On Some Relations of *R*-Projective Curvature Tensor in Recurrent Finsler Space

Adel. M. Al-Qashbari¹, S. Saleh^{2,3,†} and Ismail Ibedou⁴

Abstract In this paper, we present a novel class of relations and investigate the connection between the R-projective curvature tensor and other tensors of Finsler space F_n . This space is characterized by the property for Cartan's the third curvature tensor R_{jkh}^i which satisfies the certain relationship with given covariant vectors field, as follows:

 $\mathcal{B}_{n}\mathcal{B}_{m}\mathcal{B}_{l}R^{i}_{jkh} = a_{lmn}R^{i}_{jkh} + b_{lmn}(\delta^{i}_{h}g_{jk} - \delta^{i}_{k}g_{jh}) - 2[c_{lm}\mathcal{B}_{r}(\delta^{i}_{h}C_{jkn} - \delta^{i}_{k}C_{jhn})y^{r} + d_{ln}\mathcal{B}_{r}(\delta^{i}_{h}C_{jkm} - \delta^{i}_{k}C_{jhm})y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}(\delta^{i}_{h}C_{jkm} - \delta^{i}_{k}C_{jhm})y^{r}],$

where $R_{jkh}^i \neq 0$ and $\mathcal{B}_n \mathcal{B}_n \mathcal{B}_l$ is the Berwald's third order covariant derivative with respect to x^l , x^m and x^n respectively. The quantities $a_{lmn} = \mathcal{B}_n u_{lm} + u_{lm} \lambda_n$, $b_{lmn} = \mathcal{B}_n v_{lm} + u_{lm} \mu_n$, $c_{lm} = v_{lm}$, and $d_{ln} = \mathcal{B}_n \mu_l$ are non-zero covariant vector fields. We define this space a generalized $\mathcal{B}R$ -3rdrecurrent space and denote it briefly by $G\mathcal{B}R$ - $3RF_n$. This paper aims to derive the third-order Berwald covariant derivatives of the torsion tensor H_{kh}^i and the deviation tensor H_h^i . Additionally, it demonstrates that the curvature vector K_j , the curvature vector H_k , and the curvature scalar H are all non-vanishing within the considered space. We have some relations between Cartan's third curvature tensor R_{jkh}^i and some tensors that exhibit self-similarity under specific conditions. Furthermore, we have established the necessary and sufficient conditions for certain tensors in this space to have equal third-order Berwald covariant derivatives with their lower-order counterparts.

Keywords *n*-dimensional Finsler space F_n , generalized $\mathcal{B}R$ -3rd recurrent spaces, employing Berwald's third order covariant derivative, R_{jkh}^i Cartan's third curvature tensor

MSC(2010) 53C60, 53C22, 53B40.

1. Introduction

The study of recurrent Finsler spaces began in 1973 with the work of Sinha and Singh [24], who explored the properties of recurrent tensors in these spaces. The differential geometry of Finsler spaces subsequent research on recurrent Finsler spaces

[†]Adel Mohammed Al-Qashbari.

Adel_ma71@yahoo.com, a.alqashbari@ust.edu(A. M. Al-Qashbari), s_wosabi@hoduniv.net.ye(S. Saleh),

ismail.abdelaziz@fsc.bu.edu.eg (I. Ibedou)

¹Department of Mathematics and Department of Engineering, University of Aden and University of Science and Technology, Aden, Yemen

²Department of Mathematics, Hodeidah University, Hodeidah, Yemen

³Department of Computer Science, Cihan University-Erbil, Erbil, Iraq

⁴Department of Mathematics, Benha University, Benha, Egypt.

was conducted by Rund [20] in 1959 and 1981. While Abdallah [3] and Baleedi [15] in 2017, investigated the recurrence of Berwald's curvature tensors R^i_{jkh} and K^i_{jkh} . Building upon these foundational works, Ahsan and Ali [4] in 2014, studied the properties of *W*-curvature tensor. Opondo [18] and Abu-Donia et al. [10] introduced and analyzed the recurrence conditions of the curvature tensor W^i_{jkh} using Berwald's approach.

From 2019 to 2023, Ali et al. [11–13] and Shaikh et al. [21,22] presented some properties of the tensors W and M. They delved into the semi-conformal symmetry a new symmetry of the spacetime manifold of the general relativity. Qasem and Abdallah [19] furthered this research by defining the generalized \mathcal{B} R-recurrent Finsler space and establishing the necessary and sufficient conditions for both the Berwald curvature tensor and Cartan's fourth curvature tensor to exhibit generalized recurrence. Subsequently, Al-Qashbari and Qasem [5] investigated generalized \mathcal{B} R-trirecurrent Finsler spaces. Then in 2020, Al-Qashbari [6–8] derived various identities for generalized curvature tensors in \mathcal{B} -recurrent Finsler spaces and other tensors.

The most recent contribution to this field is the work of Al-Qashbari and Al-Maisary [9], who studied generalized BW-fourth recurrent Finsler spaces in 2023. Chen, Decu et al. [16,17] in 2021, introduced the concept of classification of Roter type spacetimes and recent developments in Wintgen inequality and Wintgen ideal submanifolds. In 2021 and 2022, Atashafrouz et al. [1] and Saleem et al. [23] studied the notions of D-recurrent Finsler metrics and the U-recurrent Finsler space respectively. Recently, Abdallah [2] studied the relationships between two curvature tensors in Finsler space. Embarking on an exploration of the inherent attributes of an n-dimensional Finsler space F_n , we presuppose that its metric function F adheres to the well-defined stipulations outlined in [18].

- 1. Positively homogeneous: F(x, ky) = k F(x, y), k > 0.
- 2. Positively: F(x,y) > 0, $y \neq 0$.

3. {
$$\dot{\partial}_i \dot{\partial}_j F^2(x, y)$$
 } $\xi^i \xi^j$, $\dot{\partial}_i = \frac{\partial}{\partial y^i}$ is the positive definite for all variables ξ^i .

The corresponding metric tenser denoted by g_{ij} , the connection coefficients of Cartan represented by Γ_{jk}^{*i} and the connection coefficients of Berwald designated by G_{jk}^{i} , are all related to the metric function F.

(a)
$$g_{ij} y^i y^j = F^2$$
, (b) $g_{ij} y^j = y_i$, (c) $g_{ij} = \frac{1}{2} \dot{\partial}_i y_j$, (d) $y_i y^i = F^2$,
(e) $g_{ij} g^{ik} = \delta_j^k = \{ \begin{array}{cc} 1 & if \ j = k \\ 0 & if \ j \neq k \end{array} ,$ (f) $\delta_h^i g_{ik} = g_{hk}$, (1.1)

(g)
$$\delta_k^i y^k = y^i$$
, and (h) $\delta_i^i = n$.

The torsion tensor C_{ijk} is defined by [20]

$$C_{ijk} = \frac{1}{2} \dot{\partial}_i g_{jk} = \frac{1}{4} \dot{\partial}_i \dot{\partial}_j \dot{\partial}_k F^2, \qquad (1.2)$$

and its associate is the torsion tensor C_{jk}^i which is defined by:

(a)
$$C_{ik}^{h} = g^{hj} C_{ijk}$$
, (b) $C_{jk}^{i} y^{k} = C_{kj}^{i} y^{k} = 0.$ (1.3)

These tensors satisfy the following conditions.

(a) $C_{ijk} y^{k} = C_{kij} y^{k} = C_{jki} y^{k} = 0$, (b) $G^{i}_{jkh} y^{j} = G^{i}_{hjk} y^{j} = G^{i}_{khj} y^{j} = 0$, (c) $\delta^{i}_{k} C_{jin} = C_{jkn}$, (d) $C_{jkr} g^{jk} = C_{r}$, (e) $\Gamma^{*i}_{jkh} y^{h} = G^{i}_{jkh} y^{h} = 0$, where $G^{i}_{jkh} = \dot{\partial}_{j} G^{i}_{kh}$ and $\dot{\partial}_{j} = \frac{\partial}{\partial y^{j}}$. (1.4)

The Berwald covariant derivative $\mathcal{B}_k T_j^i$ of an arbitrary tensor field T_j^i with respect to x^k is defined as:

$$\mathcal{B}_k T_j^i = \partial_k T_j^i - \left(\dot{\partial}_r T_j^i\right) G_k^r + T_j^r G_{rk}^i - T_r^i G_{jk}^r.$$
(1.5)

The Berwald covariant derivatives of the metric function F, the vectors y^i , y_i and the unit vector l^i are all identically zero [3]. In other words,

(a)
$$\mathcal{B}_k F = 0$$
, (b) $\mathcal{B}_k y^i = 0$, (c) $\mathcal{B}_k y_i = 0$, and (d) $\mathcal{B}_k l^i = 0$. (1.6)

However, Berwald's covariant derivative of the metric tensor g_{ij} is not identically zero, that is $\mathcal{B}_k g_{ij} \neq 0$. It is expressed as:

$$\mathcal{B}_k g_{ij} = -2 \ y^h \ \mathcal{B}_h \ C_{ijk} = -2 \ C_{ijk|h} \ y^h. \tag{1.7}$$

The covariant differential operator of Berwald with respect to x^h and the partial differential operator with respect to y^k commute, as defined by:

$$(\dot{\partial}_k \ \mathcal{B}_h - \mathcal{B}_h \dot{\partial}_k t) \ T^i_j = T^r_j \ G^i_{khr} - T^i_r \ G^r_{khj} \ , where \ T^i_j \ is \ any \ arbitrary \ tensor.$$
(1.8)

The second Berwald covariant derivative of the vector field X^i , with respect to x^k and x^h is given by:

$$\mathcal{B}_k \mathcal{B}_h X^i = \dot{\partial}_k \mathcal{B}_h X^i - (\dot{\partial}_s \mathcal{B}_h X^i) G^s_k + (\mathcal{B}_h X^r) G^i_{rk} - (\mathcal{B}_r X^i) G^r_{hk}.$$
(1.9)

The tensors R^i_{jkh} and K^i_{jkh} are defined by:

The aforementioned tensors, namely Cartan's third curvature tensor and Cartan's fourth curvature tensor, respectively, display skew-symmetry regarding their last two lower indices and maintain positive homogeneity of degree zero in their directional arguments. These tensors are governed by the following relations:

$$\begin{array}{l} (a) \ R^{i}_{jkh} \ y^{j} = K^{i}_{jkh} \ y^{j} = H^{i}_{kh} \ , \ (b) \ K^{i}_{jkh} = H^{i}_{jkh} - \ y^{m} \ (\dot{\partial}_{j} \ K^{i}_{mkh}), \\ (c) \ R^{i}_{jkh} = K^{i}_{jkh} + C^{i}_{js} H^{s}_{kh} \ , \ (d) \ K^{i}_{jkh} = H^{i}_{jkh} - P^{i}_{jkh} - P^{r}_{jk} P^{i}_{rh} + P^{i}_{jhk} + P^{r}_{jh} P^{i}_{rk}, \\ (e) \ R_{ijhk} = K_{ijhk} + C_{ijm} \ K^{s}_{rhk} \ y^{m}, \ and \ (f) \ R_{ijkh} = g_{rj} R^{r}_{ikh}. \end{array}$$

$$(1.11)$$

Ricci tensor R_{jk} , the deviation tensor R_h^i and curvature scalar R derived from the curvature tensor R_{jkh}^i are defined as:

(a)
$$R_{jkr}^r = R_{jk}$$
, (b) $R_{jkh}^i g^{jk} = R_h^i$, and (c) $R_i^i = R$. (1.12)

The curvature tensor of Berwald H^i_{jkh} , torsion tensor H^i_{kh} , Ricci tensor H_{jk} , deviation tensor H^i_h and curvature scalar H are defined as:

(a)
$$H_{jkh}^i y^j = H_{kh}^i$$
, (b) $H_{kh}^i y^k = H_h^i$, and (c) $H_j y^j = (n-1)H$. (1.13)

The Concircular curvature tensor M_{jkh}^i , the torsion tensor M_{jk}^i , the Ricci tensor M_{jk} , the curvature vector M_k and the scalar curvature M satisfy the following conditions:

(a)
$$M_{jkh}^{i} y^{j} = M_{kh}^{i}$$
, (b) $M_{kh}^{i} y^{k} = M_{h}^{i}$, (c) $M_{jki}^{i} = M_{jk}$,
(d) $M_{ki}^{i} = M_{k}$ and (e) $M_{i}^{i} = M$. (1.14)

The conformal curvature tensor Z_{jkh}^i , the torsion tensor Z_{jk}^i , the Ricci tensor Z_{jk} , the curvature vector Z_k and the scalar curvature Z are satisfying the following conditions:

(a)
$$Z_{jkh}^{i} y^{j} = Z_{kh}^{i}$$
, (b) $Z_{kh}^{i} y^{k} = Z_{h}^{i}$, and (c) $Z_{ki}^{i} = Z_{k}$. (1.15)

Notations. R_{jkh}^i : Cartan's third Curvature Tensor, Z_{jkh}^i : Conformal curvature tensor, H_{jkh}^i : Berwald Curvature Tensor, R_{jk} : Ricci Tensor, R_h^i : the deviation tensor, R: Scalar Curvature.

2. On generalized $\mathcal{B}R-3rd$ recurrent Finsler space

Let us explore in $G\mathcal{B}K$ - RF_n for whose Cartan's third curvature tensor R^i_{jkh} is defined as [9]:

$$\mathcal{B}_m R^i_{jkh} = a_m R^i_{jkh} + b_m \left(\delta^i_h g_{jk} - \delta^i_k g_{jh}\right), R^i_{jkh} \neq 0.$$

This space is designated as a generalized $\mathcal{B}R$ -recurrent space, where \mathcal{B}_m represents the first-order covariant derivative (Berwald's covariant differential operator) with respect to x^m . By taking the third-order covariant derivative of curvature tensor R^i_{ikh} in the Berwald sense with respect to x^l , x^m and x^n , we obtain:

$$\mathcal{B}_{n}\mathcal{B}_{n}\mathcal{B}_{l}R^{i}_{jkh} = a_{lmn}R^{i}_{jkh} + b_{lmn} \left(\delta^{i}_{h} g_{jk} - \delta^{i}_{k} g_{jh}\right) - 2 \left[c_{lm} \mathcal{B}_{r} \left(\delta^{i}_{h}C_{jkn} - \delta^{i}_{k}C_{jhn}\right) y^{r} + d_{ln} \mathcal{B}_{r} \left(\delta^{i}_{h}C_{jkm} - \delta^{i}_{k}C_{jhm}\right) y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r} \left(\delta^{i}_{h}C_{jkm} - \delta^{i}_{k}C_{jhm}\right) y^{r} \right].$$

$$(2.1)$$

Multiplying (2.1) by y^{j} , using (1.6b), (1.11a), (1.4a) and (1.1b), we obtain

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}H^{i}_{kh} = a_{lnm}H^{i}_{kh} + b_{lnm}(\delta^{i}_{h}y_{k} - \delta^{i}_{k}y_{h}).$$
(2.2)

Multiplying (2.2) by y^k , using (1.6b), (1.14b), (1.1d) and (1.1g), we obtain

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m H_h^i = a_{lnm} H_h^i + b_{lnm} (\delta_h^i F^2 - y^i y_h).$$
(2.3)

In conclusion, we find the following theorem.

Theorem 2.1. In the $G\mathcal{B}R$ - $3RF_n$, Berwald's covariant derivatives of the third order for the torsion tensor H_{kh}^i and the deviation tensor H_h^i are given by the conditions (2.2) and (2.3), respectively.

Summing over the indices i and h in condition (2.1), using (1.12a), (1.4c), (1.1f), (1.1h) and setting n = 4, we obtain,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R_{jk} = a_{lnm}R_{jk} + 3[b_{lnm}g_{jk} - c_{lnm}C_{jkn} - d_{lnm}C_{jkl} - e_{lnm}C_{jkq} - 2b_{nm}y^{r}\mathcal{B}_{r}C_{jks}.]$$

$$(2.4)$$

Multiplying (2.4) by y^k , using (1.6b), (1.12b), (1.4a), (1.1b) and setting n = 4, we obtain

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m R_j = a_{lnm} R_j + 3 \ b_{lnm} y_j. \tag{2.5}$$

Multiplying (2.5) by y^{j} , using (1.6b), (1.14i) and (1.1d), we obtain

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m H = a_{lnm} H + b_{lnm} F^2. \tag{2.6}$$

Multiplying (2.4) by y^j , using (1.6b), (1.14h), (1.4a), (1.1b) and setting n = 4, we obtain

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m H_k = a_{lnm} H_k + 3 \ b_{lnm} \ y_k. \tag{2.7}$$

In conclusion, we find the following theorem.

Theorem 2.2. In the $G\mathcal{B}R$ - $3RF_n$, the curvature vector R_j , the curvature vector R_k and the curvature scalar H are all nonzero.

3. Relations between curvature tensor R^i_{jkh} and other curvature tensors

In this section we presented the relationship between Cartan's third curvature tensor R_{ikh}^{i} and some curvature tensors in $G\mathcal{B}R$ - $3RF_{n}$.

The relation between Cartan's third curvature tensor R^i_{jkh} and the Concircular curvature tensor M^i_{jkh} for a V_4 is defined as:

$$M_{jkh}^{i} = R_{jkh}^{i} - \frac{R}{12} (g_{jk} \delta_{h}^{i} - g_{jh} \delta_{k}^{i}).$$
(3.1)

Taking the covariant derivative of the third order for (3.1) in the sense of Berwald, we obtain,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M^{i}_{jkh} = \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R^{i}_{jkh} - \frac{R}{12}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk} \ \delta^{i}_{h} - g_{jh} \ \delta^{i}_{k}).$$
(3.2)

Using the conditions (2.1) in (3.2), we obtain,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{jkh}^{i} = a_{lmn}R_{jkh}^{i} + b_{lmn} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}\right) - 2[c_{lm} \mathcal{B}_{r}(\delta_{h}^{i}C_{jkn} - \delta_{k}^{i}C_{jhn})y^{r} + d_{ln} \mathcal{B}_{r}(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm})y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm})y^{r}] - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{12}(g_{jk}\delta_{h}^{i} - g_{jh} \delta_{k}^{i}).$$

$$(3.3)$$

In view of condition (3.2), condition (3.3) devolves to

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M^{i}_{jkh} = a_{lmn}M^{i}_{jkh} + a_{lmn}\frac{R}{12}(g_{jk}\delta^{i}_{h} - g_{jh}\delta^{i}_{k}) + b_{lmn}(\delta^{i}_{h}g_{jk} - \delta^{i}_{k}g_{jh}) - 2[c_{lm}\mathcal{B}_{r}(4C_{jkn} - C_{jkn})y^{r} + d_{ln}\mathcal{B}_{r}(4C_{jkm} - C_{jkm})y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}(4C_{jkm} - C_{jkm})y^{r}] - \frac{R}{12}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}\delta^{i}_{h} - g_{jh}\delta^{i}_{k}).$$
(3.4)

We can express the above equation in a different way as

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M^{i}_{jkh} = a_{lmn}M^{i}_{jkh} + b_{lmn}\left(\delta^{i}_{h}g_{jk} - \delta^{i}_{k}g_{jh}\right)$$

if and only if

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R\left(g_{jk}\ \delta_{h}^{i}\ -g_{jh}\ \delta_{k}^{i}\right) = a_{lmn}R\left(g_{jk}\ \delta_{h}^{i}\ -g_{jh}\ \delta_{k}^{i}\right)$$

and

$$c_{lm}\mathcal{B}_r(4C_{jkn}-C_{jkn})y^r + d_{ln}\mathcal{B}_r(4C_{jkm}-C_{jkm})y^r + \mu_l\mathcal{B}_n\mathcal{B}_r(4C_{jkm}-C_{jkm})y^r = 0.$$
(3.5)

In conclusion, we find the following theorem.

Theorem 3.1. In the $G\mathcal{B}R$ - $3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the Concircular curvature tensor M_{jkh}^i is $G\mathcal{B}M$ - $3RF_n$ if and only if the tensor $R(g_{jk}\delta_h^i - g_{jh}\delta_k^i)$ is Trirecurrent in Finsler space and condition (3.5) is hold.

Multiplying (3.4) by y^{j} , using (1.6b), (1.14a), (1.4a) and (1.1b), we obtain

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{kh}^{i} = a_{lmn}M_{kh}^{i} + a_{lmn}\frac{R}{12}(y_{k} \ \delta_{h}^{i} - y_{h} \ \delta_{k}^{i}) + b_{lmn}(y_{k}\delta_{h}^{i} - y_{h}\delta_{k}^{i}) - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{12}(y_{k} \ \delta_{h}^{i} - y_{h} \ \delta_{k}^{i}).$$

$$(3.6)$$

We can express the above equation in a different way as:

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m} M_{kh}^{i} = a_{lmn}M_{kh}^{i} + b_{lmn}\left(y_{k} \delta_{h}^{i} - y_{h} \delta_{k}^{i}\right)$$

if and only if

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R\left(y_{k}\,\delta_{h}^{i}-y_{h}\,\delta_{k}^{i}\right)=a_{lmn}R\left(y_{k}\,\delta_{h}^{i}-y_{h}\,\delta_{k}^{i}\right).$$

In conclusion, we find the following theorem.

Theorem 3.2. In the $G\mathcal{B}R$ - $3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the curvature tensor M_{kh}^i is $G\mathcal{B}M$ - $3RF_n$, if and only if the tensor $R(g_{jk}\delta_h^i - g_{jh}\delta_k^i)$ is Trirecurrent in Finsler space.

Multiplying (3.6) by y^k , using (1.6b), (1.14b), (1.1d) and (1.1g), we obtain,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{h}^{i} = a_{lmn}M_{h}^{i} + a_{lmn}\frac{R}{12}(F^{2}\delta_{h}^{i} - y_{h}y^{i}) + b_{lmn}(F^{2}\delta_{h}^{i} - y_{h}y^{i}) - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{12}(F^{2}\delta_{h}^{i} - y_{h}y^{i}).$$

$$(3.7)$$

We can express the above equation in a different way as:

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m \ M_h^i = a_{lmn} M_h^i + \ b_{lmn} (F^2 \delta_h^i - y_h y^i)$$

if and only if

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m (F^2 \delta_h^i - y_h y^i) = a_{lmn} (F^2 \delta_h^i - y_h y^i).$$

In conclusion, we find the following theorem.

Theorem 3.3. In the $G\mathcal{B}R$ - $3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the curvature tensor M_h^i is $G\mathcal{B}M$ - $3RF_n$ if and only if the tensor $F^2\delta_h^i - y_h y^i$ is Trirecurrent in Finsler space.

Summing over the indices i and h in condition (3.4), using (1.14c), (1.4c), (1.1f), (1.1h) and setting n = 4, we obtain,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{jk} = a_{lmn}M_{jk} + a_{lmn}\frac{R}{4}g_{jk} + 3b_{lmn}g_{jk} - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{4}g_{jk} - 6[c_{lm}\mathcal{B}_{r}C_{jkn}y^{r} + d_{ln}\mathcal{B}_{r}C_{jkm}y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}C_{jkm}y^{r}].$$
(3.8)

We can express the above equation in a different way as:

......

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m M_{jk} = a_{lmn} M_{jk} + 3b_{lmn} \ g_{jk}$$

if and only if

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Rg_{jk} = a_{lmn}Rg_{jk}$$

$$c_{lm} \mathcal{B}_{r}C_{jkn}y^{r} + d_{ln} \mathcal{B}_{r}C_{jkm}y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}C_{jkm}y^{r} = 0.$$
(3.9)

In conclusion, we find the following theorem.

Theorem 3.4. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the Ricci tensor M_{jk} is $GBM-3RF_n$, if and only if condition (3.9) is hold.

Further, summing over the indices i and h in conditions (3.6) and (3.7), using (1.14d), (1.14e), (1.4c), (1.1f), (1.1h) and setting n = 4, we obtain,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{k} = a_{lmn}M_{k} + a_{lmn}\frac{R}{4}y_{k} + 3 \ b_{lmn}y_{k} - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{4}y_{k}, \qquad (3.10)$$

and

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M = a_{lmn}M + a_{lmn}\frac{R}{3}\left(F^{2}-1\right) + 3b_{lmn}\left(F^{2}-1\right) - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{4}\left(F^{2}-1\right).$$
(3.11)

We can express the above equation in a different way as:

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m M_k = a_{lmn} M_k + 3b_{lmn} y_k$$

if and only if

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m R \; y_k \; = a_{lmn} R \; y_k;$$

and

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m M = a_{lmn} M + 3b_{lmn} \ y_k$$

if and only if

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R\left(F^{2}-1\right) = a_{lmn}R\left(F^{2}-1\right)$$

In conclusion, we find the following theorem.

Theorem 3.5. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the vector tensor M_k and scalar tensor M are $GBM-3RF_n$, if and only if the tensors (Ry_k) and $R(F^2-1)$ are Trirecurrent in Finsler space.

For a Riemannian space V4, the Conharmonic curvature tensor Z_{jkh}^i is defined as [19]:

$$Z_{jkh}^{i} = R_{jkh}^{i} + \frac{1}{2}(g_{jk}R_{h}^{i} + \delta_{h}^{i}R_{jk} - \delta_{k}^{i}R_{jh} - g_{jh}R_{k}^{i}).$$
(3.12)

Taking the covariant derivative of the third order for (3.1) in the sense of Berwald, we obtain

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z^{i}_{jkh} = \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R^{i}_{jkh} - \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}R^{i}_{h} + \delta^{i}_{h}R_{jk} - \delta^{i}_{k}R_{jh} - g_{jh}R^{i}_{k}).$$
(3.13)

Using the condition (2.1) in (3.13), we obtain,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z^{i}_{jkh} = a_{lmn}R^{i}_{jkh} + b_{lmn}(\delta^{i}_{h} g_{jk} - \delta^{i}_{k} g_{jh}) - 2[c_{lm} \mathcal{B}_{r}(\delta^{i}_{h}C_{jkn} - \delta^{i}_{k}C_{jhn})y^{r} + d_{ln}\mathcal{B}_{r}(\delta^{i}_{h}C_{jkm} - \delta^{i}_{k}C_{jhm})y^{r}] - \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}R^{i}_{h} + \delta^{i}_{h}R_{jk} - \delta^{i}_{k}R_{jh} - g_{jh}R^{i}_{k}).$$

$$(3.14)$$

In view of condition (3.12), condition (3.14) devolves to,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{jkh}^{i} = a_{lmn}Z_{jkh}^{i} - \frac{1}{2}a_{lmn}(g_{jk} R_{h}^{i} + \delta_{h}^{i} R_{jk} - \delta_{k}^{i} R_{jh} - g_{jh} R_{k}^{i}) + b_{lmn} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}\right) - 2[c_{lm} \mathcal{B}_{r} \left(\delta_{h}^{i}C_{jkn} - \delta_{k}^{i}C_{jhn}\right) y^{r} + d_{ln} \mathcal{B}_{r} \left(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm}\right) y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r} \left(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm}\right) y^{r}] + \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m} (g_{jk}R_{h}^{i} + \delta_{h}^{i}R_{jk} - \delta_{k}^{i}R_{jh} - g_{jh}R_{k}^{i}).$$

$$(3.15)$$

We can express the above equation in a different way as:

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m Z^i_{jkh} = a_{lmn} Z^i_{jkh} + b_{lmn} (\delta^i_h g_{jk} - \delta^i_k g_{jh})$$

if and only if

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m (g_{jk} R_h^i + \delta_h^i R_{jk} - \delta_k^i R_{jh} - g_{jh} R_k^i) = a_{lmn} (g_{jk} R_h^i + \delta_h^i R_{jk} - \delta_k^i R_{jh} - g_{jh} R_k^i)$$

and

$$c_{lm}\mathcal{B}_r\left(\delta_h^i C_{jkn} - \delta_k^i C_{jhn}\right) y^r + d_{ln} \mathcal{B}_r\left(\delta_h^i C_{jkm} - \delta_k^i C_{jhm}\right) y^r + \mu_l \mathcal{B}_n \mathcal{B}_r\left(\delta_h^i C_{jkm} - \delta_k^i C_{jhm}\right) y^r = 0.$$
(3.16)

In conclusion, we find the following theorem.

Theorem 3.6. In the $G\mathcal{B}R$ - $3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the Conharmonic curvature tensor Z_{jkh}^i is $G\mathcal{B}M$ - $3RF_n$, if and only if the tensor $(g_{jk}R_h^i + \delta_h^iR_{jk} - \delta_k^iR_{jh} - g_{jh}R_k^i)$ is Trirecurrent in Finsler space and condition (3.16) is hold.

Multiplying (3.15) by y^{j} , using (1.6b), (1.15a), (1.4a), (1.11a) and (1.1b), we obtain

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{kh}^{i} = a_{lmn}Z_{kh}^{i} + \frac{1}{2}a_{lmn}(y_{k}R_{h}^{i} + \delta_{h}^{i}H_{k} - \delta_{k}^{i}H_{h} - y_{h}R_{k}^{i}) + b_{lmn}(y_{k}\delta_{h}^{i} - y_{h}\delta_{k}^{i}) - \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(y_{k}R_{h}^{i} + \delta_{h}^{i}H_{k} - \delta_{k}^{i}H_{h} - y_{h}R_{k}^{i}).$$
(3.17)

We can express the above equation in a different way as

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m \ Z_{kh}^i = a_{lmn} Z_{kh}^i + b_{lmn} \left(\ y_k \ \delta_h^i \ -y_h \ \delta_k^i \right)$$

if and only if

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m (y_k R_h^i + \delta_h^i H_k - \delta_k^i H_h - y_h R_k^i) = a_{lmn} (y_k R_h^i + \delta_h^i H_k - \delta_k^i H_h - y_h R_k^i).$$

In conclusion, we find the following theorem.

Theorem 3.7. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the curvature tensor Z_{kh}^i is $GBM-3RF_n$, if and only if the tensor $(y_kR_h^i + \delta_h^i H_k - \delta_k^i H_h - y_h R_k^i)$ is Trirecurrent in Finsler space.

Multiplying (3.17) by y^k , using (1.6b), (1.15b), (1.1d), (1.14c) and (1.1g), we obtain

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{h}^{i} = a_{lmn}Z_{h}^{i} + \frac{1}{2}a_{lmn}(F^{2}R_{h}^{i} + 3\ \delta_{h}^{i}\ H - H_{h}y^{i} - y_{h}\ R_{k}^{i}y^{k}) + b_{lmn}\left(F^{2} - 1\right)\delta_{h}^{i} - \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(F^{2}R_{h}^{i} + 3\delta_{h}^{i}\ H - H_{h}y^{i} - y_{h}\ R_{k}^{i}\ y^{k}).$$

$$(3.18)$$

We can express the above equation in a different way as:

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m \ Z_h^i = a_{lmn} Z_h^i + b_{lmn} (F^2 \delta_h^i - y_h y^i)$$

if and only if

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\left(F^{2}R_{h}^{i}+3\,\delta_{h}^{i}\,H-H_{h}y^{i}-y_{h}\,R_{k}^{i}\,y^{k}\right)=a_{lmn}\left(F^{2}R_{h}^{i}+3\,\delta_{h}^{i}\,H-H_{h}y^{i}-y_{h}\,R_{k}^{i}\,y^{k}\right)$$

In conclusion, we find the following theorem.

Theorem 3.8. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the curvature tensor Z_h^i is $GBM-3RF_n$, if and only if the tensor $(F^2R_h^i + 3 \ \delta_h^iH - H_hy^i - y_hR_k^iy^k)$ is Trirecurrent in Finsler space.

Summing over the indices i and h in condition (3.15), using (1.15c), (1.12c), (1.4c), (1.1f), (1.1h) and setting n = 4, we obtain,

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{jk} = a_{lmn}Z_{jk} - \frac{1}{2}a_{lmn}(g_{jk}R + 4R_{jk} - R_{jk} - R_{kj}) + 3b_{lmn}g_{jk} - 6[c_{lm}\mathcal{B}_{r}C_{jkn} y^{r} + d_{ln}\mathcal{B}_{r}C_{jkm}y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}C_{jkm}y^{r}] + \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}R + 4R_{jk} - R_{jk} - R_{kj}).$$
(3.19)

We can express the above equation in a different way as

$$\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m Z_{jk} = a_{lmn} Z_{jk} + 3b_{lmn} g_{jk}$$

if and only if

$$\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\left(g_{jk}\ R+4R_{jk}-R_{jk}-R_{kj}\right) = a_{lmn}\left(g_{jk}\ R+4R_{jk}-R_{jk}-R_{kj}\right)$$
$$c_{lm}\mathcal{B}_{r}C_{jkn}y^{r} + d_{ln}\mathcal{B}_{r}C_{jkm}\ y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}C_{jkm}\ y^{r} = 0.$$
(3.20)

In conclusion, we find the following theorem.

Theorem 3.9. In the GBR- $3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the Ricci tensor Z_{jk} is GBM- $3RF_n$ if and only if condition (3.20) is hold.

4. Conclusions

The generalized BR-third recurrent space meets the criteria outlined in condition (2.1). In the context of Berwald spaces, $G\mathcal{B}R$ - $3RF_n$ (in the sense of Berwald space) exhibits the B-derivative of the third order for the Ricci tensor R_{jk} and the curvature vector R_j , as defined in equations (2.4) and (2.5), respectively. Within $G\mathcal{B}R$ - $3RF_n$, the curvature tensor M^i_{jkh} satisfies the conditions for a generalized third recurrent Finsler space if and only if the condition $R(g_{jk}\delta^i_h - g_{jh}\delta^i_k)$ is trirecurrent in Finsler space and condition (3.5) holds. Furthermore, the curvature tensor M^i_{kh} qualifies as $G\mathcal{B}R$ - $3RF_n$ if and only if the tensor $R(g_{jk}\delta^i_h - g_{jh}\delta^i_k)$ is trirecurrent in Finsler space.

The Conharmonic curvature tensor Z_{jkh}^i in $G\mathcal{B}R$ - $3RF_n$ is categorized as $G\mathcal{B}R$ - $3RF_n$ if and only if the tensor $(g_{jk}R_h^i + \delta_h^i R_{jk} - \delta_k^i R_{jh} - g_{jh}R_k^i)$ is trirecurrent in Finsler space and condition (3.16) holds. The curvature tensor Z_{kh}^i falls under the $G\mathcal{B}R$ - $3RF_n$ classification if and only if the tensor $(y_k R_h^i + \delta_h^i H_k - \delta_k^i H_h - y_h R_k^i)$ is trirecurrent in Finsler space. Additionally, the third-order covariant derivative of Berwald for the Ricci tensor Z_{jk} belongs to the $G\mathcal{B}R$ - $3RF_n$ category if and only if condition (3.20) is satisfied.

The authors advocate for further investigation and exploration of generalized \mathcal{B} K-higher recurrent Finsler spaces, emphasizing the potential connections to specialized Finsler spaces.

References

- M. Atashafrouz, B. Najafi, On D-Recurrent Finsler metrics, Bull. Iran Math. Soc, 47 (2021), 143-156.
- [2] A. A. Abdallah, Study on the relationships between two Curvature tenesors in Finsler space, J. Math. analysis and Modeling, 4(2) (2023), 112-120.
- [3] A.A.A. Abdallah, On generalized BR-recurrent Finsler space, M. Sc. Thesis, University of Aden, (2017), Yemen.
- [4] Z. Ahsan and M. Ali, On some properties of W-curvature tensor, Palestine Journal of Mathematics, vol. 3(1), (2014), 61-69.

- [5] A.M.A. AL-Qashbari and F.Y.A. Qasem, Study on Generalized BR-Trirecurrent Finsler Space, Journal of Yemen engineer, Faculty of Engineering, University of Aden, Vol.15, (2017), 79-89.
- [6] A.M.A. AL-Qashbari, On Generalized for Curvature Tensors Pⁱ_{jkh} of Second Order in Finsler Space, Univ. Aden J. Nat. and Appl, Sc., Vol.24, No.1 (2020), 171-176.
- [7] A.M.A. AL-Qashbari, Some Identities for Generalized Curvature Tensors in B-Recurrent Finsler space, Journal of New Theory, 32(2020), 30-39.
- [8] A.M.A. AL-Qashbari, *Recurrence Decompositions in Finsler Space*, Journal of Mathematical Analysis and Modeling, Vol. 1, (2020), 77-86.
- [9] A.M.A. AL-Qashbari and A.A.M. AL-Maisary, Study On Generalized of Fourth order Recurrent in Finsler space, Journal of Yemen Engineer, Vol.17, (2023),1-13.
- [10] H. Abu-Donia, S. Shenawy and A. Abdehameed, The W^{*}-Curvature Tensor on Relativistic Space-times, Kyungpook Mathematical Journal, Vol. 60, (2020), 185-195.
- [11] M. Ali, M. Salman, F. Rahaman, and N. Pundeer, On some properties of M-projective curvature tensor in space-time of general relativity, arXiv:2209.12692v2, (2023), 1-17.
- [12] M. Ali, M. Salman, and M. Bilal, Conharmonic Curvature Inheritance in Spacetime of General Relativity, Universe 7, 505,(2021), 1-21.
- [13] M. Ali, N. Pundeer, and Z. Ahsan, Semi-conformal symmetry-a new symmetry of the spacetime manifold of the general relativity, arXiv:1901.03746v1,(2019), 1-12.
- [14] B. Bidabad, and M. Sepasi, Complete Finsler Spaces of Constant Negative Ricci Curvature, J. of Math. D.G. Vol. 1, (2020), 1–12.
- [15] S.M.S. Baleedi, On certain generalized BK-recurrent Finsler space, M.Sc. Thesis, University of Aden, (2017), Yemen.
- [16] B. Y. Chen, Recent developments in Wintgen inequality and Wintgen ideal submanifolds, Int. Electron. J. Geom. 14 (2021), 1-40.
- [17] S. Decu, R. Deszcz, and S. Haesen, A classification of Roter type spacetimes, Int. J. Geom. Meth. Modern Phys. 18 (2021), art. 2150147, 13 pp.
- [18] M. A. Opondo, Study of Projective curvature tensor W_{jkh}^i in bi-recurrent Finsler space, M. Sc. Thesis, Kenyatta University, (Nairobi), (Kenya), (2021).
- [19] F.Y.A. Qasem and A.A.A. Abdallah, On study generalized BR-recurrent Finsler space, International Journal of Mathematics and its Applications, Vol. 4 (2016), 113-121.
- [20] H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen-Heidelberg, (1959), 2nd Edit. (in Russian), Nauka, (Moscow), (1981).
- [21] A.A. Shaikh, and H. Kundu, On generalized Roter type manifolds, Kragujevac J. Math. 43 (2019), 471-493.
- [22] A.A. Shaikh, S. K. Hul, B. R. Datta, and M. Sakar, On Curvature Related Geometric Properties of Hayward Black Hole Space-time, arXiv:2303.00932v1 (2023), 1-29.

- [23] A. A. Saleem and Alaa A. Abdallah, On U-Recurrent Finsler Space, Inter. Rese. J. of Innovations in Eng. and Tech., 6(1)(2022), 58-63.
- [24] B.B Sinha and S. P. Singh, Recurrent Finsler space of second order II, Indian Journal of Pure and Applied Mathematics, 4(1), (1973), 45-50.