − I∗ −R∗)2.

LV1 = (R−R∗)[uS −ϖI − (µ2 + ζ)R] +
1

2
σ2
4S

2 +
1

2
σ2
2R

2

≤ u(S − S∗)(R−R∗)−ϖ(R−R∗)(I − I∗)− (µ2 + ζ − σ2
2)(R−R∗)2

+ σ2
4(S

∗)2 + σ2
2(R

∗)2 + σ2
2(S − S∗)2,

LV2 = (1− I∗

I
)[βIS(1− u)− (µ3 +ϖ)I] +

I∗

2I2
(σ2

4β
2I2S2 + σ2

3I
2)

≤ β(1− u)(I − I∗)(S − S∗) +
I∗

2
σ2
3 + I∗σ2

4(S − S∗)2 + I∗σ2
4(S

∗)2,

LV3 = (S + I − S∗ − I∗)[A− (µ1 + u)S − (µ3 +ϖ)I + ζR] +
1

2
σ2
1S

2

+
1

2
σ2
3I

2 − 1

2
σ2
4S

2

≤ −(µ1 + u− σ2
1 − σ2

4)(S − S∗)− (µ3 +ϖ − σ2
3)(I − I∗)2

− (µ3 +ϖ + µ1 + u)(S − S∗)(I − I∗) + ζ(S − S∗)(R−R∗)

+ ζ(I − I∗)(R−R∗) + (σ2
1 + σ2

4)(S
∗)2 + σ2

3(I
∗)2,

LV4 = (S + I +R− S∗ − I∗ −R∗)(A− µ2R− µ3I − µ1S) +
1

2
σ2
1S

2

+
1

2
σ2
3I

2 +
1

2
σ2
2R

2

≤ −(µ1 − σ2
1)(S − S∗)2 − (µ2 − σ2

2)(R−R∗)2 − (µ3 − σ2
3)(I − I∗)2

− (µ1 + µ3)(I − I∗)(S − S∗)− (µ1 + µ2)(S − S∗)(R−R∗)

− (µ2 + µ3)(I − I∗)(R−R∗) + σ2
1(S

∗)2 + σ2
2(R

∗)2 + σ2
3(I

∗)2,
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LV (S, I,R) = a1LV1(R) + a2LV2(I) + a3LV3(S, I) + LV4(S, I,R)

≤ −λ1(S − S∗)2 − λ2(I − I∗)2 − λ3(R−R∗)2 + E.

If (4.3) holds, then the episode λ1(S − S∗)2 + λ2(I − I∗)2 + λ3(R − R∗)2 = E lies
in the positive zone of R3

+. Hence, there exists a constant C > 0 and a compact
set K ⊂ R3

+ such that for any x = (S, I,R) ∈ R3
+/K, there are the following

inequalities

λ1(S − S∗)2 + λ2(I − I∗)2 + λ3(R−R∗)2 ≥ E + C.

Therefore, the following equation ultimately holds

LV (x) ≤ −C.

This demonstrates the fulfillment of condition (i) in Lemma 4.1. The diffusion
matrix related to model (1.2) is

Λ(x) = (bij(x))3×3 =


σ2
1S

2 + σ2
4(βIS − S)2 −σ2

4βIS(βIS − S) 0

−σ2
4βIS(βIS − S) σ2

4β
2I2S2 + σ2

3I
2 σ2

4βIS
2

σ2
4S(βIS − S) 0 σ2

4S
2 + σ2

2R
2

 ,
(4.4)

where x = (S, I,R).
Choose Q = min(S,I,R)∈U{σ2

1S
2, σ2

2R
2, σ2

3I
2}, so Q > 0. From (4.4), for any

x = (S, I,R) ∈ U and (η1, η2, η3) ∈ R3
+, it is obtained that

3∑
i,j=1

bij(x)ηiηj = [σ2
1S

2 + σ2
4(βIS − S)2]η1η1 − [σ2

4βIS(βIS − S)]η1η2

− [σ2
4βIS(βIS − S)]η2η1 + (σ2

4β
2I2S2 + σ2

3I
2)η2η2

+ σ2
4S(βIS − S − S)η1η3 + (σ2

4S
2 + σ2

4R
2)η3η3

= σ2
1S

2η21 + σ2
3I

2η22 + σ2
3R

2η23

+ [
1

2
σ4(βIS − S) + σ4Sη3]

2 + [

√
3

2
σ4(βIS − S)η1 −

1√
3
σ4βISη2]

2

≥ minσ2
1S

2, σ2
2R

2, σ2
3I

2(η21 + η22 + η23) = Q|η|2,

where |η| = (η21 + η22 + η23)
1
2 .

Thus, model (1.2) has a unique stationary distribution and the ergodic property.
This is completed by proving that.

In the following, consider a special situation of model (1.2). In this case, the
model (1.2) will take the below form

dS(t) = [A− µ1S − β(1− u)IS − uS + ζR]dt+ σ1SdW1(t),

dI(t) = [β(1− u)IS − µ3I −ϖI]dt+ σ3IdW3(t),

dR(t) = (uS − µ2R+ϖI − ζR)dt+ σ2RdW2(t).

(4.5)

A novel result on the existence of unique stationary distribution of model(4.5) is
given below. By definition we have

R̄0 =
βA

(µ1 + u+ 1
2σ

2
1)(µ3 +ϖ + 1

2σ
2
3)
.
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Theorem 4.2. Let R̄0 > 1. Then model (4.5) has a unique stationary distribution
and the ergodic property.

Proof. First let Z(S, I,R) be a C2-function which takes the specific form

Z(S, I,R) =MV1 + V2 − lnS − lnR,

where V1 = −D1lnS −−D1lnI, V2 = 1
∂+1 (S + I +R)∂+1.

∂ is a constant satisfying

0 < ∂ <
2µ1

σ2
1 + σ2

2 + σ2
3

,

the definition of the constant M > 0 will be given later, and

D1 =
2A

2µ1 + 2u+ σ2
1

, D2 =
2A

2µ3 + 2ϖ + σ2
3

.

Then, define a nonnegative C2-function V that can be expressed in the following
manner,

V (S, I,R) = Z(S, I,R)− Z(S0, I0, R0).

According to the Itôs formula, for any solution (S(t), I(t), R(t)) of model (1.2), the
following equations hold,

L(lnS) = −A
S

+ µ1 + βI − βSu+ u− ζ
R

S
+

1

2
σ2
1 ,

L(lnR) = −uS
R

+ µ2 −ϖ
I

R
+ ζ +

1

2
σ2
2 ,

LV1 = −D1A

S
+D1µ1 +D1βI −D1βIu+D1u−D1ζ

R

S
+

1

2
D1σ

2
1 −D2(βS − βSu)

+D2(µ3 +ϖ) +
1

2
σ2
3D2

≤ −2[(AD1D2β)
1
2 −A] +D1βI −D1βIu−D1ζ

R

S

= −2A[(R̄)
1
2 − 1] +D1βI −D1βIu−D1ζ

R

S
,

LV2 = (S + I +R)∂ [A− µ1(S + I +R)− α2R− α3I]

+
∂

2
(S + I +R)∂−1(σ2

1S
2 + σ2

2R
2 + σ2

3I
2)

≤ A(S + I +R)∂ − [µ1 −
∂

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)](S + I +R)∂+1

≤ −µ∗(S∂+1 + I∂+1 +R∂+1) +D,

where

µ∗ =
1

2
[µ1 −

∂

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)] > 0

and

D = sup
(S,I,R)∈R3

+

{A(S + I +R)∂ − µ∗(S + I +R)∂+1} <∞.
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Thus, the differential operator L that applying to the V yields

LV ≤ −2AMψ +D1MβI −D1MβIu−D1Mζ
R

S
− µ∗(S∂+1 + I∂+1 +R∂+1) +D

− A

S
+ µ1 + βI − βSu+ u− ζ

R

S
+

1

2
σ2
1 − u

S

R
+ µ2 −ϖ

I

R
+ ζ +

1

2
σ2
2

≤ −2AMψ +D + µ1 + µ2 + ζ + u+
1

2
σ2
1 +

1

2
σ2
2 − µ∗(S∂+1 + I∂+1 +R∂+1)

+ (D1Mβ + β)− A

S
−ϖ

I

R
,

where ψ = (R̄0)
1
2 −1. In the following, it is necessary to find that a compact subset

Γ s.t. the condition (ii) in Lemma 4.1 is valid. The bounded closed set is defined
as follows,

Γ = {(S, I,R) : ε1 ≤ S ≤ 1

ε1
, ε2 ≤ I ≤ 1

ε2
, ε3 ≤ R ≤ 1

ε3
},

where εi(i = 1, 2, 3) are sufficiently small positive constants, which will be defined
later. To make it easier to calculate, the regions of R3

+ \ Γ are divided into six
regions.

Γ1 = {(S, I,R) ∈ R3
+, S ≥ 1

ε1
}, Γ2 = {(S, I,R) ∈ R3

+, I ≥ 1

ε2
},

Γ3 = {(S, I,R) ∈ R3
+, S ≥ 1

ε3
}, Γ4 = {(S, I,R) ∈ R3

+, 0 < S < ε1},

Γ5 = {(S, I,R) ∈ R3
+, 0 < I < ε2, S > ε1},

Γ6 = {(S, I,R) ∈ R3
+, 0 < Q < ε3, S ≥ ε1, I ≥ ε2}.

Ultimately, it can be proved that LV (S, I,R) ≤ − 1
2 on R3

+ \ Γ, which is equivalent
to verifying it in the above six regions.
Case1. If (S, I,R) ∈ Γ1, we can obtain

LV ≤ −1

2
µ∗S∂+1 + F1 ≤ −1

2
µ∗(

1

ε
)∂+1 + F1,

where

F1 = sup{D + µ1 + µ2 + ζ + u+
1

2
σ2
1 +

1

2
σ2
2 −

1

2
µ∗(S∂+1 + I∂+1 +R∂+1)

+ (D1Mβ + β)I}.

We choose a constant ε1 > 0 small enough such that

−1

2
µ∗(

1

ε1
)∂+1 + F1 ≤ −1

2
,

then it can be derived that LV ≤ − 1
2 for all (S, I,R) ∈ Γ1.

Case2. If (S, I,R) ∈ Γ2, then the following equation holds

LV ≤ −1

2
µ∗I∂+1 + F1 ≤ −1

2
µ∗(

1

ε2
)∂+1 + F1.
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We choose a constant ε1 > 0 small enough such that

−1

2
µ∗(

1

ε2
)∂+1 + F1 ≤ −1

2
,

then it follows that LV ≤ − 1
2 for all (S, I,R) ∈ Γ2.

Case3. If (S, I,R) ∈ Γ3, we can obtain

LV ≤ −1

2
µ∗R∂+1 + F1 ≤ −1

2
µ∗(

1

ε3
)∂+1 + F1.

We choose a constant ε1 > 0 small enough such that

−1

2
µ∗(

1

ε3
)∂+1 + F1 ≤ −1

2
,

then it follows that LV ≤ − 1
2 for all (S, I,R) ∈ Γ3.

Case4. If (S, I,R) ∈ Γ4, we can obtain

LV ≤ −A
S

+ F1 ≤ −A

ε1
+ F1,

We choose a constant ε1 > 0 sufficiently small to make − A
ε1

+ F1 ≤ − 1
2 , then then

there is LV ≤ − 1
2 for all (S, I,R) ∈ Γ4.

Case5. If (S, I,R) ∈ Γ5, we can obtain

LV ≤ −2AMψ + (D1Mβ)I + F5 ≤ −2AMψ + (D1Mβ)ε2 + F5,

where

F5 = sup{D + µ1 + µ2 + ζ + u+
1

2
σ2
1 +

1

2
σ2
2 − µ∗(S∂+1 +R∂+1)}.

We choose a constant ε1 > 0 small enough and M > 0 large enough such that

− 2AMψ + (D1Mβ)ε2 + F5 ≤ 1

2
,

then it follows that LV ≤ − 1
2 for all (S, I,R) ∈ Γ5.

Case6. If (S, I,R) ∈ Γ6, we can obtain

LV ≤ −ϖ I

R
+ F1 ≤ −ϖε2

ε3
+ F1.

We choose a constant ε2 > 0, ε3 > 0 small enough such that

−ϖ
ε2
ε3

+ F1 ≤ −1

2
(S, I,R) ∈ Γ6.

It follows that condition (i) needs to be proved in Lemma 4.1. Obviously, the dif-
fusion matrix related to model (1.2) is

Λ(x) = (bij(x))3×3 =


σ2
1S

2 0 0

0 σ2
3I

2 0

0 0 σ2
2R

2

 ,
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where x = (S, I,R).
Choosing Q = min(S,I,R)∈U{σ2

1S
2, σ2

2R
2, σ2

3I
2}, we have Q > 0. For any x =

(S, I,R) ∈ U and (η1, η2, η3) ∈ R3
+, we have

3∑
i,j=1

bij(x)ηiηj = [σ2
1S

2η21 + σ2
3I

2η22 + σ2
2R

2η23 ]

≥ minσ2
1S

2, σ2
3I

2, σ2
2R

2(η21 + η22 + η23)

=M |η|2,

where |η| = (η21 + η22 + η23)
1
2 .

According to Remark 4.1, it is straightforward to demonstrate that condition
(i), as stated in Theorem 4.1, holds true. Hence, the final result is that the model
(1.2) has a unique stationary distribution and is ergodic. The proof is complete.

5. Numerical Simulation

Now, assign certain values to the parameters of A = 0.4, β = 0.1, ϖ = 0.3, ζ =
0.2, µ1 = 0.1, µ2 = 0.3, andµ3 = 0.2 in the model (1.2), and give a certain initial
proportional value of S = 0.5, I = 0.4, andR = 0.2. While keeping the above
parameters unchanged, change the value of u to observe how the proportion of the
three groups of people in the population changes during the fifty day period.

Figure 1. When u is 0.3, the variation in the proportion of population accounted for by SIR groups in
the population.
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Figure 2. When u is 0.6, the variation in the proportion of population accounted for by SIR groups.

Figure 3. When u is 0.8, the variation in the proportion of population accounted for by SIR groups.

It can be seen from the Figures 1, 2 and 3, that with the increase of the vacci-
nation rate, the number of infections will reduce the time to zero, which indicates
that vaccination plays a great role in controlling the spread of infectious diseases.
Next, it considers the population proportion of three groups of people under random
disturbance.
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Figure 4. When u=0.3, the change of the proportion of SIR groups in the population under random
disturbance.

Figure 5. When u=0.6, the change of the proportion of SIR groups in the population under random
disturbance.
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Figure 6. When u=0.8, the change of the proportion of SIR groups in the population under random
disturbance.

It can be seen from Figure 6 that when the vaccination rate is large enough, the
number of infected people tends to zero soon after a short period of oscillation.

Through the numerical simulation in this article, it can be found that as the
vaccination rate gradually increases, the time for the number of infected individuals
to approach zero will be shortened, and even under random interference, it will
quickly approach zero after a short period of oscillation.

6. Conclusion

This article mainly studies a stochastic SIR infectious disease model with vacci-
nation, and the random effects are assumed to be fluctuations in mortality and
vaccination rates. Research has shown that if Rs

0 < 1, the disease will die out, and
if Rs

0 > 1, the disease is permanent, and a conclusion on the global stability of the
model’s equilibrium point is given. Importantly, this article obtains the conditions
for the existence of a unique stationary distribution in the model by constructing a
Lyapunov function.
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