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On Some Relations of R-Projective Curvature
Tensor in Recurrent Finsler Space

Adel. M. Al-Qashbari', S. Saleh?*! and Ismail Ibedou’

Abstract In this paper, we present a novel class of relations and investigate
the connection between the R-projective curvature tensor and other tensors of
Finsler space F),. This space is characterized by the property for Cartan’s the
third curvature tensor R; xn Which satisfies the certain relationship with given
covariant vectors field, as follows:

BanBZRékh = Amn R xn +bumn (5h9j% — 0k gin) — 2[cimBr(61,Cikn — 61.Cinn)y"

+dlnBT(5}ch’]km - 512;:thm)yr+/ll BnBr((S;LCjkm - 517;ccjhm)y7“]a

where R;kh # 0 and B,B,,B; is the Berwald’s third order covariant deriva-
tive with respect to z', ™ and z" respectively. The quantities aimn =
Brtim + Um An , bimn = BrUim + Uim s Cim = Uim, and di, = By are
non-zero covariant vector fields. We define this space a generalized BR-3rd
recurrent space and denote it briefly byGBR-3RF),. This paper aims to derive
the third-order Berwald covariant derivatives of the torsion tensor Hy, and the
deviation tensor Hi. Additionally, it demonstrates that the curvature vector
K, the curvature vector Hj, , and the curvature scalar H are all non-vanishing
within the considered space. We have some relations between Cartan’s third
curvature tensor R; rrn and some tensors that exhibit self-similarity under spe-
cific conditions. Furthermore, we have established the necessary and sufficient
conditions for certain tensors in this space to have equal third-order Berwald
covariant derivatives with their lower-order counterparts.

Keywords n-dimensional Finsler space Fj,, generalized BR-3rd recurrent
spaces, employing Berwald’s third order covariant derivative, Rj,, Cartan’s
third curvature tensor
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1. Introduction

The study of recurrent Finsler spaces began in 1973 with the work of Sinha and
Singh [24], who explored the properties of recurrent tensors in these spaces. The dif-
ferential geometry of Finsler spaces subsequent research on recurrent Finsler spaces
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was conducted by Rund [20] in 1959 and 1981. While Abdallah [3] and Baleedi [15]
in 2017, investigated the recurrence of Berwald’s curvature tensors Rj- o and K; kh-
Building upon these foundational works, Ahsan and Ali [4] in 2014, studied the
properties of W-curvature tensor. Opondo [18] and Abu-Donia et al. [10] intro-
duced and analyzed the recurrence conditions of the curvature tensor Wy, using
Berwald’s approach.

From 2019 to 2023, Ali et al. [11-13] and Shaikh et al. [21,22] presented some
properties of the tensors W and M. They delved into the semi-conformal symme-
try a new symmetry of the spacetime manifold of the general relativity. Qasem
and Abdallah [19] furthered this research by defining the generalized BR-recurrent
Finsler space and establishing the necessary and sufficient conditions for both the
Berwald curvature tensor and Cartan’s fourth curvature tensor to exhibit general-
ized recurrence. Subsequently, Al-Qashbari and Qasem [5] investigated generalized
BR-trirecurrent Finsler spaces. Then in 2020, Al-Qashbari [6-8] derived various
identities for generalized curvature tensors in B-recurrent Finsler spaces and other
tensors.

The most recent contribution to this field is the work of Al-Qashbari and Al-
Maisary [9], who studied generalized BW-fourth recurrent Finsler spaces in 2023.
Chen, Decu et al. [16,17] in 2021, introduced the concept of classification of Roter
type spacetimes and recent developments in Wintgen inequality and Wintgen ideal
submanifolds. In 2021 and 2022, Atashafrouz et al. [1] and Saleem et al. [23] studied
the notions of D-recurrent Finsler metrics and the U-recurrent Finsler space re-
spectively. Recently, Abdallah [2] studied the relationships between two curvature
tensors in Finsler space. Embarking on an exploration of the inherent attributes
of an n-dimensional Finsler space F,,, we presuppose that its metric function F
adheres to the well-defined stipulations outlined in [18].

1. Positively homogeneous: F(x,ky) =k F(z,y), k > 0.
2. Positively: F (z,y) >0 , y#0.
3. {0 3jF2(x,y) yEE 9= a%i is the positive definite for all variables £*.

The corresponding metric tenser denoted by g;;, the connection coefficients of
Cartan represented by %% and the connection coefficients of Berwald designated

by G;k, are all related to the metric function F'.

(@) gi; 9"y =F", (6) 95 ¥’ = wi, (¢) 9i = 5 iy () yiy ' = F?,
(e) 9i5 9 b= 5? =1 » (F) 0% 94 = 9nks (1.1)
0 if j#k
(9) 0 y" =y, and (h) & =n.
The torsion tensor Cjji is defined by [20]
1 . 1o 2 o
Cijr = 3 0 91, = 1 9; 05 0y F~, (1.2)
and its associate is the torsion tensor C’;- . Which is defined by:

7

(a) Cli. = g" Ciji, (b) C% y*=C; v~ =0. (1.3)
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These tensors satisfy the following conditions.

(@) Cijie " = Crij ¥* = Cjri ¥ =0, (b) Glyp ¥’ =Gljp v/ = Glony v =0,

(¢) 8k Cjin = Cjkn, (d) Cjrr g% = C,,

(e) Thip yh = = Gl y" =0, where Gipp, = 0j Gy, and 0; = a—yj
(1.4)

The Berwald covariant derivative Bij of an arbitrary tensor field T; with respect

to ¥ is defined as:
BT =ou T, — (0. T) ) Gi+T] Giy—T! Gy (1.5)

The Berwald covariant derivatives of the metric function F, the vectors y* , y, and
the unit vector {* are all identically zero [3]. In other words,

(@) By, F=0, (b)Bry' =0, (c) By y; =0, and (d) Bil* = 0. (1.6)

However, Berwald’s covariant derivative of the metric tensor g;; is not identically
zero, that is By, g;; # 0. It is expressed as:

Brgij = =2 y" By, Ciji = —2 Cijppn y"- (1.7)

The covariant differential operator of Berwald with respect to 2" and the partial
differential operator with respect to ¥ commute, as defined by:

(O Br—Broxt) T;- =17 =T Glnj »where T; is any arbitrary tensor. (1.8)

The second Berwald covariant derivative of the vector field X*, with respect to z*
and z" is given by:

BBy X' = 0uBr X" — (0:B,X") G5 + (B X")GLy, — (B.X")Ghy.. (1.9)

The tensors R;kh and K;kh are defined by:

(a) Rj‘kh :ahr;lic + (0r ;k/lc) Iohy® + C; (OkTey" = TirTih y°) + Ty i
= Ok, = (0,T57) Th y° = O (0 T3 y* = T3 Tl w®) = Doy T30
(b) Ky =0k + (OsT50 50 o + T D7 — 06T — (OsT50)T58 o — T TR
(1.10)
The aforementioned tensors, namely Cartan’s third curvature tensor and Cartan’s
fourth curvature tensor, respectively, display skew-symmetry regarding their last

two lower indices and maintain positive homogeneity of degree zero in their direc-
tional arguments. These tensors are governed by the following relations:

(a) R;"kh y‘j = K;kh yj = Hlih , (b) K;kh = H}kh - y" (3]- ankh)
(c) Ry, = ]kh + CZ sHign 5 (d) K, = Hjpp, — Py — ka;Prh + P ink + PinPrrs

(€) Rijnk = Kijni + Cijm Klpe y™, and (f) Rijen = grj Rigy,-
(1.11)
Ricci tensor Rj, the deviation tensor R and curvature scalar R derived from the
curvature tensor R; wh, are defined as:

(a) Rjy, = Rk, (b) R;‘kh ¢’* = Rj, , and (c) R; = R. (1.12)
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The curvature tensor of Berwald H;kh, torsion tensor Hj,,, Ricci tensor Hjy, de-
viation tensor H}l and curvature scalar H are defined as:

(a) H}kh y = Hyy, , (b) Hiy, y" = Hj, and (¢) H; ¥ =(n—1)H. (1.13)

The Concircular curvature tensor M;kh, the torsion tensor M ;k , the Ricci tensor
My, the curvature vector Mj and the scalar curvature M satisfy the following
conditions:

(a) M;kh le = Mlih , (b) Mlih yk = M;L , (e) ;kz = Mg,

. ) 1.14
(d) M}, = My and (e) M} = M. (1.14)

The conformal curvature tensor Z; s the torsion tensor Z]7 > the Ricci tensor Zjy,
the curvature vector Zj and the scalar curvature Z are satisfying the following
conditions:

(a) Z}kh Z/j = Zlih , (b) Zlih yk = Zliz , and (c) Zlim' = Zk. (1.15)

Notations. R;kh: Cartan’s third Curvature Tensor, Z;kh: Conformal curvature
tensor, HY,, : Berwald Curvature Tensor, Rjx: Ricci Tensor, Rj: the deviation
tensor, R: Scalar Curvature.

2. On generalized BR-3rd recurrent Finsler space

Let us explore in GBK-RF,, for whose Cartan’s third curvature tensor R, is
defined as [9]:

BmR;‘kh = amR;‘kh + bm (01,9j% — 0% 9jn) 7R;'kh # 0.

This space is designated as a generalized BR-recurrent space, where B, represents
the first-order covariant derivative (Berwald’s covariant differential operator) with
respect to ™. By taking the third-order covariant derivative of curvature tensor
R; xn in the Berwald sense with respect to z!, 2™ and z™, we obtain:

BanBlR;kh :almnR;l‘k;h + blmn (6;1 9jk — 6]2 g]h)
-2 [ Clm BT (6;7,031677, - 5]chjhn) yr+dln Br (5;10]km - 6]Z<;thm) yr
(2.1)
Multiplying (2.1) by y7, using (1.6b), (1.11a), (1.4a) and (1.1b), we obtain

BanBmHlih = alanlih + blnm(ézyk - 6;@yh) (2'2)
Multiplying (2.2) by y*, using (1.6b), (1.14b), (1.1d) and (1.1g), we obtain

BZBanHi = alanﬁ + blnm(éze — yiyh). (2.3)

In conclusion, we find the following theorem.
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Theorem 2.1. In the GBR-3RF,,, Berwald’s covariant derivatives of the third
order for the torsion tensor H,ih and the deviation tensor H}L are given by the
conditions (2.2) and (2.3), respectively.

Summing over the indices ¢ and h in condition (2.1), using (1.12a), (1.4c), (1.1f),
(1.1h) and setting n = 4, we obtain,

BB, B Rjk =aimmRjk + 3binm3jk — CinmCikn

. (2.4)
- dlnijkl - elnijkq - 2bnmy Berks']

Multiplying (2.4) by y*, using (1.6b), (1.12b), (1.4a), (1.1b) and setting n = 4, we
obtain
BanBij = alnij +3 blnmyj (25)

Multiplying (2.5) by 37, using (1.6b), (1.14i) and (1.1d), we obtain
BiBu B H = apnm H + bm F2. (2.6)

Multiplying (2.4) by ¢, using (1.6b), (1.14h), (1.4a), (1.1b) and setting n = 4, we
obtain
BanBmHk - alank +3 bln?n Yg- (27)

In conclusion, we find the following theorem.

Theorem 2.2. In the GBR-3RF,, the curvature vector R;, the curvature vector
Ry and the curvature scalar H are all nonzero.

3. Relations between curvature tensor R}, and oth-
er curvature tensors

In this section we presented the relationship between Cartan’s third curvature tensor
R;. «, and some curvature tensors in GBR-3RF;,.

The relation between Cartan’s third curvature tensor R;'- &, and the Concircular
curvature tensor M;kh for a V4 is defined as:

i i R i i
Mjkh = Rjkh - E(gjk(;h - gjh5k )- (3.1)

Taking the covariant derivative of the third order for (3.1) in the sense of Berwald,
we obtain,

, , R , ,
BanBmM;kh = BanBmRé‘kh — EBZBan( 9ik 52 — 9jh (5,2) (3.2)
Using the conditions (2.1) in (3.2), we obtain,

BanBmM;kh :almnR;'kh + bimn (5;1 9jk — 52 gjh)
— 2[cim Br(6},Cikn — 045Cinn)y" +din Br(83,Cikm — 64Cinm)y"
. , , R . .
+ 1uBnBr (81, Cjkm — 6:Cnm)y"| = BiBnBin 15 (95101 = gin 6%)-
(3.3)
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In view of condition (3.2), condition (3.3) devolves to

; " R i i ; i
BanBmM;'kh :almnMjkh + almnﬁ(gjk(sh - gjh(sk;) + blmn((;hgjk - 6kgjh)
— 2[cimBr(4C;kn — Clgn)y" + din B (4Cjkm — Cjrm)y" (3.4)

+ 1uBn B (4C0m — Cikm)y"] — %BanBm(gjkéz — gjnlp.
We can express the above equation in a different way as
BiBBry Mg, = atmn Mg, + bimn (6 gj — 53 gjn)
if and only if
BiBuBmR ( gjk 8, — gjn k) = aimn R ( gjx 8, — gjn 0% )
and

CimBr(4C1kn—Cikn)y" + dinBr(4Ckm — Cikm)y" +1uBnBr (4C;km — Cikm) y" = 0.
(3.5)
In conclusion, we find the following theorem.

Theorem 3.1. In the GBR-3RF, (in the sense of Berwald space), the covariant
derivative of Berwald on the third order for the Concircular curvature tensor M}kh

is GBM-3RF,, if and only if the tensor R(g;i0i — g;jndi) is Trirecurrent in Finsler
space and condition (3.5) is hold.

Multiplying (3.4) by y7, using (1.6b), (1.14a), (1.4a) and (1.1b), we obtain

BanBmM]zh :almnMah + almnﬁ( Yk 6;7, — Yn (V]g)

. (3.6)
+ blmn(ykdz - yh(;;g) - BanBmﬁ(yk‘ 52 — Yn 5}2)

We can express the above equation in a different way as:
BiBuBm Miy, = aimnMiy, + bimn (yk 6, —yn 6}, )
if and only if
BiBuBnR (ye 6 —yn 0 ) = aimn R (yk 6, —yn 0k )

In conclusion, we find the following theorem.

Theorem 3.2. In the GBR-3RF, (in the sense of Berwald space), ti_ze covariant
derivative of Berwald on the third order for the curvature tensor M}, is GBM -
3RE,,if and only if the tensor R(gjkd, — g;nd;) is Trirecurrent in Finsler space.

Multiplying (3.6) by y*, using (1.6b), (1.14b), (1.1d) and (1.1g), we obtain,
i i R o i
BanBth :almth + almnﬁ(F 5h —Yny )

T R .. .G
+ blmn(F25;7, - yhyl> - BanBmE(FQ(S}—L - yhyz)'



1222 A. M. Al-Qashbari, S. Saleh & I. Ibedou

We can express the above equation in a different way as:
BZBan M}Zl = almnMZ + blmn(F25;L - yhyl)
if and only if ' 4 , '
BanBm(F2(5;ZL — yhyl) = almn(Fg(S;l — yhyz).
In conclusion, we find the following theorem.

Theorem 3.3. In the GBR-3RF, (in the sense of Berwald space), the covariant
derivative of Berwald on the third order for the curvature tensor M; is GBM -
3RF, if and only if the tensor F25} — yny' is Trirecurrent in Finsler space.

Summing over the indices ¢ and h in condition (3.4), using (1.14c), (1.4c), (1.1f),
(1.1h) and setting n = 4 , we obtain,

R R
BB B M1, =aimn Mk + Atmn " 9jk + 3bimn ik — BanBmZij (3.8)
- 6[ ClmBerknyT + dln BT'Cjkmyr + ManBrOjkmyr]'

We can express the above equation in a different way as:
BanBmMjk: = almnMjk =+ 3bimn 9ik

if and only if
BanBngjk = a'lmnjok
Clm BerknerFdln BTC’jkmerr,uanBerkmyr =0. (3.9)

In conclusion, we find the following theorem.

Theorem 3.4. In the GBR-3RF, (in the sense of Berwald space), the covariant
derivative of Berwald on the third order for the Ricci tensor Mjy, is GBM-3RF,,, if
and only if condition (3.9) is hold.

Further, summing over the indices ¢ and % in conditions (3.6) and (3.7), using
(1.14d), (1.14e), (1.4c), (1.1f), (1.1h) and setting n = 4 , we obtain,

R R
BB, By My, = ajmn My + tmn Yk + 3 bimnYr — BJBanzyk, (3.10)
and

R R
BiBuBnM = M + aimn (F? = 1) + 3bynn (F? = 1) — BB, B (F?—1).
(3.11)
We can express the above equation in a different way as:
BBy, By My, = aimn My + 3bimn Y
if and only if
BanBmR Y = almnR Yis

and
BB, B M = ajmn M + 3bimn Yk

if and only if
BiBuBpnR (F? —1) = aimn R (F* - 1).

In conclusion, we find the following theorem.
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Theorem 3.5. In the GBR-3RF, (in the sense of Berwald space), the covariant
derivative of Berwald on the third order for the vector tensor My, and scalar tensor
M are GBM-3RF,,, if and only if the tensors (Ryy,) and R(F?—1) are Trirecurrent
in Finsler space.

For a Riemannian space V4, the Conharmonic curvature tensor Z;kh is defined
as [19]:

i i 1 i i i i
Zien = Ripn + §(gijh + 04 Rk — 0p, Rjn — gjn Ry)- (3.12)
Taking the covariant derivative of the third order for (3.1) in the sense of Berwald,
we obtain
) ) 1 . ) ) .
BanBmZ}kh = BanBmR;kh — §BanBm(gijZ + (%Rjk — (%th — gth}c). (313)
Using the condition (2.1) in (3.13), we obtain,
BanBmZ]i'kh :almnR;-‘kh + blmn(éz 9jk — 6;@ gjh) - 2[Clm Br(éicﬂm - 6Iicjhn)yr
+din B, (6;;Cjkm - 5]icjhm)yr + ,UanBr(J;LCjk'm - 51i€thm)yr}
1 . . . )
- QBanBm(gijZ + 0 Rk — 0. Rjn — gin Ry,

(3.14)
In view of condition (3.12), condition (3.14) devolves to,

_ . 1 . . _ .
BB, B Zjp, =mnZ jin — §almn( 9jx By + 05, Rjk — 0y Rjn — gjn Ry,)
+ bimn (6;1 9jk — 61}@ gjh) - 2[Clm Br (520‘]]671 - 6]Z<;thn) yr
+ din Br(5,Cjkm — 6,Cjnm)y" + 1uBnBr (6, Cikm — 04,Cjnm)y"]
1 , , , ,
+ iBanBm(gijZ + 5;1Rjk — (5,2th — gth}C).

(3.15)
We can express the above equation in a different way as:

BanBmZ;kh = almnz;kh + blmn((s;y, 9jk — 5]14 gjh)
if and only if
BiBn By (951 Ry, + 64, Rt — 6 R — 9jnRy) = avmn (9jn Ry, + 0, Rk — 63 Rjn — gjnRy,)
and . 4 4 '
cimBr (64,Cjkn — 61,Cinn) Y +din Br (64,Cikm — 0,Clnm) y" (3.16)
+1BnBr (04,Cikm — 64Cinm) ¥ = 0. '
In conclusion, we find the following theorem.

Theorem 3.6. In the GBR-3RF, (in the sense of Berwald space), the covariant
derivative of Berwald on the third order for the Conharmonic curvature tensor
Zign 18 GBM-3RF,, if and only if the tensor (g;x R}, + 6, Rjx — 0;.Rjn — gjnlty)
is Trirecurrent in Finsler space and condition (3.16) is hold.

Multiplying (3.15) by ¢/, using (1.6b), (1.15a), (1.4a), (1.11a) and (1.1b), we obtain
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BanBmZ]lgh :alng;gh + ialmn( Yk Rz + 6;7, ch - 5]2 Hh - th}g )

, , 1 , , . .
+ Dimn (Yr0), — Ynoy) — §Bl8n3m(ykR2 +0;, Hy — 0y, Hyp — yn Ry).
(3.17)
We can express the above equation in a different way as
BanBm Z]Zgh = alng;Ch + + blmn ( Yk 5;1 — Yn 62 )
if and only if
BB B (yx R, + 64, Hy. — 0j, Hy, — yn R},) = aimn (y R}, + 0, H — 6. Hp — yn R},).

In conclusion, we find the following theorem.

Theorem 3.7. In the GBR-3RF, (in the sense of Berwald space), the covariant
derivative of Berwald on the third order for the curvature tensor Z}, is GBM -
3RF, , if and only if the tensor (y, R + 6 Hy— 0. Hp —yn RL) is Trirecurrent
i Finsler space.

Multiplying (3.17) by y*, using (1.6b), (1.15b), (1.1d), (1.14c) and (1.1g), we obtain

) 1
BB B Z: =aimnZl + =a

5 lmn(ﬁ i +36, H—Hpy' —yn Riy®)
2 i 1 2 pi i i i,k
(3.18)
We can express the above equation in a different way as:

BiByBy Zh = @imnZ}, + + bimn(F26), — yny")
if and only if
BB, B (F*R}, +3 8}, H—Hpy'—yp, R, y*) = aimn (F2R}, +3 &, H-Hpy' —yn, Ry, y*).
In conclusion, we find the following theorem.

Theorem 3.8. In the GBR-3RF, (in the sense of Berwald space), the covariant
derivative of Berwald on the third order for the curvature tensor Z! is GBM -
3RE,,if and only if the tensor (F*R; + 3 52]—[ — Hpy' — ynRiy") is Trirecurrent
i Finsler space.

Summing over the indices ¢ and h in condition (3.15), using (1.15¢), (1.12¢), (1.4c),
(1.1f), (1.1h) and setting n = 4, we obtain,

1
BB BmZik =0imnZjk — §almn(gij + 4R — Rjx, — Rij)
+ 3blmngjk - 6[Cl7nBT'Cjkn yr + dlnBTOjknLyr + /J'anBerknLyT]

1
+ §BanBm(gij + 4Rjk — Rjk — Rk])
(3.19)
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We can express the above equation in a different way as
BB BmZik = imnZik + 3bimn Gik
if and only if
BiBnBum (9jk B+ 4R;r — Rjk — Rij) = aimn (9jr R+ 4R;r — Rk — Ry;)

ClmBerknyr‘i’dlnBrCjkm yT+UanB7"Cjkm y" =0. (3'20)
In conclusion, we find the following theorem.

Theorem 3.9. In the GBR-3RF, (in the sense of Berwald space), the covariant
derivative of Berwald on the third order for the Ricci tensor Zj, is GBM-3RF,
if and only if condition (3.20) is hold.

4. Conclusions

The generalized BR-third recurrent space meets the criteria outlined in condition
(2.1). In the context of Berwald spaces, GBR-3RF,, (in the sense of Berwald space)
exhibits the B-derivative of the third order for the Ricci tensor R;; and the cur-
vature vector R; , as defined in equations (2.4) and (2.5), respectively. Within
GBR-3RF,, , the curvature tensor M ;kh satisfies the conditions for a generalized
third recurrent Finsler space if and only if the condition R(g;0} — gjhé,i)is trirecur-
rent in Finsler space and condition (3.5) holds. Furthermore, the curvature tensor
M}, qualifies as GBR-3RFE, if and only if the tensor R(g;jx0}, — g;n0}.) is trirecurrent
in Finsler space.

The Conharmonic curvature tensor Z}kh in GBR-3RF,, is categorized as GBR-
3RF, if and only if the tensor (g, R} + 6} Rjx — 0% Rjn — gjnRL) is trirecurrent in
Finsler space and condition (3.16) holds. The curvature tensor Z}, falls under the
GBR-3RF, classification if and only if the tensor (yk be + 5}LHk — 5,’; Hy, —yn R}C )
is trirecurrent in Finsler space. Additionally, the third-order covariant derivative of
Berwald for the Ricci tensor Z;;, belongs to the GBR-3RF),category if and only if
condition (3.20) is satisfied.

The authors advocate for further investigation and exploration of generalized
BK-higher recurrent Finsler spaces, emphasizing the potential connections to spe-
cialized Finsler spaces.
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