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Solution of Some Non-homogeneous Fractional
Integral Equations by Aboodh Transform
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Abstract The present paper introduces the Aboodh transform technique as
a method for obtaining solutions to a class of non-homogeneous fractional
integral equations. The emphasis is placed on equations characterized by ex-
pressions involving Riemann-Liouville fractional integrals of orders 1, 1

2
, and 1

3
.

The paper includes illustrative examples that demonstrate the application of
the Aboodh transform technique. These examples elucidate how the technique
can effectively yield solutions for specific instances of the mentioned equations.
The obtained solutions are presented in the form of Mellin-Ross functions.
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1. Introduction

Fractional calculus is indeed a mathematical theory that deals with derivatives
and integrals of arbitrary complex or real order. Its origins can be traced back to
the early 18th century when mathematicians like Leibniz and L’Hopital started to
investigate the meaning of fractional derivatives.

In particular, in 1695, L’Hopital posed the problem of finding the meaning of the
derivative of order n = 1/2, i.e., dny/dxn, and asked Leibniz for a solution. Leibniz
himself was intrigued by the problem and tried to find a way to define fractional
derivatives and integrals. However, it was not until the 19th century that the
concept of fractional calculus was fully developed by mathematicians like Liouville,
Riemann, and Grunwald. They introduced the concept of fractional derivatives
and integrals as a natural extension of the classical calculus. Since then, fractional
calculus has found numerous applications in various fields, including engineering,
economics, physics, and biology [3, 5, 6, 15, 19, 20, 22, 23, 29, 37, 38]. It has proven to
be a powerful tool for modeling and analyzing complex systems with non-local and
non-linear behavior, such as fractional differential equations.

Fractional derivatives, a fundamental component of fractional calculus, have
garnered significant attention in recent years. They play a crucial role in modeling
phenomena across various branches of engineering and science when dealing with
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real-world problems. Fractional calculus has facilitated the development of math-
ematical models for practical issues encountered in diverse fields such as dielectric
polarization, viscoelasticity, electromagnetic waves, and electrode-electrolyte po-
larization [7–9, 11, 12, 16–18, 21, 31–35]. These applications highlight the practical
relevance and broad impact of fractional calculus in addressing complex phenomena
in engineering and scientific domains.

The Aboodh transform is a mathematical tool used to solve fractional differential
equations. It is based on the fractional derivative of the generalized Mittag-Leffler
function, which is a special function that arises in the study of fractional calcu-
lus [1,2,4,10,29,30]. The application of the Aboodh transform to non-homogeneous
fractional integral equations is a relatively new area of research, and there is still
much to be discovered and understood about its potential applications and limi-
tations. However, preliminary findings suggest that it has the potential to be a
powerful tool for solving a wide range of problems in fractional calculus and related
fields.

In 2005, T. Morita [26] conducted a study on the initial value problem of frac-
tional differential equations, employing the Laplace transform. In his work, he de-
rived solutions for fractional differential equations involving the Riemann-Liouville
fractional derivative as well as the Caputo fractional derivative or its modified form.
Morita’s research focused on obtaining solutions to these equations by utilizing the
Laplace transform technique.

In 2010, T. Morita and K. Sato [27] conducted a study on the initial value prob-
lem of fractional differential equations with constant coefficients. The equations
they considered were of the following forms:

0D
ζ
t u(t) + l · u(t) = f(t),

0D
ζ
t u(t) + k · 0D

ξ
tu(t) + l · u(t) = f(t),

and

0D
γn

t u(t) +

n−1∑
r=0

lr · 0D
γr

t u(t) = f(t).

In these equations, 0D
γn

t represents the (RL) fractional derivative, lr are constants
for r = 0, 1, 2, 3, ...., n − 1, and t ∈ R+. Morita and Sato obtained solutions to
these equations using techniques involving Green’s function and distribution theory.
Furthermore, they also studied the solution of a fractional differential equation of
the form:

(j2t+ k2)0D
2γ
t u(t) + (j1t+ k1)0D

γ
t u(t) + (j0t+ k0)u(t) = f(t),

where γ = 1
2 , γ = 1, t ∈ R+ and jr, kr are constants for r=0,1,2,3. For more details,

refer to [28].
In 2018, C. Li [24] conducted a study on Abel’s integral equation of the second

kind. The equation is given by:

y(t) +
λ

Γ(γ)

∫ t

0

(t− ϕ)γ−1y(ϕ)dϕ = f(t), t > 0. (1.1)

Here, Γ is the gamma function,γ ∈ R, and λ is a constant . Equation (1.1) can be
written in the form

(1 + λIγ0+)y(t) = f(t).
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Here, Iγ0+ denotes the (RL) fractional integral. Li and Clarkson employed Babenko’s
method and the fractional integral technique to solve the aforementioned equation.
The linear fractional order integral equations with constant coefficients have the
form:

l1I
γ1

a+y(t) + l2I
γ2

a+y(t) + ...+ lnI
γn

a+y(t) = f(t), (1.2)

where a ∈ R, γr ∈ R, γ1 > γ2 > ... > γn ≥ 0, lr ∈ C for r ∈ {1, 2, 3, .., n} , and f
is a real valued function of real variable defined on an interval (a, b). The general
solution of equation (1.2) can be found in [36], considering γr as real numbers. The
solution lies in the space S

′

+ of tempered distributions with support in [0,∞).
In 2021, K. Kaewnimit et al. [13,14] conducted a study on the solutions of nonho-

mogeneous fractional integral equations employing the Laplace transform technique.
This paper presents the solution to nonhomogeneous fractional integral equations
of the following forms:

I2γ0+y(t) + j · Iγ0+y(t) + k · y(t) = tn,

and
I3γ0+y(t) + j · I2γ0+y(t) + k · Iγ0+y(t) + l · y(t) = tn.

In these equations Iγ0+ denotes the (RL) fractional integral of order γ = 1
2 , γ = 1,

and γ = 1
3 , γ = 1, respectively, n ∈ N ∪ {0}, and j, k, l are constants. The Aboodh

transform technique is utilized to obtain the solutions.
Section 2 provides the definitions of the (RL) fractional integral and the Aboodh

transform, which are essential for deriving the main results. In Section 3, the main
results are established along with illustrative examples. Finally, the conclusions of
the study are presented in Section 4.

2. Preliminaries

In order to proceed to the main results, we need to establish the following lemmas,
definitions, examples, and concepts.

Definition 2.1. [25] The Riemann-Liouville (RL) fractional integral of a function
f(t) of order(γ) is defined as follows:

Iγ0+f(t) =
1

Γ(γ)

∫ t

0

(t− ϕ)γ−1f(ϕ)dϕ, (t > 0,R(γ) > 0),

where Γ(γ) denotes the gamma function, which is defined as:

Γ(γ) =

∫ t

0

tγ−1e−tdt.

Definition 2.2. [25] The Riemann-Liouville (RL) fractional derivative of a func-
tion f(t) denoted by 0D

γ
t f(t) is defined as follows:

0D
γ
t f(t) =

1

Γ(n− γ)

dn

dtn

∫ t

0

(t− ϕ)n−γ−1f(ϕ)dϕ, (n− γ > 0,R(γ) > 0).

Here, n is an integer that satisfies n − 1 ≤ γ < n and Γ(.) represents the gamma
function.
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Definition 2.3. [1] The Aboodh transform is defined for functions of exponential
order. We consider functions in the set A given by:

A = {f(t) : ∃ ℑ, k1, k2 > 0, |f(t)| < ℑe−pt}.

For a given function in the set A, the constantℑ must be a finite number, k1, k2
may be finite or infinite.

The Aboodh transform denoted by the operator A(.) is defined by the integral
equation:

A[f(t)](p) = K(p) =
1

p

∫ ∞

0

f(t)e−ptdt, t ≥ 0, k1 ≤ p ≤ k2.

Definition 2.4. [1] The inverse Aboodh transform of a function f(t) is defined as

f(t) = A−1[K(p)].

Definition 2.5. [25] The Mellin-Ross function Et(β, γ) is defined as:

Et(β, γ) = tβeγtΓ∗(β, γt),

where β is a real number ,γ is a constant, t ∈ R+, and Γ∗ is the incomplete gamma
function:

Γ∗(β, t) = e−t
∞∑
r=0

tr

Γ(β + r + 1)
.

Alternatively, we can express the Mellin-Ross function as:

Et(β, γ) = tβ
∞∑
r=0

(γt)r

Γ(β + r + 1)
.

Example 2.1. Let n be a real number, γ a constant, t and p positive real numbers.
Then the following Aboodh transforms hold:
(i) A{1} = 1

p2 ;

(ii) A{t} = 1
p3 ;

(iii) A{t2} = 2!
p4 ;

(iv) A{tn} = n!
pn+2 , n ⩾ 0;

(v) A{eγt} = 1
(p2−γp) .

Lemma 2.1 (Lemma 1, [10]). The Aboodh transformation of (RL) fractional inte-
gral operator of order γ > 0 can be written in the form:

A[Iγf(t)] = p−γA[f(t)].

Example 2.2. Let n be a real number, γ a constant, t and p positive real numbers.
Then the following Aboodh transforms hold:
(i) A−1{ 1

p2 } = 1;

(ii) A−1{ 1
p3 } = t;

(iii) A−1{ 1
p4 } = t2

2! ;

(iv) A−1{ 1
pγ+2 } = tγ

Γ(γ+1) ;

(v) A−1{ 1
p2−γp} = eγt;
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(vi) A−1
{

1
p+γ

}
= Et

(
− 1,−γ

)
;

(vii) A−1
{

1

p
1
2 +γ

}
= Et

(
− 3

2 , γ
2
)
− γEt

(
− 1, γ2

)
;

(viii) A−1
{

1

p
1
3 +γ

}
= Et

(
− 5

3 ,−γ3
)
− γEt

(
− 4

3 ,−γ3
)
+ γ2Et

(
− 1,−γ3

)
.

3. Main results

In this section, we present our main results along with their corresponding proofs.

• (1). The Solution of non-homogeneous fractional integral equations is given
by:

I2γ0+y(t) + j · Iγ0+y(t) + k · y(t) = f(t), γ =
1

2
, γ = 1, and f(t) = tn.

Theorem 3.1. Consider the non-homogeneous fractional integral equation of the
form:

I2γ0+y(t) + j · Iγ0+y(t) + k · y(t) = tn. (3.1)

Here, Iγ0+ represents the (RL) fractional integral of order γ = 1
2 , γ = 1, t ∈ R+, j, k

are constants and n ∈ N∪ {0}. Then the solutions of equation (3.1) are as follows:

(i) If γ = 1
2 , and z1, z2 ∈ R \ {0} with z1 ̸= z2 such that j = z1 + z2 and k = z1z2,

then the solution of equation (3.1) is of the form:

y(t) =
n!

z1 − z2

2n+2∑
r=0

(−1)r+1

[
z2n+3
1 − z2n+3

2

(z1z2)(r+1)

]
(t(r−1))

Γ(r)
+

n! z2n+2
1

z1 − z2

[
Et

(
− 3

2
,
1

z21

)]

− n! z2n+2
1

z1 − z2

[
1

z1
Et

(
− 1,

1

z21

)]
− n! z2n+2

2

z1 − z2

[
Et

(
− 3

2
,
1

z22

)
− 1

z2
Et

(
− 1,

1

z22

)]
.

(3.2)
(ii) If γ = 1, and z1, z2 ∈ R \ {0} with z1 ̸= z2 such that j = z1 + z2 and k = z1z2,
then the solution of equation (3.1) is of the form:

y(t) =
n!

z1 − z2

n∑
r=1

(−1)n+r

[
zn+1−r
1 − zn+1−r

2

Γ(r − 1)

]
t(r−2)

+
(−1)nn!

z1 − z2

[
zn1Et

(
− 1,− 1

z1

)]
− (−1)nn!

z1 − z2

[
zn2Et

(
− 1,− 1

z2

)]
.

(3.3)

Proof. Applying the Aboodh transform to both sides of equation (3.1), we have

A
{
I2γ0+y(t)

}
+ jA

{
Iγ0+y(t)

}
+ kA

{
y(t)

}
= A

{
tn
}
. (3.4)

Using Example 2.1 (iv), Lemma 2.1, and denoting the Aboodh transform A
{
y(t)

}
=

Y (p) to equation (3.4), we obtain

Y (p) =
n!

pn+2(p−2γ + j p−γ + k)
, (3.5)

and turn it

Y (p) =
n!p2γ

pn+2(k p2γ + j pγ + 1)
. (3.6)
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(i). For γ = 1
2 , equation (3.6) becomes

Y (p) =
n!

pn+1(k p+ j p
1
2 + 1)

. (3.7)

Substituting of (p
1
2 = u) we get

Y (p) =
n!

u2n+2(k u2 + j u+ 1)
. (3.8)

Using partial fractions with explicit values of j, k, we can rewrite

Y (p) =
n!

z1 − z2

2n+2∑
r=0

(−1)r+1

[
z2n+3
1 − z2n+3

2

(z1z2)(r+1)

]
1

(u2)r+1
+

n! z2n+2
1

z1 − z2

(
1

u+ 1
z1

)
− n! z2n+2

1

z1 − z2

(
1

u+ 1
z1

)
.

(3.9)

Now, resubstituting (p
1
2 = u) and taking the inverse Aboodh transform to equation

(3.9) with the help of Example 2.2 (iv),(vii) we obtain a solution of equation (3.1)
as the form

y(t) =
n!

z1 − z2

2n+2∑
r=0

(−1)r+1

[
z2n+3
1 − z2n+3

2

(z1z2)(r+1)

]
(t(r−1))

Γ(r)
+

n! z2n+2
1

z1 − z2

[
Et

(
− 3

2
,
1

z21

)]

− n! z2n+2
1

z1 − z2

[
1

z1
Et

(
− 1,

1

z21

)]
− n! z2n+2

2

z1 − z2

[
Et

(
− 3

2
,
1

z22

)
− 1

z2
Et

(
− 1,

1

z22

)]
.

(3.10)
(ii). For γ = 1, equation (3.6) becomes

Y (p) =
n!

pn(k p2 + j p+ 1)
. (3.11)

Using partial fractions with explicit values of j; k, we can rewrite the above equation
as

Y (p) =
n!

z1 − z2

n∑
r=1

(−1)n+r
[
zn+1−r
1 − zn+1−r

2

] 1
pr

+
(−1)n n! zn1

z1 − z2

(
1

p+ 1
z1

)
− (−1)n n! zn2

z1 − z2

(
1

p+ 1
z2

)
.

(3.12)

Now, taking the inverse Aboodh transform to equation (3.12) with the help of
Example 2.2 (iv),(vi) we obtain a solution of equation (3.1) as the form:

y(t) =
n!

z1 − z2

n∑
r=1

(−1)n+r

[
zn+1−r
1 − zn+1−r

2

Γ(r − 1)

]
t(r−2)

+
(−1)nn!

z1 − z2

[
zn1Et

(
− 1,− 1

z1

)]
− (−1)nn!

z1 − z2

[
zn2Et

(
− 1,− 1

z2

)]
.

(3.13)
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Example 3.1. For j = 5
6 , k = 1

6 , and γ = 1
2 , equation (3.1) changes to

I0+y(t) +
5

6
· I

1
2

0+y(t) +
1

6
· y(t) = tn. (3.14)

From Theorem 3.1 (i), equation (3.14) has a solution

y(t) =n!

2n+2∑
r=0

(−1)r+1

[
3
(
1
2

)2n+2 − 2
(
1
3

)2n+2(
1
6

)r+1

]
tr−1

Γ(r)
+

3n!

22n+1

[
Et

(
− 3

2
, 4
)]

− 3n!

22n+1

[
2Et

(
− 1, 4

)]
− 2n!

32n+1

[
Et

(
− 3

2
, 9
)
− 3Et

(
− 1, 9

)]
.

(3.15)

Example 3.2. For j = 5
2 , k = 1, and γ = 1

2 , equation (3.1) changes to

I0+y(t) +
5

2
· I

1
2

0+y(t) + y(t) = tn. (3.16)

From Theorem 3.1 (i), equation (3.16) has a solution

y(t) =
n!

3

2n+2∑
r=0

(−1)r+1

[
22n+4 − ( 12 )

2n+2

Γ(r)

]
(t(r−1)) +

n! 22n+3

3

[
Et

(
− 3

2
,
1

4

)]

− n! 22n+3

3

[
1

2
Et

(
− 1,

1

4

)]
−

n! ( 12 )
2n+1

3

[
Et

(
− 3

2
, 4
)
− 2Et

(
− 1, 4

)]
.

(3.17)

Example 3.3. For j = 5
2 , k = 1, and γ = 1, equation (3.1) changes to

I20+y(t) +
5

2
· I0+y(t) + y(t) = tn. (3.18)

From Theorem 3.1 (ii), equation (3.18) has a solution

y(t) =
n!

3

n∑
r=1

(−1)n+r

[
2n+2−r − ( 12 )

n−r

Γ(r − 1)

]
t(r−2) +

(−1)nn!

3

[
2n+1Et

(
− 1,−1

2

)]

− (−1)nn!

3

[(1
2

)n−1

Et

(
− 1,−2

)]
.

(3.19)

Example 3.4. For j = 5
6 , k = 1

6 , and γ = 1, equation (3.1) changes to

I20+y(t) +
5

6
· I0+y(t) +

1

6
y(t) = tn. (3.20)

From Theorem 3.1 (ii), equation (3.20) has a solution

y(t) =n!

n∑
r=1

(−1)n+r

[
3
(
1
2

)n−r − 2
(
1
3

)n−r

Γ(r − 1)

]
t(r−2) +

3(−1)nn!

(2)n−1

[
Et

(
− 1,−2

)]

− 2(−1)nn!

(3)n−1

[
Et

(
− 1,−3

)]
.

(3.21)
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Example 3.5. For j = 10
3 , k = 1, and γ = 1

2 , equation (3.1) changes to

I0+y(t) +
10

3
· I

1
2

0+y(t) + y(t) = tn. (3.22)

From Theorem 3.1 (i), equation (3.22) has a solution

y(t) =
n!

8

2n+2∑
r=0

(−1)r+1

[
32n+4 − ( 13 )

2n+2

Γ(r)

]
(t(r−1)) +

n! 32n+3

8

[
Et

(
− 3

2
,
1

9

)]

− n! 32n+3

8

[
1

3
Et

(
− 1,

1

9

)]
−

n! ( 13 )
2n+1

8

[
Et

(
− 3

2
, 9
)
− 3Et

(
− 1, 9

)]
.

(3.23)

Example 3.6. For j = 10
3 , k = 1, and γ = 1, equation (3.1) changes to

I20+y(t) +
10

3
· I0+y(t) + y(t) = tn. (3.24)

From Theorem 3.1 (ii), equation (3.24) has a solution

y(t) =
n!

8

n∑
r=1

(−1)n+r

[
3n+2−r − ( 13 )

n−r

Γ(r − 1)

]
t(r−2) +

(−1)nn!

8

[
3n+1Et

(
− 1,−1

3

)]

− (−1)nn!

8

[(1
3

)n−1

Et

(
− 1,−3

)]
.

(3.25)

• (2). The Solution of non-homogeneous fractional integral equations is given
by:

I3γ0+y(t) + j · I2γ0+y(t) + k · Iγ0+y(t) + l · y(t) = f(t),

γ =
1

3
, γ = 1, and f(t) = tn.

Theorem 3.2. Consider the non-homogeneous fractional integral equation of the
form:

I3γ0+y(t) + j · I2γ0+y(t) + k · Iγ0+y(t) + l · y(t) = tn. (3.26)

Here, Iγ0+ represents the (RL) fractional integral of order γ = 1
3 , γ = 1, t ∈ R+, j, k, l

are constants and, n ∈ N ∪ {0}. Then the solutions of Equation (3.26) are as the
following:
(i) If γ = 1

3 , and z1, z2, z3 ∈ R \ {0} with z1, z2, z3 being different such that
j = z1 + z2 + z3, k = z1z2,+z1z3 + z2z3 and l = z1z2z3, then
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y(t)

=

3n+3∑
r=0

n!(−1)3n+4+r

(z1z2z3)(r+1)

× t(r−1)

Γ(r)

[
z3n+5
1

(z1 − z2)(z1 − z3)
− z3n+5

2

(z1 − z2)(z2 − z3)
+

z3n+5
3

(z1 − z3)(z2 − z3)

]

+
n! (−1)3n+3 z3n+4

1

(z1 − z2)(z1 − z3)

[
Et

(
− 5

3
,− 1

z31

)
− 1

z1
Et

(
− 4

3
,− 1

z31

)
+

1

z21
Et

(
− 1,− 1

z31

)]

+
n! (−1)3n+4 z3n+4

2

(z1 − z2)(z2 − z3)

[
Et

(
− 5

3
,− 1

z32

)
− 1

z2
Et

(
− 4

3
,− 1

z32

)
+

1

z22
Et

(
− 1,− 1

z32

)]

+
n! (−1)3n+5 z3n+4

3

(z1 − z3)(z2 − z3)

[
Et

(
− 5

3
,− 1

z33

)
− 1

z3
Et

(
− 4

3
,− 1

z33

)
+

1

z23
Et

(
− 1,− 1

z33

)]
(3.27)

as the solution to (3.26).
(ii) If γ = 1, and z1, z2, z3 ∈ R \ {0} with z1, z2, z3 being different such that j =
z1 + z2 + z3, k = z1z2,+z1z3 + z2z3 and l = z1z2z3, then

y(t) =

n∑
r=1

n!(−1)(n+1)−r

×

[
z
(n+1)−r
1 (z2 − z3)− z

(n+1)−r
2 (z1 − z3) + z

(n+1)−r
3 (z1 − z2)

(z1 − z2)(z1 − z3)(z2 − z3)

]

× t(r−2)

Γ(r − 1)
+

n!(−1)n−1zn1
(z1 − z2)(z1 − z3)

[
Et

(
− 1,− 1

z1

)]
+

n!(−1)nzn2
(z1 − z2)(z2 − z3)

×

[
Et

(
− 1,− 1

z2

)]
+

n! (−1)n+1 zn3
(z1 − z3)(z2 − z3)

[
Et

(
− 1,− 1

z3

)]
(3.28)

as the solution to (3.26).

Proof. Applying the Aboodh transform to both sides of Equation (3.26), we have

A
{
I3γ0+y(t)

}
+ j · A

{
I2γ0+y(t)

}
+ k · A

{
Iγ0+y(t)

}
+ l · A

{
y(t)

}
= A

{
tn
}
. (3.29)

Using Example 2.1 (iv), Lemma 2.1, and denoting the Aboodh transform A
{
y(t)

}
=

Y (p) to equation (3.29), we obtain

Y (p) =
n!

pn+2(p−3γ + j p−2γ + k p−γ + l)
, (3.30)

and turn it

Y (p) =
n! p3γ

pn+2(l p3γ + k p2γ + j pγ + 1)
. (3.31)

(i). For γ = 1
3 , equation (3.31) becomes

Y (p) =
n!

pn+1(l p+ k p
2
3 + j p

1
3 + 1)

. (3.32)
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Substituting (p
1
3 = u), we get

Y (p) =
n!

u3n+3(l u3 + k u2 + j u+ 1)
. (3.33)

Using partial fractions with explicit values of j, k, l; we can rewrite it as:

y(t) =

3n+3∑
r=0

n!(−1)3n+4+r

(z1z2z3)(r+1)

× 1

(u3)(r+1)

[
z3n+5
1

(z1 − z2)(z1 − z3)
− z3n+5

2

(z1 − z2)(z2 − z3)
+

z3n+5
3

(z1 − z3)(z2 − z3)

]

+
n! (−1)3n+3z3n+4

1

(z1 − z2)(z1 − z3)

(
1

(u+ 1
z1
)

)
+

n!(−1)3n+4z3n+4
2

(z1 − z2)(z2 − z3)

(
1

(u+ 1
z2
)

)

+
n! (−1)3n+5 z3n+4

3

(z1 − z3)(z2 − z3)

(
1

(u+ 1
z3
)

)
.

(3.34)

Now, resubstituting (p
1
3 = u) and taking the inverse Aboodh transform to equation

(3.34) with the help of Example 2.2 (iv),(viii) we obtain equation (3.27) as the so-
lution to equation (3.26).

(ii). For γ = 1, equation (3.31) becomes

Y (p) =
n!

pn−1(l p3 + k p2 + j pγ + 1)
. (3.35)

Using partial fractions with explicit values of j, k, l, we can rewrite equation (3.35)
as:

y(t) =

n∑
r=1

n!(−1)(n+1)−r

× 1

p(r)

[
z
(n+1)−r
1 (z2 − z3)− z

(n+1)−r
2 (z1 − z3) + z

(n+1)−r
3 (z1 − z2)

(z1 − z2)(z1 − z3)(z2 − z3)

]

+
n!(−1)n−1zn1

(z1 − z2)(z1 − z3)

(
1

(p+ 1
z1
)

)
+

n!(−1)nzn2
(z1 − z2)(z2 − z3)

(
1

(p+ 1
z2
)

)

+
n! (−1)n+1 zn3

(z1 − z3)(z2 − z3)

(
1

(p+ 1
z3
)

)
.

(3.36)

Applying the inverse Aboodh transform to equation (3.36) and using Example 2.2
(iv) and (vi), we obtain equation (3.28) as the solution to equation (3.26).

Example 3.7. For j = 1
2 , k = −1, l = − 1

2 , and γ = 1
3 , equation (3.26) changes to

I0+y(t) +
1

2
· I

2
3

0+y(t)− I
1
3

0+y(t)−
1

2
· y(t) = tn. (3.37)
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From Theorem 3.2 (i), equation (3.37) has a solution

y(t) =

3n+3∑
r=0

n!(−1)3n+5+r

(− 1
2 )

(r+1)

[
( 12 )

3n+3 − 3 + (−1)3n+4

3

]
t(r−1)

Γ(r)

+
n! (−1)3n+4 ( 12 )

3n+2

3

[
Et

(
− 5

3
,−8

)
− 2Et

(
− 4

3
,−8

)
+ 4Et

(
− 1,−8

)]

+ n! (−1)3n+5

[
Et

(
− 5

3
,−1

)
− Et

(
− 4

3
,−1

)
+ Et

(
− 1,−1

)]

+
n! (−1)6n+9

3

[
Et

(
− 5

3
, 1
)
+ Et

(
− 4

3
, 1
)
+ Et

(
− 1, 1

)]
.

(3.38)

Example 3.8. For j = 1
2 , k = −1, l = − 1

2 , and γ = 1, equation (3.26) changes to

I30+y(t) +
1

2
· I20+y(t)− I0+y(t)−

1

2
· y(t) = tn. (3.39)

From Theorem 3.2 (ii), equation (3.39) has a solution

y(t) =

n∑
r=1

(−1)(n+2)−rn!

[
( 12 )

(n−1)−r − 3 + (−1)(n+2)−r

3

]
t(r−2)

Γ(r − 1)
+

n!(−1)n( 12 )
n−2

3

×

[
Et

(
− 1,−2

)]
+ n!(−1)n+1

[
Et

(
− 1,−1

)]
+

n!(−1)2n+1

3

[
Et

(
− 1, 1

)]
.

(3.40)

Example 3.9. For j = 11
6 , k = 1, l = − 1

6 , and γ = 1
3 , equation (3.26) changes to

I0+y(t) +
11

6
· I

2
3

0+y(t) + I
1
3

0+y(t) +
1

6
· y(t) = tn. (3.41)

From Theorem 3.2 (i), equation (3.41) has a solution

y(t) =

3n+3∑
r=0

n!(−1)3n+4+r

( 16 )
(r+1)

[
3 + ( 13 )

(3n+3) − 3( 12 )
(3n+3)

Γ(r)

]
t(r−1)

+ n!(3)(−1)3n+3

[
Et

(
− 5

3
,−1

)
− Et

(
− 4

3
,−1

)
+ Et

(
− 1,−1

)]

+ n!(−1)3n+5
(1
3

)3n+2
[
Et

(
− 5

3
,−27

)
−3Et

(
− 4

3
,−27

)
+ 9Et

(
− 1,−27

)]

+ n!(3)(−1)3n+6
(1
2

)3n+2
[
Et

(
− 5

3
,−8

)
− 2Et

(
− 4

3
,−8

)
+ 4Et

(
− 1, 8

)]
.

(3.42)

Example 3.10. For j = 1
2 , k = −1, l = − 1

2 , and γ = 1, equation (3.26) changes to

I30+y(t) +
11

6
· I20+y(t) + I0+y(t) +

1

6
· y(t) = tn. (3.43)
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From Theorem 3.2 (ii), equation (3.43) has a solution

y(t) =

n∑
r=1

n!(−1)(n+1)−r

[
3 + ( 13 )

(n−1)−r − 3( 12 )
(n−1)−r

Γ(r − 1)

]
t(r−2)

+ n!3(−1)n−1

[
Et

(
− 1,−1

)]
+ n!(−1)n+1

(1
3

)(n−2)
[
Et

(
− 1,−3

)]

+ n!(3)(−1)n+2
(1
2

)(n−2)
[
Et

(
− 1,−2

)]
.

(3.44)

4. Conclusions

We applied the Aboodh transform technique to solve non-homogeneous fractional
integral equations of the following forms:

I2γ0+y(t) + j · Iγ0+y(t) + k · y(t) = tn,

and
I3γ0+y(t) + j · I2γ0+y(t) + k · Iγ0+y(t) + l · y(t) = tn.

Here, Iγ0+ represents the (RL) fractional integral of order γ = 1
2 , γ = 1, and γ =

1
3 , γ = 1, respectively, n ∈ N ∪ {0}, and j, k, l are constants. To illustrate the
effectiveness of our results, we provide examples. The solutions obtained using the
Aboodh transform technique are demonstrated. We anticipate that these findings
will stimulate further research in this specific field.
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