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On Dual K-g-Bessel Sequences and
K-g-Orthonormal Bases∗
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Abstract In Hilbert spaces, K-g-frames are an advanced version of g-frames
that enable the reconstruction of objects from the range of a bounded linear
operator K. This research investigates K-g-frames in Hilbert space. Firstly,
using the g-preframe operators, we characterize the dual K-g-Bessel sequence
of a K-g frame. We provide additional requirements that must be met for the
sum of a given K-g-frame and its dual K-g-Bessel sequence to be a K-g-frame.
At the end of this paper, we present the concept of K-g-orthonormal bases and
explain their link to g-orthonormal bases in Hilbert space. We also provide an
alternative definition of K-g-Riesz bases using K-g-orthonormal bases. This
gives a better understanding of the concept.
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1. Introduction

In 1952 [9], Duffin and Schaeffer first introduced frames for Hilbert spaces to study
problems in the nonharmonic Fourier series. Nowadays, frame theory has become
widely used in various fields, such as filter theory [4], signal and image processing [5],
encoding and transmission [15] and so on. For further information on frame theory,
please refer to the literature [1, 6, 14].

The use of frame theory in Hilbert spaces has led to the emergence of many
generalized frames. In 2012, Găvruta [11] introduced K-frames to study atomic
systems. Unlike general frames, K-frames are limited to the range of a specific
bounded linear operator K, making them more practical and flexible. Furthermore,
studying bounded linear operators offers a new research approach. In 2006, Sun [19]
introduced the concepts of g-Riesz bases and g-frames. Later, Xiao et al. [22] put
forward the concept of K-g-frame, which was limited to the range of a bounded
linear operator in Hilbert space and has gained greater flexibility in practical ap-
plication relative to g-frame (see [2, 17]). K-g-frame, as a more general frame than
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g-frame and K-frame in Hilbert space, has become one of the most active fields
in frame theory in recent years. K-g-frames are a generalization of g-frames, and
many of their properties are similar to those of g-frames. However, there are some
differences, which have led to K-g-frames becoming one of the most active fields in
frame theory in recent years. Many studies have been conducted in this area, such
as [8, 16, 18, 23]. No one has discussed g-orthonormal bases of range K. Moreover,
many problems of K-g-frames, such as how to find the dual, have not been studied.
Since the frame operator may not be invertible, there is no classical canonical dual
for a K-g-frame, which partly causes the fact that there are few results on the duals
of a K-g-frame. This motivates us in this paper to examine the duals of K-g-frames
in greater detail and provide characterizations of K-g-orthonormal bases, which we
have defined.

This article is divided into four sections, each with its own outline. Section 2
will review essential results related to g-frames and K-g-frames for Hilbert spaces.
Moving on to Section 3, we will characterize the dual K-g-Bessel sequence of a
K-g-frame by using the g-preframe operators. We will also give some conditions
under which the sum of a given K-g-frame and its dual K-g-Bessel sequence is
a K-g-frame, taking into account the g-preframe operators. In the final section,
Section 4, we will study K-g-orthonormal bases and explore their relationship with
g-orthonormal bases. Additionally, we will provide an equivalent characterization
of K-g-Riesz bases by K-g-orthonormal bases and discuss their properties.

Throughout this paper, M and N are separable Hilbert spaces, and I is the
identity operator on M. L represents a countable index set. ONB denotes the
orthonormal basis. Let B(M,N ) be the space of all the bounded linear operators
from M to N and write B(M) = B(M,M). For an operator S ∈ B(M,N ),
let ranS, kerS and S∗ be the range space, the nullspace and the adjoint of S,
respectively. For a sequence of Hilbert spaces {Ml}l∈L,

(∑
l∈L ⊕Ml

)
l2

is defined
by (∑

l∈L
⊕Ml

)
l2

=

{
{ξl}l∈L : ξl ∈ Ml,

∑
l∈L

∥ξl∥2 <∞

}
.

2. Preliminaries

Here, we will review some key definitions and lemmas that will be required later.

Definition 2.1 ( [19]). A sequence D = {Dl ∈ B(M,Ml)}l∈L is called a g-frame
for M with respect to {Ml}l∈L, if there exist two positive constants a and b such
that

a∥ξ∥2 ≤
∑
l∈L

∥Dlξ∥2 ≤ b∥ξ∥2, ξ ∈ M. (2.1)

We call a and b the lower and upper g-frame bounds, respectively. If only the
right hand inequality of (2.1) holds, we call D a g-Bessel sequence for M with
respect to {Ml}l∈L with Bessel bound b. If a = b, we call D a tight g-frame for
M with respect to {Ml}l∈L, and if a = b = 1, we call D a Parseval g-frame for M
with respect to {Ml}l∈L.

For a g-Bessel sequence D = {Dl ∈ B(M,Ml)}l∈L with respect to {Ml}l∈L,
TD : M →

(∑
l∈L ⊕Ml

)
l2

defines a bounded linear operator,

TDξ = {Dlξ}l∈L,∀ξ ∈ M. (2.2)
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The adjoint operator T ∗
D :
(∑

l∈L ⊕Ml

)
l2
→ M is given by

T ∗
D{ξl}l∈L =

∑
l∈L

D∗
l ξl,∀{ξl}l∈L ∈

(∑
l∈L

⊕Ml

)
l2

. (2.3)

The series converges unconditionally inM. We call TD and T ∗
D the analysis operator

and synthesis operator of D. Also, the g-frame operator of D is defined as SD =
T ∗
DTD.
Let {elm}m∈Ml

be an ONB for Ml, l ∈ L, where Ml is a subset of integers Z.
Define ẽlm = {δljejm}l∈L for all l ∈ L,m ∈ Ml, where δlj is the Kronecker delta.
Then {ẽlm}l∈L,m∈Ml

is an ONB for
(∑

l∈L ⊕Ml

)
l2
.

In [24] and [25], Y. Zhou and Y. C. Zhu studied K-g-frame in Hilbert spaces.

Definition 2.2. Let K ∈ B(M). A sequence D = {Dl ∈ B(M,Ml)}l∈L is said to
be aK-g-frame forM with respect to {Ml}l∈L if there are constants 0 < a ≤ b <∞
such that

a∥K∗ξ∥2 ≤
∑
l∈L

∥Dlξ∥2 ≤ b∥ξ∥2, ∀ξ ∈ M. (2.4)

The lower and upper bounds of a K-g-frame are denoted as a and b, respectively.

If there is no confusion, we use K-g-frame for M instead of K-g-frame for M
with respect to {Ml}l∈L.

It can be observed that every K-g-frame acts as a g-Bessel sequence. The oper-
ations of analysis and synthesis are defined by equations (2.2) and (2.3). However,
it should be noted that the frame operator SD is not invertible on M. Nonetheless,
SD : ranK → SD(ranK) can be made invertible if the operator K has the closed
range.

Definition 2.3 ( [19]). A sequence E = {El ∈ B(M,Ml)}l∈L is said to be a
g-orthonormal basis (g-ONB) for M if it is a g-biorthonormal with itself, i.e.
⟨E∗

l ηl, E∗
j ηj⟩ = δlj⟨ηl, ηj⟩, l, j ∈ L, ηl ∈ Ml, ηj ∈ Mj , and for any ξ ∈ M, one

has
∑

l∈L ∥Elξ∥2 = ∥ξ∥2.

Definition 2.4 ( [20]). Suppose that K ∈ B(M) and D = {Dl ∈ B(M,Ml)}l∈L is
a K-g-frame for M. A g-Bessel sequence Γ = {Γl ∈ B(M,Ml)}l∈L for M is said
to be a dual K-g-Bessel sequence of D if

Kξ =
∑
l∈L

D∗
l Γlξ, ξ ∈ M.

Lemma 2.1 ( [20]). Suppose K ∈ B(M). Then every K-g-frame admits a dual
K-g-Bessel sequence.

Definition 2.5 ( [25]). Suppose K ∈ B(M). A family of operators E = {El ∈
B(M,Ml)}l∈L is called a K-g-Riesz basis for M, if E is ranK-g-complete in M,
i.e., {ξ ∈ M : Elξ = 0,∀l ∈ L} ⊂ (ranK)⊥, and there exist a, b > 0 such that for
any finite set J ⊂ L, ηl ∈ Ml, l ∈ J,

a
∑
l∈J

∥ηl∥2 ≤

∥∥∥∥∥∥
∑
l∈J

E∗
l ηl

∥∥∥∥∥∥
2

≤ b
∑
l∈J

∥ηl∥2. (2.5)
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Lemma 2.2 ( [21]). Suppose that K ∈ B(M) and that D = {Dl ∈ B(M,Ml)}l∈L
is a K-g-frame for M. Then D is ranK-g-complete in M.

Lemma 2.3 ( [13]). Suppose that E = {El ∈ B(M,Ml)}l∈L is a g-ONB for M.
Then D = {Dl ∈ B(M,Ml)}l∈L is a g-Bessel sequence for M if and only if there
is a unique bounded operator G : M → M such that Dl = ElG∗ for all l ∈ L.

The operator G in Lemma 2.3 is called the g-preframe operator associated with
D.

Lemma 2.4 ( [13]). Suppose that E = {El ∈ B(M,Ml)}l∈L is a g-ONB for M,
D = {Dl ∈ B(M,Ml)}l∈L is a g-Bessel sequence for M, G and S are the g-preframe
operator and g-frame operator associated with D, respectively. Then S = GG∗.

Lemma 2.5 ( [18]). Suppose that K ∈ B(M) and E = {El ∈ B(M,Ml)}l∈L is a g-
ONB for M. Let D = {Dl ∈ B(M,Ml)}l∈L be a g-Bessel sequence with g-preframe
operator G. Then D is a K-g-frame for M if and only if ranK ⊆ ranG.

Lemma 2.6 ( [18]). Suppose that K ∈ B(M) and E = {El ∈ B(M,Ml)}l∈L
is a g-ONB for M. D = {Dl ∈ B(M,Ml)}l∈L is a K-g-frame for M with g-
preframe operator G. F is the g-preframe operator of g-Bessel sequence Γ = {Γl ∈
B(M,Ml)}l∈L. Then Γ is the dual K-g-Bessel sequence of D if and only if K =
GF∗.

Lemma 2.7 ( [10]). Suppose that L, S ∈ B(M). Then the following are equivalent:
(1) S = LQ for some invertible operator Q on M.
(2) ranL = ranS and kerL = kerS.

Lemma 2.8 ( [7]). Suppose that L, S ∈ B(M). Then the following are equivalent:
(1) S∗S ≤ λL∗L for some λ > 0.
(2) There exists a solution Q ∈ B(M) such that S = QL.
(3) ranS∗ ⊆ ranL∗.

Recall from [3] that the linear mapping L |(kerL)⊥ is a bijective linear transfor-

mation from (kerL)⊥ onto ranL. Suppose L′ is the inverse of L |(kerL)⊥ . However,
L′ may not necessarily be continuous. Therefore, assuming S∗S ≤ λL∗L, it follows
that Q0 = SL′ is a bounded linear mapping. Any continuous extension of Q0 on
M is a solution of QL = S. We consider the operator Q̃ that coincides with Q0 on
ranL and vanishes on (ranL)⊥. Let us call the operator Q̃ the canonical solution of
QL = S.

3. Characterization of dual K-g-Bessel sequences by
g-preframe operators

Let E = {El ∈ B(M,Ml)}l∈L be a g-ONB for M and D = {Dl ∈ B(M,Ml)}l∈L
be a K-g-frame for M. Then by Lemma 2.5 and Lemma 2.8, this is equivalent
to KK∗ ≤ λGG∗ for some positive constant λ, where G is the g-preframe operator
of D. Thus K = GQ∗ is solvable in B(M). Every solution Q induces the dual
K-g-Bessel sequence {ElQ∗}l∈L of D. In fact, for any ξ ∈ M,∑

l∈L
D∗

l ElQ∗ξ =
∑
l∈L

GE∗
l ElQ∗ξ = Kξ.
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Let GD̃ be the canonical solution of K = GQ∗. Therefore,

(1) GD̃ maps M to ranK∗.
(2) GD̃ coincides with K∗(G∗)′ on ranG∗.
(3) kerGD̃ = kerG.
For more information about GD̃ we can refer to [3].

It is worthwhile to investigate the existence of g-ONB for M. However, in this
section, we will not delve into the question of their existence and will assume that
they exist for M. In the following paragraphs, we will present some characteriza-
tions of the dual K-g-Bessel sequence along with g-preframe operations.

Theorem 3.1. Suppose that K ∈ B(M) has closed range, E = {El ∈ B(M,Ml)}l∈L
is a g-ONB for M. Let D = {Dl ∈ B(M,Ml)}l∈L be a K-g-frame for M with g-
preframe operator G and Γ = {Γl ∈ B(M,Ml)}l∈L be a g-Bessel sequence for M
with g-preframe operator F . Then Γ is the dual K-g-Bessel sequence of D for M if
and only if there is a bounded linear operator φ ∈ B(M) such that Γl = El(GD̃+φ)∗

for any l ∈ L and Gφ∗ = 0.

Proof. Since D and Γ are both g-Bessel sequences for M, then by Lemma 2.3,

Dl = ElG∗, Γl = ElF∗.

We first prove the necessary condition. It is obvious that {El(GD̃ + φ)∗}l∈L is a
g-Bessel sequence for M. For any ξ ∈ M,∑

l∈L
D∗

l Γlξ =
∑
l∈L

D∗
l El(GD̃ + φ)∗ξ

=
∑
l∈L

D∗
l ElG∗

D̃ξ +
∑
l∈L

D∗
l Elφ∗ξ

=
∑
l∈L

GE∗
l ElG∗

D̃ξ +
∑
l∈L

GE∗
l Elφ∗ξ

=GG∗
D̃ξ + Gφ∗ξ = Kξ.

Thus Γ is the dual K-g-Bessel sequence of D for M.
Conversely, define the operator φ = F −GD̃, where F ∈ B(M) is the g-preframe

operator associated with Γ. Then φ ∈ B(M). By Lemma 2.6, we know GF∗ = K.
Hence for ξ ∈ M,

Gφ∗ξ = G(F − GD̃)
∗ξ = Kξ − GG∗

D̃ξ = 0.

Moreover,
Elφ∗ = ElF∗ − ElG∗

D̃ = Γl − ElG∗
D̃,

then
Γl = El(GD̃ + φ)∗.

Corollary 3.1. Suppose that K ∈ B(M) has closed range, E = {El ∈ B(M,Ml)}l∈L
is a g-ONB for M. Let D = {Dl ∈ B(M,Ml)}l∈L be a K-g-frame for M with g-
preframe operator G and Γ = {Γl ∈ B(M,Ml)}l∈L be a g-Bessel sequence for M
with g-preframe operator F . Then Γ is the dual K-g-Bessel sequence of D for M
if and only if there is a bounded linear operator φ ∈ B(M) such that F = GD̃ + φ
and Gφ∗ = 0.
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Let E = {El ∈ B(M,Ml)}l∈L be a g-ONB for M and D = {Dl ∈ B(M,Ml)}l∈L
be a K-g-frame for M. We denote SD by the set of all dual K-g-Bessel sequences of
D with g-preframe operator G. Thus, SD contains {El(GD̃+φ)∗}l∈L, where Gφ∗ = 0.

Proposition 3.1. Suppose that K ∈ B(M) has closed range and E = {El ∈
B(M,Ml)}l∈L is a g-ONB for M. Let D = {Dl ∈ B(M,Ml)}l∈L be a K-g-frame
for M with g-preframe operator G. If dim kerK ≤dim kerV , then SD contains
some g-frame for M.

Proof. By assumption we have that ranK∗ is closed. Since dim kerK ≤dim
kerG, we can find a bounded surjective operator φ : M → kerK vanishing on
kerG⊥. Then GD̃ + φ is surjective. Thus, (GD̃ + φ)∗ is a bounded below operator,
i.e. there is an a > 0 such that for any ξ ∈ M,

a∥ξ∥2 ≤ ∥(GD̃ + φ)∗ξ∥2.

Then for ξ ∈ M,

a∥ξ∥2 ≤
∑
l∈L

∥El(GD̃ + φ)∗ξ∥2 = ∥(GD̃ + φ)∗ξ∥2 ≤ ∥GD̃ + φ∥2∥ξ∥2,

which implies that {El(GD̃+φ)∗} l∈L is a g-frame for M. Moreover, Gφ∗ = 0. Thus,
{El(GD̃ + φ)∗}l∈L is a dual K-g-Bessel sequence of D.

Proposition 3.2. Suppose that K ∈ B(M) has closed range and E = {El ∈
B(M,Ml)}l∈L is a g-ONB for M. Let D = {Dl ∈ B(M,Ml)}l∈L be a K-g-
frame for M with g-preframe operator G. If dim kerG = ∞, then SD contains a
tight g-frame for M.

Proof. Let λI −GD̃G
∗
D̃

be positive and G1 = (λI −GD̃G
∗
D̃
)

1
2 , where λ is a positive

constant. By assumption dim kerG = ∞, we can find an isometry G2 on M whose
range is kerG. Thus GD̃G2 = 0. For any ξ ∈ M, we have∑

l∈L
∥El(GD̃ + G∗

1G∗
2 )

∗ξ∥2 =
∑
l∈L

∥ElG∗
D̃ξ + ElG2G1ξ∥2

=⟨GD̃G
∗
D̃ξ, ξ⟩+ ⟨G∗

1G1ξ, ξ⟩ = λ∥ξ∥2,

which implies that {El(GD̃ + G∗
1G∗

2 )
∗}l∈L is a tight g-frame for M. Moreover,

GG2G1 = 0. Thus, {El(GD̃ + G∗
1G∗

2 )
∗}l∈L is a dual K-g-Bessel sequence of D.

Theorem 3.2. Let E = {El ∈ B(M,Ml)}l∈L be a g-ONB for M and D = {Dl ∈
B(M,Ml)}l∈L and Γ = {Γl ∈ B(M,Ml)}l∈L be K-g-frames for M with g-preframe
operators G and F , respectively. Suppose that Γ is a dual K-g-Bessel sequence of
D for M. If FF∗ +K +K∗ is a positive operator, then D+Γ = {Dl +Γl}l∈L is a
K-g-frame for M.

Proof. Since Γ is a dual K-g-Bessel sequence of D, we have K = GF∗ by Lemma
2.6. Since D is a K-g-frame for M with g-preframe operator G, there is a λ > 0
such that λKK∗ ≤ GG∗. It is easy to see that D + Γ is a g-Bessel sequence with
g-preframe operator G + F . Then we have

(G + F)(G + F)∗ = GG∗ + FF∗ + GF∗ + FG∗

= GG∗ + FF∗ + (K +K∗)
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≥ GG∗ ≥ λKK∗,

which implies that D + Γ is a K-g-frame for M.

Theorem 3.3. Let E = {El ∈ B(M,Ml)}l∈L be a g-ONB for M and D =
{Dl ∈ B(M,Ml)}l∈L be a K-g-frame for M with g-preframe operator G. If dim
ranK∗ = ∞ and ranK∗ ⊂ kerG, then there is a dual K-g-Bessel sequence Γ =
{Γl ∈ B(M,Ml)}l∈L of D such that D + Γ = {Dl + Γl}l∈L is a K-g-frame for M.

Proof. Let T = GD̃G
∗
D̃

+ (K + K∗). Then −∥T∥I ≤ T ≤ ∥T∥I. Since dim

ranK∗ = ∞, we can find an isometry ψ : M → ranK∗. Set Γl = El(GD̃+φ)∗, where

φ =
√
∥T∥ψ∗. Then Γ is a g-Bessel sequence for M. We denote F the g-preframe

operator associated with Γ. Then F = GD̃+φ. It is directly checked that D+Γ is a
g-Bessel sequence with g-preframe operator G +F . Since ranK∗ ⊂ kerG, Gφ∗ = 0,
we also have GD̃φ

∗ = 0. Thus

(G + F)(G + F)∗ =(G + GD̃ + φ)(G∗ + G∗
D̃ + φ∗)

=GG∗ + GG∗
D̃ + GD̃G

∗ + GD̃G
∗
D̃ + φφ∗

=GG∗ +K +K∗ + GD̃G
∗
D̃ + φφ

=GG∗ + T + ∥T∥ψ∗ψ

=GG∗ + (T + ∥T∥I) ≥ GG∗.

Since D is a K-g-frame for M, there is a λ > 0 such that

λKK∗ ≤ GG∗ ≤ (G + F)(G + F)∗,

which implies that D + Γ is a K-g-frame for M.

4. Characterization of K-g-orthonormal bases

Motivated by the definition of g-ONB for M, we give the following definition of
K-g-orthonormal basis for M.

Definition 4.1. We say that D = {Dl ∈ B(M,Ml)}l∈L is a K-g-orthonormal basis
(K-g-ONB ) for M, if it satisfies the following:
(1) D is an orthonormal system, i.e.,

⟨D∗
l ηl,D∗

j ηj⟩ = δlj⟨ηl, ηj⟩, l, j ∈ L, ηl ∈ Ml, ηj ∈ Mj .

(2) For any ξ ∈ M one has ∑
l∈L

∥Dlξ∥2 = ∥K∗ξ∥2.

Obviously, if K = I, D is a g-ONB for M. So the g-ONB is a special case of
K-g-ONB.

Example 4.1. Let Λ = {Λi ∈ B(M,Mi)}i∈N be a g-ONB for M. Define the
operator K on M by ΛiK

∗ = Λi+1. Then {ΛiK
∗}i∈N is a K-g-ONB for M.

The question is whether a K-g-ONB is related to a g-ONB of the Hilbert space.
Then we have the following theorem.
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Theorem 4.1. Let K be an isometry operator and D = {Dl ∈ B(M,Ml)}l∈L be
a g-ONB for M. Then E = {El ∈ B(M,Ml)}l∈L is a K-g-ONB for M if and
only if there exists an isometry operator T such that El = DlT

∗ for any l ∈ L and
ranT = ranK.

Proof. Suppose that D is a g-ONB for M and T is an isometry operator such
that ranT = ranK. Since K and T are isometry operators and ranT = ranK,
kerT = kerK = {0}. We have

⟨TD∗
l ηl, TD∗

j ηj⟩ = δlj⟨ηl, ηj⟩, l, j ∈ L, ηl ∈ Ml, ηj ∈ Mj .

Lemma 2.7 implies T = KU for some invertible operator U and we have

⟨h, h⟩ = ⟨Th, Th⟩ = ⟨KUh,KUh⟩ = ⟨Uh,Uh⟩.

Then U is a unitary operator. Thus for all ξ ∈ M,∑
l∈L

∥Elξ∥2 =
∑
l∈L

∥DlT
∗ξ∥2 = ∥T ∗ξ∥2

= ∥U∗K∗ξ∥2 = ∥K∗ξ∥2.

Conversely assume that D is a g-ONB for M and E is a K-g-ONB for M. Define
T by

Tξ =
∑
l∈L

E∗
l Dlξ, ξ ∈ M.

For any finite set J ⊂ L, we have∥∥∥∥∥∥
∑
l∈J

E∗
l Dlξ

∥∥∥∥∥∥ = sup
∥η∥=1

∣∣∣∣∣∣
〈∑

l∈J
E∗
l Dlξ, η

〉∣∣∣∣∣∣ ≤ ∥K∗∥∥ξ∥.

Then T is well defined and bounded. Since D is a g-ONB,

DlD∗
j η = δljη

and
TD∗

j η =
∑
l∈L

E∗
l DlD∗

j η = E∗
j η

for all η ∈ Mj , j ∈ L. Thus El = DlT
∗, l ∈ L. For any ξ ∈ M,

∥Tξ∥2 =⟨Tξ, Tξ⟩ =

〈∑
l∈L

E∗
l Dlf,

∑
j∈L

E∗
j Djξ

〉

=

〈∑
l∈L

Dlξ,Dlξ

〉
=
∑
l∈L

∥Dlξ∥2 = ∥ξ∥2.

We obtain that T is an isometry. However,

∥T ∗ξ∥2 = ⟨T ∗ξ, T ∗ξ⟩ =

〈∑
l∈L

D∗
l Elξ,

∑
j∈L

D∗
jEjξ

〉
=
∑
l∈L

⟨Elξ, Elξ⟩ =
∑
l∈L

∥Elξ∥2 = ∥K∗ξ∥2.

Then we have kerT ∗ = kerK∗ and thus ranT = ranK.
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Theorem 4.2. Let D = {Dl ∈ B(M,Ml)}l∈L be a K-g-ONB for M. Then
{DlK}l∈L is a dual K-g-Bessel sequence of D.

Proof. Since D is a K-g-ONB for M. By Lemma 2.1, there is a g-Bessel sequence
E = {El ∈ B(M,Ml)}l∈L such that

Kξ =
∑
l∈L

D∗
l Elξ, ∀ξ ∈ M.

Since D is an orthonormal system, for any ξ ∈ M, ηj ∈ Mj ,∀j ∈ L, we have

⟨Kξ,D∗
j ηj⟩ = ⟨ξ,K∗D∗

j ηj⟩ =

〈∑
l∈L

D∗
l Elξ,D∗

j ηj

〉

=

〈
Elξ,

∑
l∈L

DlD∗
j ηj

〉
= ⟨Ejξ, ηj⟩ = ⟨ξ, E∗

j ηj⟩.

Then K∗D∗
j = E∗

j ,∀j ∈ L. Therefore, {DjK}j∈L = {Ej}j∈L is a dual K-g-Bessel
sequence of D.

Corollary 4.1. Let D = {Dl ∈ B(M,Ml)}l∈L be a K-g-ONB for M. Then the
dual K-g-Bessel sequence {DlK}l∈L of D is a K∗-g-ONB for M if and only if K
is co-isometry.

Corollary 4.2. Let D = {Dl ∈ B(M,Ml)}l∈L be a K-g-ONB for M and let
T : M → M be a closed range operator such that TK = KT and ranK∗ ⊂ ranT .
Then DT = {DlT

∗}l∈L is a K-g-frame for M.

Theorem 4.3. Let K ∈ B(M) and {elm}m∈Ml
be an ONB for Ml for each l ∈ L.

Then D = {Dl ∈ B(M,Ml)}l∈L is a K-g-ONB for M if and only if there exists
an isometry operator h :

(∑
l∈L ⊕Ml

)
l2

→ M such that hẽlm = D∗
l elm and for all

ζ ∈ M, ∥K∗ζ∥ = ∥h∗ζ∥, where {ẽlm}l∈L,m∈Ml
is an ONB for

(∑
l∈L ⊕Ml

)
l2
.

Proof. Assume that D is a K-g-ONB for M. Then∑
l∈L

∥Dlξ∥2 = ∥K∗ξ∥2, ξ ∈ M.

Define L : M →
(∑

l∈L ⊕Ml

)
l2

by Lξ = {Dlξ}l∈L. Then

⟨L∗ẽlm, ξ⟩ = ⟨ẽlm, {Dlξ}l∈L⟩ = ⟨elm,Dlξ⟩ = ⟨D∗
l elm, ξ⟩.

Consider h = L∗. Then for any ζ ∈ M,

∥K∗ζ∥2 =
∑
l∈L

∥Dlζ∥2 = ∥h∗ζ∥2.

For any {ηl}l∈L, {ζl}l∈L ∈
(∑

l∈L ⊕Ml

)
l2
,

⟨h{ηl}l∈L, h{ζl}l∈L⟩ =

〈∑
l∈L

D∗
l ηl,

∑
j∈L

D∗
j ζj

〉
=
∑
l∈L

⟨D∗
l ηl,D∗

l ζl⟩ =
∑
l∈L

⟨ηl, ζl⟩
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= ⟨{ηl}l∈L, {ζl}l∈L⟩.

We obtain that h is an isometry.

Conversely, let h :
(∑

l∈L ⊕Ml

)
l2
→ M such that hẽlm = D∗

l elm is an isometry
and for all ξ ∈ M, ∥K∗ξ∥ = ∥h∗ξ∥. Then∑

l∈L
∥Dlξ∥2 =

∑
l∈L

∑
m∈Ml

| ⟨Dlξ, elm⟩ |2=
∑
l∈L

∑
m∈Ml

| ⟨ξ,D∗
l elm⟩ |2

=
∑
l∈L

∑
m∈Ml

| ⟨ξ, hẽlm⟩ |2=
∑
l∈L

∑
m∈Ml

| ⟨h∗ξ, ẽlm⟩ |2

= ∥h∗ξ∥2 = ∥K∗ξ∥2.

On the other hand, we need to show that D is an orthonormal system. For any
l1 ̸= l2, l1, l2 ∈ L, gl1 ∈ Ml1 , gl2 ∈ Ml2 ,

⟨D∗
l1gl1 ,D

∗
l2gl2⟩ =

〈 ∑
m1∈Ml1

⟨gl1 , el1m1
⟩D∗

l1el1m1
,
∑

m2∈Ml2

⟨gl2 , el2m2
⟩D∗

l2el2m2

〉

=

〈 ∑
m1∈Ml1

⟨gl1 , el1m1
⟩hẽl1m1

,
∑

m2∈Ml2

⟨gl2 , el2m2
⟩hẽl2m2

〉

=

〈 ∑
m1∈Ml1

⟨gl1 , el1m1
⟩ẽl1m1

,
∑

m2∈Ml2

⟨gl2 , el2m2
⟩ẽl2m2

〉
= 0,

and for g1, g2 ∈ Ml,

⟨D∗
l g1,D∗

l g2⟩ =

〈 ∑
m1∈Ml

⟨g1, elm1
⟩D∗

l elm1
,
∑

m2∈Ml

⟨g2, elm2
⟩D∗

l elm2

〉

=

〈 ∑
m1∈Ml

⟨g1, elm1
⟩ẽlm1

,
∑

m2∈Ml

⟨g2, elm2
⟩ẽlm2

〉
= ⟨g1, g2⟩.

Then D is a K-g-ONB for M.

The following theorem presents an intriguing relationship between K-g-frames
and K-g-ONBs for M.

Theorem 4.4. Let D = {Dl ∈ B(M,Ml)}l∈L be a K-g-ONB for M. If E = {El ∈
B(M,Ml)}l∈L is a K-g-frame for M, then there is an operator T : M → M such
that ranK ⊂ ranT and El = DlT

∗, l ∈ L.

Proof. Suppose that E is a K-g-frame with analysis operator TE . Then ranK ⊂
ranT ∗

E by Lemma 2.8, and T ∗
E ẽlm = E∗

l elm, where {ẽlm}l∈L,m∈Ml
is an ONB for(∑

l∈L ⊕Ml

)
l2

and {elm}m∈Ml
is an ONB for Ml for each l ∈ L. By Theorem 4.3,

there exists an isometry operator h :
(∑

l∈L ⊕Ml

)
l2
→ M such that hẽlm = D∗

l elm
and for all ξ ∈ M, ∥K∗ξ∥ = ∥h∗ξ∥. For any ξ ∈ M, we have

⟨T ∗
Eh

∗D∗
l elm, ξ⟩ = ⟨D∗

l elm, hTEξ⟩ = ⟨hẽlm, hTEξ⟩
= ⟨ẽlm, TEξ⟩ = ⟨T ∗

E ẽlm, ξ⟩ = ⟨E∗
l elm, ξ⟩.
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So E∗
l elm = T ∗

Eh
∗D∗

l elm. Since {elm}m∈Ml
is an ONB for Ml for each l ∈ L, we

have E∗
l = T ∗

Eh
∗D∗

l for each l ∈ L. Then El = DlhTE for each l ∈ L. Let T = T ∗
Eh

∗.
Since h is an isometry, h∗ is surjective. Then we have ranK ⊂ ranT .

In the following, we present new findings about K-g-Riesz bases using K-g-
ONBs in Hilbert spaces. The following theorem establishes that if K is an operator
in B(M) with a closed range, then D = {Dl ∈ B(M,Ml)}l∈L is a K-g-ONB for
M, and E = {El ∈ B(M,Ml)}l∈L is a K-g-Riesz basis for M if and only if there
exists a bounded linear operator T on M such that El = DlT

∗ for all l ∈ L, and
T : ranK → ranK is a bijective operator.

Theorem 4.5. Suppose that K ∈ B(M) has the closed range, and D = {Dl ∈
B(M,Ml)}l∈L is a K-g-ONB for M. Then E = {El ∈ B(M,Ml)}l∈L is a K-g-
Riesz basis for M if and only if there is an operator T ∈ B(M) such that El = DlT

∗

for each l ∈ L, where T is a bounded operator on M which satisfies that T : ranK →
ranK is a bijective operator.

Proof. Suppose that El = DlT
∗ for each l ∈ L, where T ∈ B(M) such that

T : ranK → ranK is a bijective operator and D is a K-g-ONB. If Elξ = DlT
∗ξ = 0,

then

∥K∗T ∗ξ∥2 =
∑
l∈L

∥DlT
∗ξ∥2 = 0.

Then K∗T ∗ξ = 0, which implies ξ ∈ kerK∗T ∗ = (ranTK)⊥. Since T : ranK →
ranK is a bounded bijective operator, ranTK = ranK. Therefore, ξ ∈ (ranK)⊥,
i.e., E is ranK-g-complete. For any finite set J ⊂ L, ηl ∈ Ml, l ∈ J,∥∥∥∥∥∥

∑
l∈J

E∗
l ηl

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥T
∑

l∈J
D∗

l ηl

∥∥∥∥∥∥
2

≤ ∥T∥2
∥∥∥∥∥∥
∑
l∈J

D∗
l ηl

∥∥∥∥∥∥
2

= ∥T∥2
∑
l∈J

∥ηl∥2.

Since D is a K-g-ONB, ranK = ranT ∗
D by Lemma 2.8. For any finite set J ⊂ L, ηl ∈

Ml, l ∈ J,
∑

l∈J D∗
l ηl ∈ ranT ∗

D = ranK. Let T1 = T |ranK . Then there is a bounded

invertible operator T−1
1 on ranK such that∥∥∥∥∥∥

∑
l∈J

D∗
l ηl

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥T−1
1 T1

∑
l∈J

D∗
l ηl

∥∥∥∥∥∥
2

≤ ∥T−1
1 ∥2

∥∥∥∥∥∥
∑
l∈J

E∗
l ηl

∥∥∥∥∥∥
2

.

From this we deduce that

∥T−1
1 ∥−2

∑
l∈J

∥ηl∥2 ≤

∥∥∥∥∥∥
∑
l∈J

E∗
l ηl

∥∥∥∥∥∥
2

≤ ∥T∥2
∑
l∈J

∥ηl∥2.

Then E is a K-g-Riesz basis for M.
Conversely, suppose that E is a K-g-Riesz basis for M. The right-hand inequal-

ity in (2.5) implies that E is a g-Bessel sequence with bound b. Let TE be the
analysis operator of E . Then by (2.5), T ∗

E satisfies

a∥η∥2 ≤ ∥T ∗
E η∥ ≤ b∥η∥2, η ∈

(∑
l∈L

⊕Ml

)
l2

.
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Then kerT ∗
E = {0}. Let {ηl}l∈L ⊂ ranT ∗

E such that liml→∞ ηl = η ∈ M. Then
{ηl}l∈L is a Cauchy sequence in M and there is {ξl}l∈L ∈

(∑
l∈L ⊕Ml

)
l2

such that
ηl = T ∗

E ξl. For any l, j ∈ L,

∥ξl+j − ξl∥2 ≤ a−1∥T ∗
E (ξl+j − ξl)∥2 = a−1∥ηl+j − ηl∥2.

Then {ξl}l∈L is a Cauchy sequence in
(∑

l∈L ⊕Ml

)
l2
. Therefore there is a ξ ∈(∑

l∈L ⊕Ml

)
l2

such that ξl → ξ and

η = liml→∞ηl = liml→∞T
∗
E ξl = T ∗

E ξ.

Hence T ∗
E has closed range. Define an operator T : M → M by

Tξ =
∑
l∈L

E∗
l Dlξ, ξ ∈ M.

For any finite set J ⊂ L, we have∥∥∥∥∥∥
∑
l∈J

E∗
l Dlξ

∥∥∥∥∥∥ = sup
∥η∥=1

| ⟨
∑
l∈J

E∗
l Dlξ, η⟩ |≤ ∥K∗∥∥ξ∥.

Then T is well defined and bounded. Since D is a K-g-ONB,

DlD∗
j η = δljη

and
TD∗

j η =
∑
l∈L

E∗
l DlD∗

j η = E∗
j η

for all η ∈ Mj , j ∈ L. Thus El = DlT
∗, l ∈ L. Let ξ ∈ (ranT ∗

E )
⊥. For any

{ηl}l∈L ∈
(∑

l∈L ⊕Ml

)
l2
,

0 = ⟨ξ, T ∗
E ({ηl}l∈L)⟩ = ⟨TEξ, {ηl}l∈L⟩.

Then TEξ = 0, i.e., ∥TEξ∥2 =
∑

l∈L ∥Elξ∥2 = 0, which implies Elξ = 0,∀l ∈ L. Since
E is ranK-g-complete, ξ ∈ ranK⊥, then ranK ⊂ ranT ∗

E . Let ξ ∈ ranK ⊂ ranT ∗
E .

There is {ηl}l∈L ∈
(∑

l∈L ⊕Ml

)
l2

such that T ∗
E ({ηl}l∈L) = ξ. Since D is a K-g-

ONB, ranK = ranT ∗
D. Let η = T ∗

D({ηl}l∈L) ∈ ranK. Then

Tη = T
∑
l∈L

D∗
l ηl =

∑
l∈L

E∗
l ηl = ξ.

Therefore, T : ranK → ranK is a surjective operator. Assume

0 = T ∗
E ({ηl}l∈L) =

∑
l∈L

E∗
l ηl = T

(∑
l∈L

D∗
l ηl

)
.

Since kerT ∗
E = {0}, ηl = 0. We obtain that T is injective on ranK.

As explained in [12], a sequence D = {Dl ∈ B(M,Ml)}l∈L is said to be g-
linearly independent with respect to {Ml}l∈L if for any

∑
l∈L D∗

l ηl = 0, we have
ηl = 0 for all l ∈ L, where ηl ∈ Ml. Moreover, the following theorem provides an
equivalent characterization of K-g-Riesz bases using K-g-ONBs in Hilbert spaces.
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Theorem 4.6. Suppose that D = {Dl ∈ B(M,Ml)}l∈L is a K-g-ONB for M,
where K ∈ B(M) has closed range. Let E = {El ∈ B(M,Ml)}l∈L be a K-g-frame
for M. Then the following statements are equivalent:
(1) E is g-linearly independent with respect to {Ml}l∈L.
(2) E is a K-g-Riesz basis for M.

Proof. Suppose that E is a K-g-Riesz basis for M. By Theorem 4.5, let El =
DlT

∗, l ∈ L, where T ∈ B(M) such that T : ranK → ranK is a bijective operator
and D is a K-g-ONB for M. Suppose that 0 =

∑
l∈L E∗

l ηl, where ηl ∈ Ml, l ∈ L.
Then

0 =
∑
l∈L

E∗
l ηl =

∑
l∈L

TD∗
l ηl = T

(∑
l∈L

D∗
l ηl

)
.

Since T is injective on ranK, ranK = ranT ∗
D. We have

∑
l∈L D∗

l ηl = 0. However,
D is a K-g-ONB for M. For any j ∈ L,

Dj

∑
l∈L

D∗
l ηl =

∑
l∈L

DjD∗
l ηl = ηj = 0.

Then E is g-linearly independent with respect to {Ml}l∈L.
Conversely, let E be g-linearly independent with respect to {Ml}l∈L. Suppose

that E is a K-g-frame with analysis operator TE . Then ranK ⊂ ranT ∗
E and T ∗

E ẽlm =
E∗
l elm, where {ẽlm}l∈L,m∈Ml

is an ONB for
(∑

l∈L ⊕Ml

)
l2

and {elm}m∈Ml
is an

ONB for Ml for each l ∈ L. By Theorem 4.3, there exists an isometry operator h :(∑
l∈L ⊕Ml

)
l2

→ M such that hẽlm = D∗
l elm and for all ξ ∈ M, ∥K∗ξ∥ = ∥h∗ξ∥.

So E∗
l elm = T ∗

Eh
∗D∗

l elm. Since {elm}m∈Ml
is an ONB for Ml for each l ∈ L, we

have E∗
l = T ∗

Eh
∗D∗

l for each l ∈ L. Then El = DlhTE for each l ∈ L. Let T = T ∗
Eh

∗.
We have ranK ⊂ ranT . Suppose

0 =
∑
l∈L

E∗
l ηl =

∑
l∈L

TD∗
l ηl = T (

∑
l∈L

D∗
l ηl).

We can obtain ηl = 0 since E is g-linearly independent. This implies T is a
bounded injective operator on ranK. Let ξ ∈ ranK ⊂ ranT ∗

E . There is {ηl}l∈L ∈(∑
l∈L ⊕Ml

)
l2

such that T ∗
E ({ηl}l∈L) = ξ. Since D is a K-g-ONB for M, ranK =

ranT ∗
D. Let η = T ∗

D({ηl}l∈L) ∈ ranK. Then

Tη = T
∑
l∈L

D∗
l ηl =

∑
l∈L

E∗
l ηl = ξ.

Therefore, T : ranK → ranK is a surjective operator. By Theorem 4.5, E is a
K-g-Riesz basis for M.
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