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Thermo-Electro-Elastic Friction Problem with
Modified Signorini Contact Conditions
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Abstract The purpose of this paper is to investigate a frictional contact
problem between a thermo-piezoelectric body and an obstacle (such as a foun-
dation). The thermo-piezoelectric constitutive law is assumed to be nonlinear.
Modified Signorini’s contact conditions are used to describe the contact, and
these are adjusted to account for temperature-dependent unilateral conditions,
which are associated with a nonlocal Coulomb friction law. The problem is
formulated as a coupled system of displacement field, electric potential, and
temperature, which is solved using a variational approach. The existence of a
weak solution is established through the utilization of elliptic quasi-variational
inequalities, strongly monotone operators, and the fixed point method. Fi-
nally, an iterative method is suggested to solve the coupled system, and a
convergence analysis is established under appropriate conditions.

Keywords Thermo-piezoelectric body, foundation, Signorini’s modified con-
tact conditions, Coulomb friction law, variational approach, elliptic quasi-
variational inequalities, fixed point, iterative method

MSC(2010) 35J87, 74C05, 49J40, 47J25, 74S05, 65N55.

1. Introduction

A notable set of challenges in engineering applications and technology pertains to
the interaction between a deformable piezoelectric body and a conductive founda-
tion. Practical instances of these challenges are prevalent in various sectors, includ-
ing railways, automotive, civil engineering and aeronautics, among others. During
these interactions, energy dissipation due to friction is a common phenomenon, re-
sulting in the heating of the material. Moreover, specific piezoelectric structures dis-
play a pyroelectric effect, signifying their responsiveness to temperature variations,
wherein exposure to different temperatures induces the generation of electric charge
or voltage. Consequently, addressing a temperature load in a piezoelectric mate-
rial requires a thorough consideration of interconnected thermo-electro-mechanical
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fields.
When studying friction contact models, the coupling of piezoelectric and thermal

effects can create complications. The complex physical mechanisms of forces and
heat on the contact interfaces are responsible for frictional effects and heating at the
contact area. The dissipation of energy or production of heat can lead to dilation,
which may increase the pressure field and modify the contact conditions, leading
to instability. A brief history of the classical theory of thermo-piezoelectricity has
been introduced by Mindlin in [1], while the governing equations and physical laws
for thermo-piezoelectric materials have been explored by Nowacki in [2]. Primarily,
owing to the intrinsic coupling between mechanical, electrical and thermal fields,
significant research efforts have been devoted to addressing contact problems in-
volving both piezoelectric and thermo-piezoelectric materials. The literature on
electro-mechanical and thermo-electro-mechanical properties of piezoelectric mate-
rials is very interesting and extensive. We refer to [3–16] and the references therein.

This paper focuses on a new mathematical model, different from existing works,
that describes the static contact with friction between a thermo-piezoelectric body
and a thermally conductive foundation. Unlike previous references, this model dif-
fers in the way it models the contact, energy equation, thermal, frictional, and
conductivity conditions. The contact is modeled using a modified Signorini’s con-
dition (refer to [17, Chapter 3, p. 147] for the linear elasticity case) and a version of
Coulomb’s friction law with a slip-dependent coefficient of friction. The heat flux
is assumed to be unilateral from the foundation to the body, so the body temper-
ature does not exceed the temperature of the foundation on the contact part. The
model demonstrates strong coupling not only in the constitutive relations but also
in the equilibrium equations and boundary conditions at the contact surface. From
a mathematical point of view, the resulting model is well-posed, and weak solvabil-
ity is established under appropriate assumptions on the problem’s data. The proof
relies on an abstract result on elliptic quasi-variational inequalities and Banach’s
fixed point.

The article is structured as follows: Firstly, in Section 2 we present some pre-
liminary notations, definitions, and formulas that are necessary for the rest of the
paper. Then, in Section 3 we state the mechanical problem and outline the assump-
tions on the data, followed by the derivation of a variational model. Section 4 is
devoted to proving an existence and uniqueness result, utilizing quasi-variational
inequalities and Banach’s fixed point theorem. Lastly, in Section 5 we introduce
an iterative approach for solving the resulting variational coupled system, which
converges given certain conditions.

2. Notation and preliminaries

In this section, we will provide fundamental definitions, notations, and preliminary
results that will be used in the subsequent sections. For further details, we refer the
reader to references [19–21]. To this end, the summation convention over repeated
indices is used, and all indices take values in 1, . . . , d. We denote by Sd the space
of second order symmetric tensors on Rd. We define the inner products and the
corresponding norms on Rd and Sd, that is ∀u, v ∈ Rd and ∀σ, τ ∈ Sd.

u · v = uivi, ∥v∥ = (v · v) 1
2 and σ · τ = σijτij , ∥τ∥ = (τ · τ) 1

2 .



Modified Signorini Problem in Thermoelectro-Elasticty 1141

Let the open Ω ⊂ Rd (d = 2, 3) denote the domain occupied by the body and Γ
the boundary of Ω, which is assumed to be Lipschitz, and is divided into three
disjoint measurable parts ΓD, ΓN and ΓC , such that meas(ΓD) > 0. The subsets
ΓC , Γa and Γb, where ΓD∪ΓN = Γa∪Γb, are relatively open with mutually disjoint
closures, such that meas(Γa) > 0. Throughout the paper, we adopt the following
notation: u : Ω → Rd for the displacement field, σ : Ω → Sd for the stress tensor,
D : Ω → Rd for the electric displacements field, θ : Ω → R for the temperature
field and q : Ω → Rd for the heat flux. Moreover, let ε(u) = (εij(u)) denote the
linearized strain tensor given by εij(u) =

1
2 (ui,j + uj,i) and E(φ) = −∇φ represent

the electric vector field, where φ : Ω → R is an electrical potential. We also denote
by Div σ = (σij,j) and divD = (Dj,j) the divergence operator for tensor and vector
valued functions, respectively. If ν is the unit exterior normal on Γ, then the normal
and the tangential components of the displacement vector u and the stress field σ
on Γ are

uν = u · ν, uτ = u− uνν; σν = σν · ν, στ = σν − σνν.

We also define the positive and the negative part of vν by v+ν = max(0, vν), v
−
ν =

max(−vν , 0), respectively.
We use standard notation for Lp and Sobolev spaces. Therefore, we consider

the following real Hilbert spaces

H = L2(Ω)d, H1 = H1(Ω)d, H = {σ = (σij) ; σij = σji ∈ L2(Ω)},

H1 = {σ ∈ H ; Div σ ∈ H}, W = {D = (Di) ∈ L2(Ω)d ; divD ∈ L2(Ω)},

endowed with the inner products

(u, v)H =

∫
Ω

ui vi dx, (σ, τ)H =

∫
Ω

σij τij dx, (u, v)H1 = (u, v)H + (ε(u), ε(v))H,

(σ, τ)H1
= (σ, τ)H + (Divσ,Divτ)H , (D,E)W = (D,E)H + (divD,divE)L2(Ω),

and the associated norms ∥ · ∥H , ∥ · ∥H1 , ∥ · ∥H, ∥ · ∥H1 , ∥ · ∥W , respectively.

Let HΓ = H
1
2 (Γ)d and let γ : H1 → HΓ be the trace mapping. For every

element v ∈ H1, we write v for the trace γv of v on Γ and let H ′
Γ be the dual of

HΓ. The Green’s formula is expressed for a regular tensor field σ (assuming that σ
is continuously differentiable on Ω) as follows∫

Γ

σν · γv da = (σ, ε(v))H + (Divσ, v)H , ∀v ∈ H1, (2.1)

where da is the surface measure element.
Let us now consider the closed subspaces V of H1 and W of H1(Ω) defined by

V =
{
v ∈ H1 ; v = 0 on ΓD

}
, W =

{
ξ ∈ H1(Ω) ; ξ = 0 on Γa

}
.

On the spaces V and W , we consider the inner products and the corresponding
norms given by

(u, v)V = (ε(u), ε(v))H, ∥v∥V = ∥ε(v)∥H, ∀u, v ∈ V, (2.2)

(φ, ξ)W = (∇φ,∇ξ)H , ∥ξ∥W = ∥∇ξ∥H , ∀φ, ξ ∈ W. (2.3)



1142 Y. Mandyly, I. El Ouardy, R. Fakahr & EL-H. Benkhira

Since meas(ΓD) > 0, meas(Γa) > 0 and Γ is Lipschitz, Korn’s and Friedrichs-
Poincaré inequalities hold,

∥ε(v)∥H ≥ cK∥v∥H1
, ∀v ∈ V, (2.4)

∥∇ξ∥H ≥ cF ∥ξ∥H1(Ω), ∀ξ ∈ W, (2.5)

where cK and cF are positive constants depending on Ω, ΓD and Γa.
It follows from (2.2) and (2.4) that ∥ · ∥H1 and ∥ · ∥V are equivalent norms on V .

Thus, (V ; ∥ · ∥V ) is a real Hilbert space. Similarly, it is straightforward from (2.5)
and (2.3) that ∥·∥H1(Ω) and ∥·∥W are equivalent norms on W and thus (W, ∥·∥W ) is
a real Hilbert space. By Sobolev’s trace theorem, there exist two positive constants
c0 and c1 which depend only on Ω, ΓC , ΓD and Γa such that

∥v∥L2(ΓC)d ≤ c0∥v∥V , ∀v ∈ V,

∥ξ∥L2(ΓC) ≤ c1∥ξ∥W , ∀ξ ∈ W.

We also introduce the following closed subspace of H1(Ω) defined by

Q =
{
η ∈ H1(Ω) ; η = 0 on ΓD ∪ ΓN

}
.

On Q we consider the inner product and the corresponding norm given by

(θ, η)Q = (θ, η)H1(Ω) , ∥η∥Q = ∥η∥H1(Ω), ∀θ, η ∈ Q.

Since Γa is on nonzero measure, it follows from the Friedrich-Poincaré inequalities
that (Q, ∥.∥Q) is a real Hilbert space. Moreover, using Sobolev trace theorem and
cη > 0 such that

∥η∥L2(ΓC) ≤ cη∥η∥Q, ∀η ∈ Q.

For a regular vector field q, the following Green type formula hold

(q,∇η)L2(Ω)d + (divq, η)L2(Ω) =

∫
Γ

q · ν η da, ∀η ∈ H1.

Moreover, we consider the set of admissible temperature defined by

Qad =
{
η ∈ Q ; η − θF ⩽ 0 on ΓC

}
,

where θF is the foundation’s temperature, and denote by E the piezoelectric tensor,
and by E∗ is its transpose, such that

E = (eijk), E∗ = (e∗ijk), where e∗ijk = ekij ,

Eσ · v = σ · E∗v, ∀σ ∈ Sd, v ∈ Rd. (2.6)

Finally, we use the space of normal traces on ΓC defined by

H
1
2 (ΓC) =

{
vν ∈ L2(ΓC) ; ∃v ∈ H1, vν = γv · ν

}
,

and its dual H− 1
2 , then ⟨·, ·⟩ΓC

denote the duality pairing between H− 1
2 (ΓC) and

H
1
2 (ΓC). The corresponding norms are given by

∥vν∥
H

1
2 (ΓC)

= inf
v∈H1

{
∥v∥H1

; vν = γv.ν, ∀vν ∈ H
1
2 (ΓC)

}
,
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∥σν∥
H− 1

2 (ΓC)
= sup

vν∈H
1
2 (ΓC),

vν ̸=0
H

1
2 (ΓC )

{
⟨σν , vν⟩ΓC

∥vν∥
H

1
2 (ΓC)

}
, ∀σν ∈ H− 1

2 (ΓC). (2.7)

Since for any vν in H
1
2 (ΓC), there exists v ∈ H1 and a constant cν > 0 (see [22])

such that
∥vν∥

H
1
2 (ΓC)

≥ cν∥v∥V . (2.8)

When no confusion is likely to appear, the sub-indices denoting the particular
spaces will be omitted.

3. Problem statement and variational formulation

In the initial part of this section, we will describe a process in which a thermo-
piezo-elastic body responds to a combination of factors, including volume forces,
volume electric charges, surface tractions, and surface electric charges. This body
is in a frictional contact with a thermally conductive foundation, resulting in tem-
perature variations and associated deformations that lead to changes in the material
parameters, which are dependent on temperature. Our interest is in modeling this
evolution. We assume that the process is static and satisfies the small deformation
hypothesis. The body is fixed at ΓD, where the displacement field vanishes and the
electrical potential is zero on Γa. Additionally, we assume that the temperature
on Γa ∪ Γb is zero. The body experiences a volume force of density f0, a volume
electric charge of density ϕ0, and a heat source q0 in Ω. Surface tractions of density
fN act on ΓN and a surface electric charge of density ϕb is prescribed on Γb. The
solid is in frictional contact with a fixed foundation on ΓC . We assume that the
foundation’s temperature is maintained at θF . Thus, the frictional contact problem
in thermo-electro-elasticity is described as follows.

Problem (P). Find a displacement field u : Ω → Rd, a stress field σ : Ω → Sd,
an electric potential φ : Ω → R, an electric displacement field D : Ω → Rd, a
temperature field θ : Ω → R and the heat flux q : Ω → Rd such that

σ = F(ε(u))− E∗E(φ)−Mθ, in Ω, (3.1)

D = Eε(u) + βE(φ) + Pθ, in Ω, (3.2)

q = −K∇θ, in Ω, (3.3)

Divσ + f0 = 0, in Ω, (3.4)

divD = ϕ0, in Ω, (3.5)

divq = q0, in Ω, (3.6)

u = 0, on ΓD, (3.7)

σν = fN , on ΓN , (3.8)

g1(∥u∥) ≤ σν(u, φ, θ) ≤ g2(∥u∥),

g1(∥u∥) < σν(u, φ, θ) < g2(∥u∥) ⇒ uν = 0,

σν = g1(∥u∥) ⇒ uν ≥ 0,

σν = g2(∥u∥) ⇒ uν ≤ 0,


on ΓC , (3.9)
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qν(u, φ, θ) ⩽ 0, (θ − θF ) ⩽ 0, qν(u, φ, θ)(θ − θF ) = 0, in ΓC , (3.10)

∥στ∥ ≤ µ(∥uτ∥)|Rσν(u, φ, θ)|,

∥στ∥ < µ(∥uτ∥)|σν(u, φ, θ)| ⇒ uτ = 0,

στ = −µ(∥uτ∥)|Rσν(u, φ, θ)|
uτ

∥uτ∥
⇒ uτ ̸= 0,

 on ΓC , (3.11)

φ = 0, on Γa, (3.12)

D · ν = ϕb, on Γb, (3.13)

θ = 0, on ΓD ∪ ΓN . (3.14)

The following is a brief overview of the equations and boundary conditions present in
Problem (P). Equations (3.1), (3.2) and (3.3) represent the thermo-electro-elastic
constitutive laws of the material in which F is the nonlinear elasticity operator, β is
the electric permittivity tensor, M = (mij) and P = (pi) are thermal expansion and
pyroelectric tensors and K = (kij) is the thermal conductivity tensor. Equations
(3.4)-(3.6) represent the equilibrium equations for the stress, electric displacement,
and heat flux fields. Equations (3.7)-(3.8) and (3.12)-(3.14) represent the mechani-
cal, electrical, and thermal boundary conditions. Equation (3.9) embody Signorini’s
modified contact law (see [17, Chapter 3, p. 147]), wherein the thresholds g1 and g2
delineate critical limits for surface contact pressure, which must not be exceeded to
prevent localized crushing of the material due to excessive pressure in the contact
zone. The condition g1(∥u∥) < σν < g2(∥u∥) signifies that as long as the normal
stress (contact pressure) remains within the specified range, the contact pressure
avoids surpassing the critical thresholds and consequently the normal displacement
is zero uν = 0. If the normal stress reaches the upper threshold σν = g2(∥u∥),
which is positive, consequently a displacement normal to the contact surface results
which is negative uν ≤ 0. Conversely, if the contact pressure reaches the lower
threshold σν = g1(∥u∥), which is negative, consequently a displacement normal to
the contact surface results which is positive uν ≥ 0. Equation (3.10) represents
Signorini type thermal conductivity conditions (see [18]). Condition (3.11) is a ver-
sion of Coulomb’s friction law in which µ is the coefficient of friction, and R is a
regularization operator.

We will now give a variational formulation for Problem (P). To this end, we
make the following assumptions on the data.

(H1) The elasticity operator F : Ω× Sd → Sd satisfies

(a) there exists MF > 0 such that
∥F(x, ξ1)− F(x, ξ2)∥ ≤ MF∥ξ1 − ξ2∥, ∀ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω,

(b) there exists mF > 0 such that
(F(x, ξ1)− F(x, ξ2))(ξ1 − ξ2) ≥ mF∥ξ1 − ξ2∥2, ∀ξ1, ξ2 ∈ Sd, a.e.x ∈ Ω,

(c) the mapping x → F(x, ξ) is Lebesgue measurable on Ω, ∀ξ ∈ Sd,
(d) the mapping x → F(x, 0) belongs to H.

(H2) The piezoelectric tensor E = (eijk), the thermal stress tensor M and the
pyroelectric tensor P, satisfy

eijk = eikj ∈ L∞(Ω), mij = mji ∈ L∞(Ω), pi ∈ L∞(Ω).

Notice that the above conditions allow us to define

ME = sup
ij

∥eijk∥L∞(Ω), MM = sup
ij

∥mij∥L∞(Ω), MP = sup
i

∥pi∥L∞(Ω).
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(H3) The electric permittivity tensor β=(βij) and the thermal conductivity tensor
K = (kij), satisfy: for all ξ ∈ Rd, there exists mβ > 0 and mK > 0 such that

(a) βij = βji ∈ L∞(Ω), βijξiξj ≥ mβ∥ξ∥2,
(b) kij = kji ∈ L∞(Ω), kijξiξj ≥ mK∥ξ∥2.

(H4) The coefficient of friction µ : ΓC × R+ → R+ satisfies

(a) The function x → µ(x,w) is measurable on ΓC , for all w ∈ R+,

(b) ∃Lµ > 0, such that |µ(., w1)− µ(., w2)| ≤ Lµ|w1 − w2|, ∀w1, w2 ∈ R+.

(c) ∃ µ∗ > 0, such that µ(x,w) ≤ µ∗,∀w ∈ R+, a.e. x ∈ ΓC .

(H5) The functions g1 : ΓC × R+ → R− and g2 : ΓC × R+ → R+ satisfy for
gi, i = 1, 2:

(a) ∃ Mgi > 0, such that |gi(x,w)| ≤ Mgi , ∀w ∈ R+, a.e.x ∈ ΓC .

(b) ∃ Lgi > 0, such that |gi(x,w1) − gi(x,w2)| ≤ Lgi |w1 − w2|, ∀w1, w2 ∈
R+, a.e. x ∈ ΓC .

(c) The mapping x → gi(x,w) is measurable on ΓC , for all w ∈ R+.

(H6) The forces, tractions, charges, heat source densities, and the foundation’s
temperature are assumed to satisfy

f0 ∈ L2(Ω)d, fN ∈ L2(ΓN )d, ϕ0, q0 ∈ L2(Ω), ϕb ∈ L2(Γb), θF ∈ L2(ΓC).

(H7) The mapping R : H ′
ΓC

→ L∞(ΓC) is linear and continuous with ∥R∥ = cR.

Next, Using Riesz’s representation theorem, we define the elements f ∈ V , Φ ∈ W
and Θ ∈ Q by

(f, v)V =

∫
Ω

f0 · v dx+

∫
ΓN

fN · v da, ∀v ∈ V, (3.15)

(Φ, ξ)W =

∫
Ω

ϕ0ξ dx−
∫
Γb

ϕb ξda, ∀ξ ∈ W, (3.16)

(Θ, η)Q =

∫
Ω

q0 ηda, ∀η ∈ Q, (3.17)

and letting X = V × W × Q, we define the following functional J : X × V → R
given by

J((u, φ, θ), v) =

∫
ΓC

µ(∥uτ∥)|Rσν(u, φ, θ)| ∥vτ∥ da+

∫
ΓC

g2(∥u∥)v−ν da

−
∫
ΓC

g1(∥u∥)v+ν da.
(3.18)

Using the above notation and a standard procedure based on Green’s formulas,
we can express the variational formulation of Problem (P) in terms of displace-
ment, electric potential, and temperature fields as follows.

Problem (PV). Find a displacement field u ∈ V , an electric potential φ ∈ W and
a temperature θ ∈ Qad such that

(F(ε(u)), ε(v)− ε(u))H + (E∗∇φ, ε(v)− ε(u))H − (Mθ, ε(v)− ε(u))H

+ J((u, φ, θ), v)− J((u, φ, θ), u) ≥ (f, v − u)V , ∀v ∈ V,
(3.19)
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(β∇φ,∇ξ)H − (Eε(u),∇ξ)H − (Pθ,∇ξ)H = (Φ, ξ)W , ∀ξ ∈ W, (3.20)

(K∇θ,∇(η − θ))H ⩾ (Θ, η − θ)L2(Ω), ∀η ∈ Qad. (3.21)

Our main result concerning the existence and uniqueness will be established in the
following section.

4. Existence and uniqueness of solutions

We have the following existence and uniqueness result.

Theorem 4.1. Suppose that the assumptions (H1)-(H7) hold. If there exists a
positive constant L∗ such that Lµ + µ∗ + Lg1 + Lg2 < L∗, then Problem (PV)
admits a unique solution.

The proof of Theorem 4.1 relies on well-established results in the theory of
elliptic quasi-variational inequalities and utilizes fixed point arguments. The proof
is conducted in multiple steps. We assume that (H1)-(H7) hold, and then consider
the product spaces X = V ×W ×Q and Y = (L2(ΓC))

d× (L2(ΓC))
2 equipped with

the following inner products(
x, y

)
X

= (u, v)V + (φ, ξ)W + (θ, η)Q,(
z, z′

)
Y
= (z1, z

′
1)L2(ΓC)d + (z2, z

′
2)L2(ΓC) + (z3, z

′
3)L2(ΓC),

(4.1)

for all x = (u, φ, θ), y = (v, ξ, η) ∈ X, z = (z1, z2, z3), y = (z′1, z
′
2, z

′
3) ∈ Y , and

the associated norms ∥ . ∥X and ∥ . ∥Y , respectively. We define the operators

A : X → X and B : X → X, the functional J̃ on X ×X, and the element F ∈ X
as follows

(Ax, y)X =(F(ε(u)), ε(v))H + (β∇φ,∇ξ)H + (E∗∇φ, ε(v))H

− (Eε(u),∇ξ)H + (K∇θ,∇η)H , ∀x = (u, φ, θ), y = (v, ξ, η) ∈ X,

(4.2)

(Bx, y)X = −(Mθ, ε(v))H − (Pθ,∇ξ)H , ∀x = (u, φ, θ), y = (v, ξ, η) ∈ X, (4.3)

J̃(x, y) = J((u, φ, θ), v), ∀x = (u, φ, θ), y = (v, ξ, η) ∈ X, (4.4)

F = (f,Φ,Θ) ∈ X. (4.5)

The first step of the proof involves establishing the following equivalence result.

Lemma 4.1. The triplet x = (u, φ, θ) is a solution of Problem (PV) if and only
if the following equation holds for all y = (v, ξ, η) ∈ V ×W ×Qad

(Ax, y − x)X + (Bx, y − x)X + J̃(x, y)− J̃(x, x) ≥ (F, y − x)X . (4.6)

Proof. Let x = (u, φ, θ) ∈ V × W × Qad be a solution to Problem (PV), and
let y = (v, ξ, η) ∈ V ×W × Qad. By choosing (ξ − φ) as a test function in (3.20),
adding the corresponding inequality to (3.19) and (3.21), and utilizing (4.2)-(4.5),
we can derive (4.6). This shows the “if” direction of the lemma. Conversely,
assume that x = (u, φ, θ) ∈ V ×W ×Qad satisfies the elliptic variational inequality
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(4.6). By selecting y = (v, φ, θ) in (4.6), where v is an arbitrary element of V ,
we obtain (3.19). Furthermore, for any ξ ∈ W , we can choose y = (v, φ + ξ, η)
and y = (v, φ − ξ, η) successively in (4.6) to obtain (3.20). Similarly, by taking
y = (u, φ, η) in (4.6), where η is an arbitrary element of Qad, we obtain (3.21).
Hence, we have established the “only if” direction of the lemma. This completes
the proof of Lemma 4.1.

To solve the problem (4.6), we consider the following auxiliary one with a given
ζ = (ζ1, ζ2) ∈ V ×W .

Problem (PVζ). Find xζ = (uζ , φζ , θζ) ∈ V × W × Qad such that for all y ∈
V ×W ×Qad, the following holds

(Axζ , y − xζ)X + J̃(xζ , y)− J̃(xζ , xζ) ≥ (Fζ , y − xζ)X , (4.7)

where the element Fζ ∈ X is defined by

Fζ = (fζ ,Φζ ,Θ), (4.8)

and the functions fζ and Φζ are given by

(fζ , v)V = (f, v)V + (ζ1, ε(v))H , ∀v ∈ V, (4.9)

(Φζ , ξ)W = (Φ, ξ)W + (ζ2,∇ξ)H , ∀ξ ∈ W. (4.10)

We will prove in what follows the unique solvability of the auxiliary Problem
(PVζ).

Lemma 4.2. For any ζ ∈ V ×W , Problem (PVζ) has a unique solution given by
xζ = (uζ , φζ , θζ) ∈ V ×W ×Qad.

Proof. The proof of Lemma 4.2 is based on standard results for quasi-variational
inequalities. To establish this lemma, we prove that

(a) the operator A : X → X is strongly monotone and Lipschitz continuous;

(b) the functional J̃ is proper, convex and lower semicontinuous, and there exists
α > 0 such that ∀x1, x2, y1, y2 ∈ X

J̃(x1, y2)− J̃(x1, y1) + J̃(x2, y1)− J̃(x2, y2) ≤ α∥x1 − x2∥X∥y1 − y2∥X .
(4.11)

Considering x1 = (u1, φ1, θ1) and x2 = (u2, φ2, θ2) in the space X, we can employ
equation (4.2) along with the assumptions (H1), (H3), and (2.6) to obtain the
following result

(Ax1 −Ax2, x1 − x2)X ≥ mF∥u1 − u2∥2V +mβ∥φ1 − φ2∥2W +mK∥θ1 − θ2∥2Q.

Therefore, based on equation (4.1), there exists a positive constant mA = min(mF,
mβ, mK), dependent on F, β, K, Ω, and Γa, such that the following inequality holds

(Ax1 −Ax2, x1 − x2)X ≥ mA∥x1 − x2∥2X . (4.12)

In the same way, taking y = Ax1 − Ax2 in (4.2) and using the assumptions
(H1) − (H3), and (4.1), after some calculation it follows that there exists MA =
5max(MF, Mβ , MK, ME) which depends only on F, β, K and E such that

∥Ax1 −Ax2∥X ≤ MA ∥x1 − x2∥X . (4.13)
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The result stated in (a) is now a consequence of equations (4.12) and (4.13).

We proceed to examine the properties of the functional J̃ , as indicated in (b).
Let x1, x2, y1, y2 ∈ X be taken from (3.18) and (4.4). We can then observe the
following

J̃(x1, y2)− J̃(x1, y1) + J̃(x2, y1)− J̃(x2, y2)

=

∫
ΓC

(
µ(∥u1,τ∥)|Rσν(u1, φ1, θ1)| − µ(∥u2,τ∥)|Rσν(u2, φ2, θ2)|

)(
∥v2,τ∥ − ∥v1,τ∥

)
da

+

∫
ΓC

(
g2(∥u1∥)− g2(∥u2∥)

)(
v−2,ν − v−1,ν

)
da

+

∫
ΓC

(
g1(∥u1∥)− g1(∥u2∥)

)(
v+1,ν − v+2,ν

)
da

=

∫
ΓC

(
(µ(∥u1,τ∥)− µ(∥u2,τ∥)

)
|Rσν(u1, φ1, θ1)|

(
∥v2,τ∥ − ∥v1,τ∥

)
da

+

∫
ΓC

µ(∥u2,τ∥)
(
|Rσν(u1, φ1, θ1)| − |Rσν(u2, φ2, θ2)|

)(
∥v2,τ∥ − ∥v1,τ∥

)
da

+

∫
ΓC

(
g2(∥u1∥)− g2(∥u2∥)

)(
v−2,ν − v−1,ν

)
da

+

∫
ΓC

(
g1(∥u1∥)− g1(∥u2∥)

)(
v+1,ν − v+2,ν

)
da.

Now, using the hypotheses (H4)-(H5), and (H7) in the previous inequality, we
obtain

J̃(x1, y2)− J̃(x1, y1) + J̃(x2, y1)− J̃(x2, y2)

≤Lµ∥Rσν(u1, φ1, θ1)∥L∞(ΓC)∥u1,τ − u2,τ∥L2(ΓC)d∥v1,τ − v2,τ∥L2(ΓC)d

+ µ∗mes(ΓC)
1
2 ∥Rσν(u1, φ1, θ1)− Rσν(u2, φ2, θ2)∥L∞(ΓC)∥v1,τ − v2,τ∥L2(ΓC)

+ Lg1∥u1,ν − u2,ν∥L2(ΓC)∥v1,ν − v2,ν∥L2(ΓC)

+ Lg2∥u1,ν − u2,ν∥L2(ΓC)∥v1,ν − v2,ν∥L2(ΓC)d

≤
(
Lµ∥Rσν(u1, φ1, θ1)∥L∞(ΓC) + (Lg1 + Lg2)

)
∥u1 − u2∥L2(ΓC)d∥v1 − v2∥L2(ΓC)d

+ µ∗mes(ΓC)
1
2 cR∥σν(u1, φ1, θ1)− σν(u2, φ2, θ2)∥

H
−1
2 (ΓC)

∥v1 − v2∥L2(ΓC)d .

Furthermore, noting that from (2.1), (2.7), (3.1) and (2.8), one has

∥σν(u1, φ1, θ1)− σν(u2, φ2, θ2)∥
H− 1

2 (ΓC)

= sup
v∈H

1
2 (ΓC)

⟨σν(u1, φ1, θ1)− σν(u2, φ2, θ2), vν⟩ΓC

∥vν∥
H

1
2 (ΓC)

= sup
v∈H

1
2 (ΓC)

(F(ε(u1))− F(ε(u2)), ε(v))H + (E∗∇(φ1 − φ2), ε(v))H
∥vν∥

H
1
2 (ΓC)
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+ sup
v∈H

1
2 (ΓC)

(Mθ2 −Mθ1, ε(v))H
∥vν∥

H
1
2 (ΓC)

≤ 1

cν
sup
v∈V

(
∥F(ε(u1))− (F(u2))∥H + ∥E∗∇(φ1 − φ2)∥H + ∥M(θ2 − θ1)∥H

)
∥ε(v)∥H

∥v∥V

≤ 1

cν
sup
v∈V

(
MF∥u1 − u2∥V +ME∥φ1 − φ2∥W +MM∥θ1 − θ2∥Q

)∥v∥V
∥v∥V

≤c∗

(
∥u1 − u2∥V + ∥φ1 − φ2∥W + ∥θ1 − θ2∥Q

)
.

Hence, from this inequality, (2.3) and (4.1), it follows that

J̃(x1, y2)− J̃(x1, y1) + J̃(x2, y1)− J̃(x2, y2)

≤Lµc
2
0∥Rσν(u1, φ1, θ1)∥L∞(ΓC)∥u1 − u2∥V ∥v1 − v2∥V

+ c20(Lg1 + Lg2)∥u1 − u2∥V ∥v1 − v2∥V

+ µ∗mes(ΓC)
1
2 cRc∗c0 (∥u1 − u2∥V + ∥φ1 − φ2∥W ) ∥v1 − v2∥V

+ µ∗mes(ΓC)
1
2 cRc∗c0∥θ1 − θ2∥Q∥v1 − v2∥V

≤Lµc
2
0∥Rσν(u2, φ2, θ2)∥L∞(ΓC)∥x1 − x2∥X∥y1 − y2∥X

+ c20(Lg1 + Lg2)∥x1 − x2∥X∥y1 − y2∥X

+ µ∗mes(ΓC)
1
2 cRc∗c0

√
3∥x1 − x2∥X∥y1 − y2∥X

≤α0(Lµ + µ∗ + Lg1 + Lg2)∥x2 − x1∥X∥y2 − y1∥X ,

where α0 = max
(
c20∥Rσν(u2, φ2, θ2)∥L∞(ΓC),mes(ΓC)

1
2 cRc∗c0

√
3, c20

)
.

Consequently, we obtain with α = α0(Lµ + µ∗ + Lg1 + Lg2) that

J̃(x1, y2)− J̃(x1, y1) + J̃(x2, y1)− J̃(x2, y2) ≤ α∥x2 − x1∥X∥y2 − y1∥X .

In conclusion, by combining the aforementioned results (a) − (b), Lemma 4.1,
and standard results for quasi-variational inequalities, we can deduce the existence
of a unique solution for Problem (PVζ).

To complete the proof of Theorem 4.1, we will now examine the operator Λ :
V ×W → V ×W , which is defined as follows

Λζ = (Mθζ ,Pθζ), ∀ζ = (ζ1, ζ2) ∈ V ×W. (4.14)

We show that this operator has a unique fixed point ζ = (ζ1, ζ2) ∈ V ×W . To this
end, let ζ = (ζ1, ζ2), ζ ′ = (ζ ′1, ζ

′
2) ∈ V ×W . From the definition of the operator Λ,

we get

∥Λζ − Λζ ′∥V×W ≤ ∥Mθζ −Mθζ′∥V + ∥Pθζ − Pθζ′∥W
≤ MM∥θζ − θζ′∥Q +MP∥θζ − θζ′∥Q
≤ 2max(MM,MP )∥θζ − θζ′∥Q,
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and using (4.1), we have

∥Λζ − Λζ ′∥V×W ≤ 2max(MM,MP)∥xζ − xζ′∥X . (4.15)

On the other hand, using (4.7), (4.8), and (4.11), one has

(Axζ −Axζ′ , xζ − xζ′)X

⩽ (Fζ − Fζ′ , xζ − xζ′)X + J̃(xζ , xζ′)− J̃(xζ , xζ) + J̃(xζ′ , xζ)− J̃(xζ′ , xζ′)

⩽ ∥ζ − ζ ′∥V×W ∥xζ − xζ′∥X + α∥xζ − xζ′∥2X .

Keeping in mind (4.12), we get

mA∥xζ − xζ′∥2X ⩽ ∥ζ − ζ ′∥V×W ∥xζ − xζ′∥X + α∥xζ − xζ′∥2X .

Therefore,

(mA − α) ∥xζ − xζ′∥X ⩽ ∥ζ − ζ ′∥V×W ,

and, taking into account (4.15), it follows that

∥Λζ − Λζ ′∥V×W ⩽
2max(MM,MP)

mA − α
∥ζ − ζ ′∥V×W .

This shows that for α < mA − 2max(MM,MP) the operator Λ is a contraction in
V ×W . Thus, there exists a unique element ζ = (ζ1, ζ2) ∈ V ×W such that Λζ = ζ
and ζ is also the unique fixed point of Λ.

In conclusion, let xζ∗ = (uζ∗ , φζ∗ , θζ∗) ∈ V ×W ×Qad be the solution of Prob-
lem (PVζ). By setting ζ∗ = ζ, based on the definition of Λ and Problem (PVζ),
we can conclude that xζ∗ is the unique solution of Problem (PV).

5. Iteration method

In this section, we present an iterative method for efficiently solving the nonlinear
variational Problem (PV). The proposed method is based on the fixed-point
iteration technique, which involves a sequence of linear equations to effectively solve
the derived nonlinear system of equations from the variational problems (3.19)-
(3.21). The iteration method follows the procedure outlined below.

Given an initial guess x0 = (u0, φ0, θ0),we define a sequence

xn+1 = (un+1, φn+1, θn+1) ∈ X = V ×W ×Qad, for all n ∈ N recursively by

(xn+1, y − xn+1)X + ρJ̃(xn, y)− ρJ̃(xn, xn+1)

≥ (xn, y − xn+1)X − ρ(Axn − F, y − xn+1)X − ρ(Bxn, y − xn+1)X , ∀y ∈ X,
(5.1)

where ρ > 0.
Now, we present a simple corollary that follows from the classical existence and

uniqueness result for the solution of problem (5.1).

Corollary 5.1. There exists a unique solution xn+1 ∈ X, satisfying (5.1).
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Proof. Let xn+1 = z and denote by

b(z, y − z) = (xn+1, y − xn+1)X , ϕ(y) = ρJ̃(xn, y), ϕ(z) = ρJ̃(xn, xn+1),

(G, y − z)X = (xn, y − xn+1)X − ρ(Axn − F, y − xn+1)X − ρ(Bxn, y − xn+1)X .

Using the previous notation, we deduce from (5.1) that{
Find z ∈ X such that

b(z, y − z) + ϕ(y)− ϕ(z) ≥ (G, y − z)X , ∀y ∈ X.
(5.2)

It is straightforward to observe that b(z, y) is a continuous and X-elliptic bilinear
form, ϕ(z) is a proper, convex, and lower semi-continuous function, and G is a linear
and continuous functional. By applying a standard result on elliptic variational
inequalities, we can deduce the existence of a unique element z ∈ X that satisfies
(5.2).

The main convergence result we establish in this section is as follows.

Theorem 5.1. Let x and xn+1 be solutions of Problem (PV) and the iterative
problem (5.1), respectively. Assuming that the conditions of Theorem 4.1 hold, with

the same value of L∗. Then, for 0 < ρ <
2(mA − β)

M2
A − β2

, the sequence (xn+1) converges

strongly to x in X as n tends to infinity.

Proof. The proof of Theorem 5.1 will be presented in multiple steps. Assuming
that (H1)-(H7) hold, the first step is to establish the weak convergence of the
solution xn+1 of (5.1) to x, the solution of Problem (PV). Considering xn+1 and
xn+2 as two consecutive solutions of the variational inequality (5.1), we obtain

(xn+1, y − xn+1)X + ρJ̃(xn, y)− ρJ̃(xn, xn+1)

≥(xn, y − xn+1)X − ρ(Axn − F, y − xn+1)X − ρ(Bxn, y − xn+1)X ,
(5.3)

(xn+2, y − xn+2)X + ρJ̃(xn+1, y)− ρJ̃(xn+1, xn+2)

≥(xn+1, y − xn+2)X − ρ(Axn+1 − F, y − xn+2)X − ρ(Bxn+1, y − xn+2)X .
(5.4)

By substituting y = xn+2 into (5.3), y = xn+1 into (5.4), and subsequently adding
the resulting inequalities, we obtain

(xn+2 − xn+1, xn+2 − xn+1)X

≤ρ[J̃(xn, xn+2)− J̃(xn, xn+1) + J̃(xn+1, xn+1)− J̃(xn+1, xn+2)]

+ ρ(Bxn −Bxn+1, xn+2 − xn+1)X

+ [(xn+1 − xn − ρ(Axn+1 −Axn), xn+2 − xn+1)X ].

Thus
∥xn+2 − xn+1∥2X ≤ I1 + I2 + I3, (5.5)

where the quantities I1, I2, and I3 are given by

I1 = ρ[J̃(xn, xn+2)− J̃(xn, xn+1) + J̃(xn+1, xn+1)− J̃(xn+1, xn+2)],

I2 = ρ(Bxn −Bxn+1, xn+2 − xn+1)X ,

I3 = [(xn+1 − xn − ρ(Axn+1 −Axn), xn+2 − xn+1)X ].
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By employing algebraic manipulations similar to those employed earlier and utilizing
the Cauchy-Schwarz inequality, we derive the following expressions

I1 ≤ ρα∥xn+2 − xn+1∥X∥xn+1 − xn∥X , (5.6)

I2 ≤ 2ρmax(MM,MP)∥xn+2 − xn+1∥X∥xn+1 − xn∥X , (5.7)

I3 ≤
√
1− 2ρmA + ρ2M2

A ∥xn+2 − xn+1∥X∥xn+1 − xn∥X . (5.8)

Combining the previous inequalities (5.5) to (5.8), we obtain the following result

∥xn+2 − xn+1∥X ≤ λ(ρ)∥xn+1 − xn∥X , (5.9)

where λ(ρ) = ρ
(
α+ 2max(MM,MP)

)
+
√

1− 2ρmA + ρ2M2
A.

We can deduce from the previous inequalities that

∥xn+1 − xn∥X ≤ (λ(ρ))n+1∥x1 − x0∥X . (5.10)

By choosing ρ such that 0 < ρ <
2
(
mA − (α+ 2max(MM,MP))

)
M2

A − (α+ 2max(MM,MP))2
, we ensure that

λ(ρ) < 1. Consequently, we can conclude that the sequence (xn) is a Cauchy
sequence. As a result, (xn) is bounded in X (since X is a Banach space), which
implies the existence of x∗ ∈ X. Furthermore, there exists a subsequence, still
denoted by (xn), such that

xn ⇀ x∗ weakly in X as n −→ +∞. (5.11)

In the second step, we will demonstrate that x∗ is a solution of (PV).
Since the trace map γ : X −→ L2(ΓC)

d×L2(ΓC)×L2(ΓC) is a compact operator,
the weak convergence xn ⇀ x∗ in X implies the strong convergence xn −→ x∗ in
L2(ΓC)

d × L2(ΓC)× L2(ΓC). From (5.1), we have

ρ(Axn, y − xn+1)X + ρ(Bxn, y − xn+1)X + ρJ̃(xn, y)− ρJ̃(xn, xn+1)

≥(xn, y − xn+1)X − (xn+1, y − xn+1)X + ρ(F, y − xn+1)X .

By utilizing (4.3)-(4.5), (5.11), (H2), (H5), and the properties of R, we can conclude
that as n tends to infinity, the following holds

(Bxn, y − xn+1)X −→ (Bx∗, y − x∗)X ,

J̃(xn, y)− J̃(xn, xn+1) −→ J̃(x∗, y)− J̃(x∗, x∗),

(xn, y − xn+1)X −→ (x∗, y − x∗)X ,

(xn+1, y − xn+1)X −→ (x∗, y − x∗)X ,

(F, y − xn+1)X −→ (F, y − x∗)X ,

which implies that

lim sup
n−→+∞

ρ(Axn, xn+1−y)X ≤ ρ(F, x∗−y)X+ρ(Bx∗, y−x∗)X+ρJ̃(x∗, y)−ρJ̃(x∗, x∗).

On the other hand, we note that for all y ∈ X, we have

lim sup
n−→+∞

ρ(Axn, xn+1 − x∗)X
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= lim sup
n−→+∞

ρ(Axn, xn+1 − y)X + lim sup
n−→+∞

ρ(Axn, y − x∗)X

≤ lim sup
n−→+∞

ρ((Axn, xn+1 − y)X + ρ∥Axn∥X∥y − x∗∥X),

and, we find that

lim sup
n−→+∞

ρ(Axn, xn+1 − x∗)X

≤ρ(F, x∗ − y)X + ρJ̃(x∗, y)− ρJ̃(x∗, x∗) + ρ(Bx∗, y − x∗)X

+ lim sup
n−→+∞

ρ(∥xn∥X∥y − x∗∥X).

Next, it is worth noting that (∥Axn∥) is bounded. By substituting y = x∗ into
the previous inequality, we obtain

lim sup
n−→+∞

ρ(Axn, xn+1 − x∗)X ≤ 0.

Also, by utilizing the pseudo-monotonicity property of the operator A, we can
conclude that

ρ(Ax∗, y − x∗)X ≤ lim inf
n−→+∞

ρ(Axn, xn+1 − y)X .

Then, we have ∀x∗ ∈ X,

(Ax∗, y − x∗)X + (Bx∗, y − x∗)X + J̃(x∗, y)− J̃(x∗, x∗) ≥ (F, y − x∗)X . (5.12)

From (5.12), we can deduce that x∗ is a solution of Problem (PV), and due to
the uniqueness of the solution for this variational inequality, we obtain x∗ = x.
Therefore, we can conclude that x = (u, φ, θ) is the unique weak limit in X =
V × W × Qad of any subsequence of the sequence (xn). Consequently, the whole
sequence (xn) converges weakly to the element x.

The last step in the proof of the theorem is the following.

(i) The couple x = (u, φ, θ) is a solution of (PV) if and only if

(Ax, y−x)X+(Bx, y−x)X+J̃(x, y)−J̃(x, x) ≥ (F, y−x)X , ∀y = (v, ξ, η) ∈ X.
(5.13)

(ii) The couple xn+1 = (un+1, φn+1, θn+1) is a solution of (5.1) if and only if

(xn+1, y − xn+1)X + ρJ̃(xn, y)− ρJ̃(xn, xn+1)

≥(xn, y − xn+1)X − ρ(Axn − F, y − xn+1)X − ρ(Bxn, y − xn+1)X , ∀y ∈ X.

(5.14)

By multiplying both sides of the inequality (5.13) by ρ, and then taking y = xn+1

in (5.13) and y = x in (5.14), we can add the resulting inequalities to obtain

(xn+1 − xn, x− xn+1)X + ρ(Ax−Axn, xn+1 − x)X + ρ(Bx−Bxn, xn+1 − x)X

+ ρ
[
J̃(xn, x)− J̃(xn, xn+1) + J̃(x, xn+1)− J̃(x, x)

]
≥ 0.

(5.15)
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The inequality (5.15) can be rewritten as follows

(xn+1 − x, xn+1 − x)X ≤ G1 + G2, (5.16)

where

G1 = ρ[J̃(xn, x)− J̃(xn, xn+1) + J̃(x, xn+1)− J̃(x, x) + (Bx−Bxn, xn+1 − x)X ],

G2 =
(
x− xn − ρ(Ax−Axn), x− xn+1

)
X
.

Proceeding in the same way as in (5.6) and (5.7), we get

G1 ≤ ρ(α+ 2max(MM,MP))∥xn+1 − x∥X∥xn − x∥X ≤ ρβ∥xn+1 − x∥X∥xn − x∥X ,
(5.17)

where β = α+ 2max(MM,MP).
Moreover, it follows from (4.12), (4.13) and Cauchy Schwartz inequality that

G2 ≤
√
1− 2ρmA + ρ2M2

A∥xn+1 − x∥X∥xn − x∥X . (5.18)

Then, in virtue of (5.15), (5.16) and (5.17), we get

∥xn+1 − x∥2X ≤ λ(ρ)∥xn+1 − x∥X∥xn − x∥X , (5.19)

where λ(ρ) = ρβ +
√

1− 2ρmA + ρ2M2
A.

Next, we use the triangular inequality to conclude that

∥xn+1 − x∥2X ≤ λ(ρ)∥xn+1 − x∥X (∥xn − xn+1∥X + ∥xn+1 − x∥X)

≤ λ(ρ)∥xn+1 − x∥2X + λ(ρ)∥xn − xn+1∥X∥xn+1 − x∥X .

Hence, we have

∥xn+1 − x∥X ≤ λ(ρ)

1− λ(ρ)
∥xn+1 − xn∥X . (5.20)

Finally, from (5.20), letting n −→ +∞, we obtain xn −→ x.

6. Conclusion

In this paper, we have presented a model addressing the static frictional contact
process between a thermo-piezoelectric body and a conductive foundation. The
constitutive law, incorporating thermo-electro-elastic effects, has been assumed to
be nonlinear. Our approach has employed Signorini’s modified contact conditions
for the displacement field, with Signorini type thermal conductivity conditions.
Coulomb’s friction law, alongside the electrical conductivity condition, has also
been considered. The existence of a unique weak solution has been established using
variational inequalities and a fixed-point theorem. Additionally, we have proposed
an iterative numerical solution method, and its convergence has been established.
A numerical validation of the convergence results included in this method will be
provided in a forthcoming paper.
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