On Some Relations of R-Projective Curvature Tensor in Recurrent Finsler Space

Adel. M. Al-Qashbari¹, S. Saleh^{2,3,†} and Ismail Ibedou⁴

Abstract In this paper, we present a novel class of relations and investigate the connection between the R-projective curvature tensor and other tensors of Finsler space F_n . This space is characterized by the property for Cartan's the third curvature tensor R^i_{jkh} which satisfies the certain relationship with given covariant vectors field, as follows:

 $\mathcal{B}_{n}\mathcal{B}_{m}\mathcal{B}_{l}R^{i}_{jkh}=a_{lmn}R^{i}_{jkh}+b_{lmn}(\delta^{i}_{h}g_{jk}-\delta^{i}_{k}\ g_{jh})-2[c_{lm}\mathcal{B}_{r}(\delta^{i}_{h}C_{jkn}-\delta^{i}_{k}C_{jhn})y^{r}]$ $+d_{ln}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkm}-\delta_{k}^{i}C_{jhm})y^{r} + \mu_{l}\ \mathcal{B}_{n}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkm}-\delta_{k}^{i}C_{jhm})y^{r}],$

where $R_{jkh}^i \neq 0$ and $\mathcal{B}_n \mathcal{B}_m \mathcal{B}_l$ is the Berwald's third order covariant derivative with respect to x^l , x^m and x^n respectively. The quantities a_{lmn} = $\mathcal{B}_n u_{lm} + u_{lm} \lambda_n$, $b_{lmn} = \mathcal{B}_n v_{lm} + u_{lm} \mu_n$, $c_{lm} = v_{lm}$, and $d_{ln} = \mathcal{B}_n \mu_l$ are non-zero covariant vector fields. We define this space a generalized $BR-3rd$ recurrent space and denote it briefly by $GBR-3RF_n$. This paper aims to derive the third-order Berwald covariant derivatives of the torsion tensor H_{kh}^i and the deviation tensor H_h^i . Additionally, it demonstrates that the curvature vector K_j , the curvature vector H_k , and the curvature scalar H are all non-vanishing within the considered space. We have some relations between Cartan's third curvature tensor R^i_{jkh} and some tensors that exhibit self-similarity under specific conditions. Furthermore, we have established the necessary and sufficient conditions for certain tensors in this space to have equal third-order Berwald covariant derivatives with their lower-order counterparts.

Keywords *n*-dimensional Finsler space F_n , generalized $\mathcal{B}R$ -3rd recurrent spaces, employing Berwald's third order covariant derivative, R_{jkh}^i Cartan's third curvature tensor

MSC(2010) 53C60, 53C22, 53B40.

1. Introduction

The study of recurrent Finsler spaces began in 1973 with the work of Sinha and Singh [\[24\]](#page-11-0), who explored the properties of recurrent tensors in these spaces. The differential geometry of Finsler spaces subsequent research on recurrent Finsler spaces

[†]Adel Mohammed Al-Qashbari.

Adel ma71@yahoo.com, a.alqashbari@ust.edu(A. M. Al-Qashbari), s wosabi@hoduniv.net.ye(S. Saleh),

ismail.abdelaziz@fsc.bu.edu.eg (I. Ibedou)

¹Department of Mathematics and Department of Engineering, University of Aden and University of Science and Technology, Aden, Yemen

²Department of Mathematics, Hodeidah University, Hodeidah, Yemen

³Department of Computer Science, Cihan University-Erbil, Erbil, Iraq

⁴Department of Mathematics, Benha University, Benha, Egypt.

was conducted by Rund $\left|20\right|$ in 1959 and 1981. While Abdallah $\left|3\right|$ and Baleedi $\left|15\right|$ in 2017, investigated the recurrence of Berwald's curvature tensors R^i_{jkh} and K^i_{jkh} . Building upon these foundational works, Ahsan and Ali [\[4\]](#page-9-2) in 2014, studied the properties of W-curvature tensor. Opondo [\[18\]](#page-10-2) and Abu-Donia et al. [\[10\]](#page-10-3) introduced and analyzed the recurrence conditions of the curvature tensor W_{jkh}^i using Berwald's approach.

From 2019 to 2023, Ali et al. $[11-13]$ $[11-13]$ and Shaikh et al. $[21, 22]$ $[21, 22]$ presented some properties of the tensors W and M . They delved into the semi-conformal symmetry a new symmetry of the spacetime manifold of the general relativity. Qasem and Abdallah $[19]$ furthered this research by defining the generalized βR -recurrent Finsler space and establishing the necessary and sufficient conditions for both the Berwald curvature tensor and Cartan's fourth curvature tensor to exhibit generalized recurrence. Subsequently, Al-Qashbari and Qasem [\[5\]](#page-10-9) investigated generalized $BR\text{-}t$ rirecurrent Finsler spaces. Then in 2020, Al-Qashbari $[6-8]$ $[6-8]$ derived various identities for generalized curvature tensors in B-recurrent Finsler spaces and other tensors.

The most recent contribution to this field is the work of Al-Qashbari and Al-Maisary [\[9\]](#page-10-12), who studied generalized BW-fourth recurrent Finsler spaces in 2023. Chen, Decu et al. [\[16,](#page-10-13) [17\]](#page-10-14) in 2021, introduced the concept of classification of Roter type spacetimes and recent developments in Wintgen inequality and Wintgen ideal submanifolds. In 2021 and 2022, Atashafrouz et al. [\[1\]](#page-9-3) and Saleem et al. [\[23\]](#page-11-1) studied the notions of D-recurrent Finsler metrics and the U-recurrent Finsler space respectively. Recently, Abdallah [\[2\]](#page-9-4) studied the relationships between two curvature tensors in Finsler space. Embarking on an exploration of the inherent attributes of an n-dimensional Finsler space F_n , we presuppose that its metric function F adheres to the well-defined stipulations outlined in [\[18\]](#page-10-2).

- 1. Positively homogeneous: $F(x, ky) = k F(x, y), k > 0.$
- 2. Positively: $F(x, y) > 0$, $y \neq 0$.

3. {
$$
\dot{\partial}_i \dot{\partial}_j F^2(x, y)
$$
 } $\xi^i \xi^j$, $\dot{\partial}_i = \frac{\partial}{\partial y^i}$ is the positive definite for all variables ξ^i .

The corresponding metric tenser denoted by g_{ij} , the connection coefficients of Cartan represented by Γ_{jk}^{*i} and the connection coefficients of Berwald designated by G_{jk}^i , are all related to the metric function F.

(a)
$$
g_{ij} y^i y^j = F^2
$$
, (b) $g_{ij} y^j = y_i$, (c) $g_{ij} = \frac{1}{2} \partial_i y_j$, (d) $y_i y^i = F^2$,
\n(e) $g_{ij} g^{ik} = \delta_j^k = \begin{cases} 1 & if \ j = k \\ 0 & if \ j \neq k \end{cases}$, (f) $\delta_h^i g_{ik} = g_{hk}$, (1.1)
\n(g) $\delta_k^i y^k = y^i$, and (h) $\delta_i^i = n$.

$$
\mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{L})
$$

The torsion tensor C_{ijk} is defined by [\[20\]](#page-10-0)

$$
C_{ijk} = \frac{1}{2} \dot{\partial}_i g_{jk} = \frac{1}{4} \dot{\partial}_i \dot{\partial}_j \partial_k F^2, \qquad (1.2)
$$

and its associate is the torsion tensor C_{jk}^{i} which is defined by:

(a)
$$
C_{ik}^h = g^{hj} C_{ijk}
$$
, (b) $C_{jk}^i y^k = C_{kj}^i y^k = 0.$ (1.3)

These tensors satisfy the following conditions.

(a) $C_{ijk} y^k = C_{kij} y^k = C_{jki} y^k = 0$, (b) $G^i_{jkh} y^j = G^i_{hjk} y^j = G^i_{khj} y^j = 0$, (c) $\delta_k^i C_{jin} = C_{jkn},$ (d) $C_{jkr} g^{jk} = C_r,$ (e) $\Gamma_{jkh}^{*i} y^h = G_{jkh}^i y^h = 0$, where $G_{jkh}^i = \dot{\partial}_j G_{kh}^i$ and $\dot{\partial}_j = \frac{\partial}{\partial j}$ $\frac{\delta}{\partial y^j}$. (1.4)

The Berwald covariant derivative $\mathcal{B}_k T_j^i$ of an arbitrary tensor field T_j^i with respect to x^k is defined as:

$$
\mathcal{B}_k T_j^i = \partial_k T_j^i - \left(\dot{\partial}_r T_j^i\right) G_k^r + T_j^r G_{rk}^i - T_r^i G_{jk}^r. \tag{1.5}
$$

The Berwald covariant derivatives of the metric function F, the vectors y^i , y_i and the unit vector l^i are all identically zero [\[3\]](#page-9-1). In other words,

(a)
$$
\mathcal{B}_k F = 0
$$
, (b) $\mathcal{B}_k y^i = 0$, (c) $\mathcal{B}_k y_i = 0$, and (d) $\mathcal{B}_k l^i = 0$. (1.6)

However, Berwald's covariant derivative of the metric tensor g_{ij} is not identically zero, that is \mathcal{B}_k $g_{ij} \neq 0$. It is expressed as:

$$
\mathcal{B}_k g_{ij} = -2 \ y^h \ \mathcal{B}_h \ C_{ijk} = -2 \ C_{ijk|h} \ y^h. \tag{1.7}
$$

The covariant differential operator of Berwald with respect to x^h and the partial differential operator with respect to y^k commute, as defined by:

$$
(\dot{\partial}_k \mathcal{B}_h - \mathcal{B}_h \dot{\partial}_k t) T^i_j = T^r_j G^i_{khr} - T^i_r G^r_{khj} , where T^i_j is any arbitrary tensor. (1.8)
$$

The second Berwald covariant derivative of the vector field X^i , with respect to x^k and x^h is given by:

$$
\mathcal{B}_k \mathcal{B}_h X^i = \dot{\partial}_k \mathcal{B}_h X^i - (\dot{\partial}_s \mathcal{B}_h X^i) G^s_k + (\mathcal{B}_h X^r) G^i_{rk} - (\mathcal{B}_r X^i) G^r_{hk}.
$$
 (1.9)

The tensors R^i_{jkh} and K^i_{jkh} are defined by:

(a)
$$
R_{jkh}^i = \partial_h \Gamma_{jk}^{*i} + (\dot{\partial}_r \Gamma_{jk}^{*i}) \Gamma_{sh}^{*r} y^s + C_{jm}^i (\partial_k \Gamma_{sh}^{*m} y^s - \Gamma_{kr}^{*m} \Gamma_{sh}^{*r} y^s) + \Gamma_{mk}^{*i} \Gamma_{jh}^{*m}
$$

\t $- \partial_k \Gamma_{jh}^{*i} - (\dot{\partial}_r \Gamma_{jh}^{*i}) \Gamma_{sk}^{*r} y^s - C_{jm}^i (\partial_h \Gamma_{sk}^{*m} y^s - \Gamma_{hr}^{*m} \Gamma_{sk}^{*r} y^s) - \Gamma_{nh}^{*i} \Gamma_{jk}^{*m}$
(b) $K_{jkh}^i = \partial_k \Gamma_{hj}^{*i} + (\dot{\partial}_s \Gamma_{jk}^{*i}) \Gamma_{th}^{*s} y^t + \Gamma_{mk}^{*i} \Gamma_{hj}^{*m} - \partial_h \Gamma_{kj}^{*i} - (\dot{\partial}_s \Gamma_{jh}^{*i}) \Gamma_{tk}^{*s} y^t - \Gamma_{mh}^{*i} \Gamma_{kj}^{*m}$.
(1.10)

The aforementioned tensors, namely Cartan's third curvature tensor and Cartan's fourth curvature tensor, respectively, display skew-symmetry regarding their last two lower indices and maintain positive homogeneity of degree zero in their directional arguments. These tensors are governed by the following relations:

(a)
$$
R_{jkh}^i y^j = K_{jkh}^i y^j = H_{kh}^i
$$
, (b) $K_{jkh}^i = H_{jkh}^i - y^m$ ($\dot{\partial}_j K_{mkh}^i$),
\n(c) $R_{jkh}^i = K_{jkh}^i + C_{js}^i H_{kh}^s$, (d) $K_{jkh}^i = H_{jkh}^i - P_{jkh}^i - P_{jk}^r P_{rh}^i + P_{jh}^i + P_{jh}^r P_{rk}^i$,
\n(e) $R_{ijhk} = K_{ijhk} + C_{ijm} K_{rhk}^s y^m$, and (f) $R_{ijkh} = g_{rj} R_{ikh}^r$. (1.11)

Ricci tensor R_{jk} , the deviation tensor R_h^i and curvature scalar R derived from the curvature tensor R^i_{jkh} are defined as:

(a)
$$
R_{jkr}^r = R_{jk}
$$
, (b) R_{jkh}^i $g^{jk} = R_h^i$, and (c) $R_i^i = R$. (1.12)

The curvature tensor of Berwald H_{jkh}^i , torsion tensor H_{kh}^i , Ricci tensor H_{jk} , deviation tensor H_h^i and curvature scalar H are defined as:

(a)
$$
H_{jkh}^i y^j = H_{kh}^i
$$
, (b) $H_{kh}^i y^k = H_h^i$, and (c) $H_j y^j = (n-1)H$. (1.13)

The Concircular curvature tensor M^i_{jkh} , the torsion tensor M^i_{jk} , the Ricci tensor M_{jk} , the curvature vector M_k and the scalar curvature M satisfy the following conditions:

(a)
$$
M_{jkh}^i y^j = M_{kh}^i
$$
, (b) $M_{kh}^i y^k = M_h^i$, (c) $M_{jki}^i = M_{jk}$,
(d) $M_{ki}^i = M_k$ and (e) $M_i^i = M$. (1.14)

The conformal curvature tensor Z_{jkh}^i , the torsion tensor Z_{jk}^i , the Ricci tensor Z_{jk} , the curvature vector Z_k and the scalar curvature Z are satisfying the following conditions:

(a)
$$
Z_{jkh}^i
$$
 $y^j = Z_{kh}^i$, (b) Z_{kh}^i $y^k = Z_h^i$, and (c) $Z_{ki}^i = Z_k$. (1.15)

Notations. R^i_{jkh} : Cartan's third Curvature Tensor, Z^i_{jkh} : Conformal curvature tensor, H_{jkh}^i : Berwald Curvature Tensor, R_{jk} : Ricci Tensor, R_h^i : the deviation tensor, R: Scalar Curvature.

2. On generalized BR-3rd recurrent Finsler space

Let us explore in $GBK-RF_n$ for whose Cartan's third curvature tensor R^i_{jkh} is defined as [\[9\]](#page-10-12):

$$
\mathcal{B}_{m}R^{i}_{jkh} = a_{m}R^{i}_{jkh} + b_{m} \left(\delta^{i}_{h}g_{jk} - \delta^{i}_{k}g_{jh}\right), R^{i}_{jkh} \neq 0.
$$

This space is designated as a generalized $\mathcal{B}R$ -recurrent space, where \mathcal{B}_m represents the first-order covariant derivative (Berwald's covariant differential operator) with respect to x^m . By taking the third-order covariant derivative of curvature tensor R^i_{jkh} in the Berwald sense with respect to x^l , x^m and x^n , we obtain:

$$
\mathcal{B}_{n}\mathcal{B}_{m}\mathcal{B}_{l}R_{jkh}^{i} = a_{lmn}R_{jkh}^{i} + b_{lmn} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}\right)
$$

\n
$$
- 2\left[c_{lm} \mathcal{B}_{r} \left(\delta_{h}^{i} C_{jkn} - \delta_{k}^{i} C_{jhn}\right) y^{r} + d_{ln} \mathcal{B}_{r} \left(\delta_{h}^{i} C_{jkm} - \delta_{k}^{i} C_{jhm}\right) y^{r}\right]
$$

\n
$$
+ \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r} \left(\delta_{h}^{i} C_{jkm} - \delta_{k}^{i} C_{jhm}\right) y^{r}\right].
$$

\n(2.1)

Multiplying (2.1) by y^j , using $(1.6b)$, $(1.11a)$, $(1.4a)$ and $(1.1b)$, we obtain

$$
\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m H_{kh}^i = a_{lnm} H_{kh}^i + b_{lnm} (\delta_h^i y_k - \delta_k^i y_h). \tag{2.2}
$$

Multiplying (2.2) by y^k , using $(1.6b)$, $(1.14b)$, $(1.1d)$ and $(1.1g)$, we obtain

$$
\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m H_h^i = a_{lnm} H_h^i + b_{lnm} (\delta_h^i F^2 - y^i y_h). \tag{2.3}
$$

In conclusion, we find the following theorem.

Theorem 2.1. In the $GBR-3RF_n$, Berwald's covariant derivatives of the third order for the torsion tensor H_{kh}^i and the deviation tensor H_h^i are given by the conditions [\(2.2\)](#page-3-1) and [\(2.3\)](#page-3-2), respectively.

Summing over the indices i and h in condition (2.1) , using $(1.12a)$, $(1.4c)$, $(1.1f)$, $(1.1h)$ and setting $n = 4$, we obtain,

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R_{jk} = a_{lnm}R_{jk} + 3[b_{lnm}g_{jk} - c_{lnm}C_{jkn} - d_{lnm}C_{jkq} - 2b_{nm}y^{r}\mathcal{B}_{r}C_{jks}].
$$
\n(2.4)

Multiplying [\(2.4\)](#page-4-0) by y^k , using (1.6b), (1.12b), (1.4a), (1.1b) and setting $n = 4$, we obtain

$$
\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m R_j = a_{lnm} R_j + 3 b_{lnm} y_j. \tag{2.5}
$$

Multiplying (2.5) by y^j , using $(1.6b)$, $(1.14i)$ and $(1.1d)$, we obtain

$$
\mathcal{B}_{l}\mathcal{B}_{m}\mathcal{B}_{m}H = a_{lnm}H + b_{lnm}F^{2}.
$$
\n(2.6)

Multiplying [\(2.4\)](#page-4-0) by y^j , using (1.6b), (1.14h), (1.4a), (1.1b) and setting $n = 4$, we obtain

$$
\mathcal{B}_l \mathcal{B}_m \mathcal{B}_m H_k = a_{lmm} H_k + 3 b_{lmm} y_k. \tag{2.7}
$$

In conclusion, we find the following theorem.

Theorem 2.2. In the GBR-3RF_n, the curvature vector R_j , the curvature vector R_k and the curvature scalar H are all nonzero.

3. Relations between curvature tensor R^i_{jkh} and other curvature tensors

In this section we presented the relationship between Cartan's third curvature tensor R_{jkh}^i and some curvature tensors in $GBR\text{-}3RF_n$.

The relation between Cartan's third curvature tensor R^i_{jkh} and the Concircular curvature tensor M_{jkh}^i for a V_4 is defined as:

$$
M_{jkh}^i = R_{jkh}^i - \frac{R}{12} (g_{jk}\delta_h^i - g_{jh}\delta_k^i).
$$
 (3.1)

Taking the covariant derivative of the third order for [\(3.1\)](#page-4-2) in the sense of Berwald, we obtain,

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{jkh}^{i} = \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R_{jkh}^{i} - \frac{R}{12}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(\ g_{jk}\ \delta_{h}^{i} - g_{jh}\ \delta_{k}^{i}).
$$
 (3.2)

Using the conditions (2.1) in (3.2) , we obtain,

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{jkh}^{i} = a_{lmn}R_{jkh}^{i} + b_{lmn} (\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh})
$$

\n
$$
- 2[c_{lm}\ \mathcal{B}_{r}(\delta_{h}^{i}C_{jkn} - \delta_{k}^{i}C_{jhn})y^{r} + d_{ln}\ \mathcal{B}_{r}(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm})y^{r}
$$

\n
$$
+ \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm})y^{r}] - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{12}(g_{jk}\delta_{h}^{i} - g_{jh}\ \delta_{k}^{i}).
$$
\n(3.3)

In view of condition [\(3.2\)](#page-4-3), condition [\(3.3\)](#page-4-4) devolves to

$$
\mathcal{B}_{l} \mathcal{B}_{n} \mathcal{B}_{m} M_{jkh}^{i} = a_{lmn} M_{jkh}^{i} + a_{lmn} \frac{R}{12} (g_{jk} \delta_{h}^{i} - g_{jh} \delta_{k}^{i}) + b_{lmn} (\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh})
$$

- 2[c_{lm} \mathcal{B}_{r} (4C_{jkn} - C_{jkn})y^r + d_{ln} \mathcal{B}_{r} (4C_{jkm} - C_{jkm})y^r (3.4)
+ $\mu_{l} \mathcal{B}_{n} \mathcal{B}_{r}$ (4C_{jkm} - C_{jkm})y^r] - $\frac{R}{12} \mathcal{B}_{l} \mathcal{B}_{n} \mathcal{B}_{m} (g_{jk} \delta_{h}^{i} - g_{jh} \delta_{k}^{i}$.

We can express the above equation in a different way as

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{jkh}^{i}=a_{lmn}M_{jkh}^{i}+ b_{lmn}(\delta_{h}^{i} g_{jk}-\delta_{k}^{i} g_{jh})
$$

if and only if

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R\left(\mathbf{g}_{jk}\delta_{h}^{i}-\mathbf{g}_{jh}\delta_{k}^{i}\right)=a_{lmn}R\left(\mathbf{g}_{jk}\delta_{h}^{i}-\mathbf{g}_{jh}\delta_{k}^{i}\right)
$$

and

$$
c_{lm}\mathcal{B}_r(4C_{jkn} - C_{jkn})y^r + d_{ln}\mathcal{B}_r(4C_{jkm} - C_{jkm})y^r + \mu_l \mathcal{B}_n \mathcal{B}_r(4C_{jkm} - C_{jkm})y^r = 0.
$$
\n(3.5)

In conclusion, we find the following theorem.

Theorem 3.1. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the Concircular curvature tensor M^i_{jkh} is GBM -3 RF_n if and only if the tensor $R(g_{jk}\delta^i_h - g_{jh}\delta^i_k)$ is Trirecurrent in Finsler space and condition [\(3.5\)](#page-5-0) is hold.

Multiplying (3.4) by y^j , using $(1.6b)$, $(1.14a)$, $(1.4a)$ and $(1.1b)$, we obtain

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{kh}^{i} = a_{lmn}M_{kh}^{i} + a_{lmn}\frac{R}{12}(y_{k}\delta_{h}^{i} - y_{h}\delta_{k}^{i})
$$

+
$$
b_{lmn}(y_{k}\delta_{h}^{i} - y_{h}\delta_{k}^{i}) - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{12}(y_{k}\delta_{h}^{i} - y_{h}\delta_{k}^{i}).
$$
 (3.6)

We can express the above equation in a different way as:

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m} M_{kh}^{i} = a_{lmn} M_{kh}^{i} + b_{lmn} (y_{k} \delta_{h}^{i} - y_{h} \delta_{k}^{i})
$$

if and only if

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R\left(\begin{array}{cc}y_{k}\;\delta_{h}^{i}\;-y_{h}\;\delta_{k}^{i}\end{array}\right)=a_{lmn}R\left(\begin{array}{cc}y_{k}\;\delta_{h}^{i}\;-y_{h}\;\delta_{k}^{i}\end{array}\right).
$$

In conclusion, we find the following theorem.

Theorem 3.2. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the curvature tensor M_{kh}^i is GBM- $3RF_n$, if and only if the tensor $R(g_{jk}\delta^i_h - g_{jh}\delta^i_k)$ is Trirecurrent in Finsler space. Multiplying (3.6) by y^k , using $(1.6b)$, $(1.14b)$, $(1.1d)$ and $(1.1g)$, we obtain,

$$
\mathcal{B}_{l} \mathcal{B}_{n} \mathcal{B}_{m} M_{h}^{i} = a_{lmn} M_{h}^{i} + a_{lmn} \frac{R}{12} (F^{2} \delta_{h}^{i} - y_{h} y^{i}) + b_{lmn} (F^{2} \delta_{h}^{i} - y_{h} y^{i}) - \mathcal{B}_{l} \mathcal{B}_{n} \mathcal{B}_{m} \frac{R}{12} (F^{2} \delta_{h}^{i} - y_{h} y^{i}).
$$
\n(3.7)

We can express the above equation in a different way as:

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m} M_{h}^{i} = a_{lmn} M_{h}^{i} + b_{lmn} (F^{2}\delta_{h}^{i} - y_{h} y^{i})
$$

if and only if

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(F^{2}\delta_{h}^{i}-y_{h}y^{i})=a_{lmn}(F^{2}\delta_{h}^{i}-y_{h}y^{i}).
$$

In conclusion, we find the following theorem.

Theorem 3.3. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the curvature tensor M_h^i is GBM- $3RF_n$ if and only if the tensor $F^2\delta^i_h - y_hy^i$ is Trirecurrent in Finsler space.

Summing over the indices i and h in condition (3.4) , using $(1.14c)$, $(1.4c)$, $(1.1f)$, $(1.1h)$ and setting $n = 4$, we obtain,

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{jk} = a_{lmn}M_{jk} + a_{lmn}\frac{R}{4}g_{jk} + 3b_{lmn}g_{jk} - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{4}g_{jk}
$$
\n
$$
-6\left[c_{lm}\mathcal{B}_{r}C_{jkn}y^{r} + d_{ln}\mathcal{B}_{r}C_{jkm}y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}C_{jkm}y^{r}\right].
$$
\n(3.8)

We can express the above equation in a different way as:

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{jk}=a_{lmn}M_{jk}+3b_{lmn} g_{jk}
$$

if and only if

$$
\mathcal{B}_{l}\mathcal{B}_{m}R_{gjk} = a_{lmn}R_{gjk}
$$

$$
c_{lm}\ \mathcal{B}_{r}C_{jkn}y^{r} + d_{ln}\ \mathcal{B}_{r}C_{jkm}y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}C_{jkm}y^{r} = 0.
$$
 (3.9)

In conclusion, we find the following theorem.

Theorem 3.4. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the Ricci tensor M_{jk} is $GBM-3RF_n$, if and only if condition [\(3.9\)](#page-6-0) is hold.

Further, summing over the indices i and h in conditions (3.6) and (3.7) , using $(1.14d)$, $(1.14e)$, $(1.4c)$, $(1.1f)$, $(1.1h)$ and setting $n = 4$, we obtain,

$$
\mathcal{B}_{l}\mathcal{B}_{m}\mathcal{B}_{m}M_{k} = a_{lmn}M_{k} + a_{lmn}\frac{R}{4}y_{k} + 3 b_{lmn}y_{k} - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{4}y_{k},
$$
(3.10)

and

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M = a_{lmn}M + a_{lmn}\frac{R}{3}\left(F^{2}-1\right) + 3b_{lmn}\left(F^{2}-1\right) - \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\frac{R}{4}\left(F^{2}-1\right). \tag{3.11}
$$

We can express the above equation in a different way as:

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M_{k}=a_{lmn}M_{k}+3b_{lmn}y_{k}
$$

if and only if

$$
\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m R y_k = a_{lmn} R y_k;
$$

and

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}M = a_{lmn}M + 3b_{lmn} y_{k}
$$

if and only if

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R\left(F^{2}-1\right)=a_{lmn}R\left(F^{2}-1\right).
$$

In conclusion, we find the following theorem.

Theorem 3.5. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the vector tensor M_k and scalar tensor M are GBM -3R F_n , if and only if the tensors (Ry_k) and $R(F^2-1)$ are Trirecurrent in Finsler space.

For a Riemannian space V4, the Conharmonic curvature tensor Z_{jkh}^i is defined as [\[19\]](#page-10-8):

$$
Z_{jkh}^i = R_{jkh}^i + \frac{1}{2} (g_{jk} R_h^i + \delta_h^i R_{jk} - \delta_k^i R_{jh} - g_{jh} R_k^i).
$$
 (3.12)

Taking the covariant derivative of the third order for [\(3.1\)](#page-4-2) in the sense of Berwald, we obtain

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{jkh}^{i} = \mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}R_{jkh}^{i} - \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}R_{h}^{i} + \delta_{h}^{i}R_{jk} - \delta_{k}^{i}R_{jh} - g_{jh}R_{k}^{i}).
$$
 (3.13)

Using the condition (2.1) in (3.13) , we obtain,

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{jkh}^{i} = a_{lmn}R_{jkh}^{i} + b_{lmn}(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}) - 2[c_{lm}\ \mathcal{B}_{r}(\delta_{h}^{i}C_{jkn} - \delta_{k}^{i}C_{jhn})y^{r} + d_{ln}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm})y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm})y^{r}] - \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}R_{h}^{i} + \delta_{h}^{i}R_{jk} - \delta_{k}^{i}R_{jh} - g_{jh}R_{k}^{i}).
$$
\n(3.14)

In view of condition [\(3.12\)](#page-7-1), condition [\(3.14\)](#page-7-2) devolves to,

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{jkh}^{i} = a_{lmn}Z_{jkh}^{i} - \frac{1}{2}a_{lmn}(g_{jk}R_{h}^{i} + \delta_{h}^{i}R_{jk} - \delta_{k}^{i}R_{jh} - g_{jh}R_{k}^{i}) + b_{lmn} (\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}) - 2[c_{lm}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkn} - \delta_{k}^{i}C_{jhn})y^{r} + d_{ln}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm})y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}(\delta_{h}^{i}C_{jkm} - \delta_{k}^{i}C_{jhm})y^{r}] + \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}R_{h}^{i} + \delta_{h}^{i}R_{jk} - \delta_{k}^{i}R_{jh} - g_{jh}R_{k}^{i}).
$$
\n(3.15)

We can express the above equation in a different way as:

$$
\mathcal{B}_{l}\mathcal{B}_{m}\mathcal{B}_{m}\mathcal{Z}_{jkh}^{i}=a_{lmn}\mathcal{Z}_{jkh}^{i}+\left.b_{lmn}(\delta_{h}^{i} g_{jk}-\delta_{k}^{i} g_{jh})\right.
$$

if and only if

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}R_{h}^{i}+\delta_{h}^{i}R_{jk}-\delta_{k}^{i}R_{jh}-g_{jh}R_{k}^{i})=a_{lmn}(g_{jk}R_{h}^{i}+\delta_{h}^{i}R_{jk}-\delta_{k}^{i}R_{jh}-g_{jh}R_{k}^{i})
$$

and

$$
c_{lm}\mathcal{B}_r \left(\delta^i_{h}C_{jkn} - \delta^i_{k}C_{jhn}\right)y^r + d_{ln} \mathcal{B}_r \left(\delta^i_{h}C_{jkm} - \delta^i_{k}C_{jhm}\right)y^r
$$

$$
+ \mu_l \mathcal{B}_n \mathcal{B}_r \left(\delta^i_{h}C_{jkm} - \delta^i_{k}C_{jhm}\right)y^r = 0.
$$
 (3.16)

In conclusion, we find the following theorem.

Theorem 3.6. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the Conharmonic curvature tensor Z_{jkh}^i is GBM-3RF_n, if and only if the tensor $(g_{jk}R_h^i + \delta_h^i R_{jk} - \delta_k^i R_{jh} - g_{jh}R_h^i)$ is Trirecurrent in Finsler space and condition [\(3.16\)](#page-7-3) is hold.

Multiplying (3.15) by y^j , using $(1.6b)$, $(1.15a)$, $(1.4a)$, $(1.11a)$ and $(1.1b)$, we obtain

$$
\mathcal{B}_{l} \mathcal{B}_{n} \mathcal{B}_{m} Z_{kh}^{i} = a_{lmn} Z_{kh}^{i} + \frac{1}{2} a_{lmn} (y_{k} R_{h}^{i} + \delta_{h}^{i} H_{k} - \delta_{k}^{i} H_{h} - y_{h} R_{k}^{i}) + b_{lmn} (y_{k} \delta_{h}^{i} - y_{h} \delta_{k}^{i}) - \frac{1}{2} \mathcal{B}_{l} \mathcal{B}_{n} \mathcal{B}_{m} (y_{k} R_{h}^{i} + \delta_{h}^{i} H_{k} - \delta_{k}^{i} H_{h} - y_{h} R_{k}^{i}).
$$
\n(3.17)

We can express the above equation in a different way as

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m} Z_{kh}^{i} = a_{lmn}Z_{kh}^{i} + b_{lmn} (y_{k} \delta_{h}^{i} - y_{h} \delta_{k}^{i})
$$

if and only if

$$
\mathcal{B}_l \mathcal{B}_n \mathcal{B}_m(y_k R_h^i + \delta_h^i H_k - \delta_k^i H_h - y_h R_k^i) = a_{lmn}(y_k R_h^i + \delta_h^i H_k - \delta_k^i H_h - y_h R_k^i).
$$

In conclusion, we find the following theorem.

Theorem 3.7. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the curvature tensor Z_{kh}^i is GBM- $3RF_n$, if and only if the tensor $(y_kR_h^i + \delta_h^i H_k - \delta_k^i H_h - y_h R_k^i)$ is Trirecurrent in Finsler space.

Multiplying (3.17) by y^k , using $(1.6b)$, $(1.15b)$, $(1.1d)$, $(1.14c)$ and $(1.1g)$, we obtain

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{h}^{i} = a_{lmn}Z_{h}^{i} + \frac{1}{2}a_{lmn}(F^{2}R_{h}^{i} + 3\delta_{h}^{i}H - H_{h}y^{i} - y_{h}R_{k}^{i}y^{k})
$$

+ $b_{lmn}(F^{2}-1)\delta_{h}^{i} - \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(F^{2}R_{h}^{i} + 3\delta_{h}^{i}H - H_{h}y^{i} - y_{h}R_{k}^{i}y^{k}).$ \n(3.18)

We can express the above equation in a different way as:

$$
\mathcal{B}_l \mathcal{B}_m \mathcal{B}_m Z_h^i = a_{lmn} Z_h^i + + b_{lmn} (F^2 \delta_h^i - y_h y^i)
$$

if and only if

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(F^{2}R_{h}^{i}+3\delta_{h}^{i}H-H_{h}y^{i}-y_{h}R_{k}^{i}y^{k})=a_{lmn}(F^{2}R_{h}^{i}+3\delta_{h}^{i}H-H_{h}y^{i}-y_{h}R_{k}^{i}y^{k}).
$$

In conclusion, we find the following theorem.

Theorem 3.8. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the curvature tensor Z_h^i is GBM- $3RF_n$, if and only if the tensor $(F^2R_h^i + 3\delta_h^i H - H_hy^i - y_hR_k^iy^k)$ is Trirecurrent in Finsler space.

Summing over the indices i and h in condition (3.15) , using $(1.15c)$, $(1.12c)$, $(1.4c)$, $(1.1f), (1.1h)$ and setting $n = 4$, we obtain,

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}Z_{jk} = a_{lmn}Z_{jk} - \frac{1}{2}a_{lmn}(g_{jk}R + 4R_{jk} - R_{jk} - R_{kj}) \n+ 3b_{lmn}g_{jk} - 6[c_{lm}\mathcal{B}_{r}C_{jkn}y^{r} + d_{ln}\mathcal{B}_{r}C_{jkm}y^{r} + \mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}C_{jkm}y^{r}] \n+ \frac{1}{2}\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}(g_{jk}R + 4R_{jk} - R_{jk} - R_{kj}).
$$
\n(3.19)

We can express the above equation in a different way as

$$
\mathcal{B}_{l}\mathcal{B}_{m}\mathcal{B}_{m}Z_{jk}=a_{lmn}Z_{jk}+3b_{lmn} g_{jk}
$$

if and only if

$$
\mathcal{B}_{l}\mathcal{B}_{n}\mathcal{B}_{m}\left(g_{jk}\ R+4R_{jk}-R_{jk}-R_{kj}\right)=a_{lmn}\left(g_{jk}\ R+4R_{jk}-R_{jk}-R_{kj}\right)
$$

$$
c_{lm}\mathcal{B}_{r}C_{jkn}y^{r}+d_{ln}\mathcal{B}_{r}C_{jkm}\ y^{r}+\mu_{l}\mathcal{B}_{n}\mathcal{B}_{r}C_{jkm}\ y^{r}=0.
$$
 (3.20)

In conclusion, we find the following theorem.

Theorem 3.9. In the $GBR-3RF_n$ (in the sense of Berwald space), the covariant derivative of Berwald on the third order for the Ricci tensor Z_{ik} is GBM-3RF_n if and only if condition [\(3.20\)](#page-9-5) is hold.

4. Conclusions

The generalized BR-third recurrent space meets the criteria outlined in condition [\(2.1\)](#page-3-0). In the context of Berwald spaces, $GBR-3RF_n$ (in the sense of Berwald space) exhibits the B-derivative of the third order for the Ricci tensor R_{jk} and the curvature vector R_j , as defined in equations [\(2.4\)](#page-4-0) and [\(2.5\)](#page-4-1), respectively. Within $GBR-3RF_n$, the curvature tensor M_{jkh}^i satisfies the conditions for a generalized third recurrent Finsler space if and only if the condition $R(g_{jk}\delta^i_h - g_{jh}\delta^i_k)$ is trirecurrent in Finsler space and condition [\(3.5\)](#page-5-0) holds. Furthermore, the curvature tensor M_{kh}^i qualifies as $GBR-3RF_n$ if and only if the tensor $R(g_{jk}\delta^i_h-g_{jh}\delta^i_k)$ is trirecurrent in Finsler space.

The Conharmonic curvature tensor Z_{jkh}^i in GBR -3RF_n is categorized as GBR - $3RF_n$ if and only if the tensor $(g_{jk}R_h^i + \delta_h^i R_{jk} - \delta_k^i R_{jh} - g_{jh}R_k^i)$ is trirecurrent in Finsler space and condition [\(3.16\)](#page-7-3) holds. The curvature tensor Z_{kh}^i falls under the $GBR-3RF_n$ classification if and only if the tensor $(y_k R_h^i + \delta_h^i H_k - \delta_k^i H_h - y_h R_k^i)$ is trirecurrent in Finsler space. Additionally, the third-order covariant derivative of Berwald for the Ricci tensor Z_{jk} belongs to the $GBR-3RF_n$ category if and only if condition [\(3.20\)](#page-9-5) is satisfied.

The authors advocate for further investigation and exploration of generalized BK-higher recurrent Finsler spaces, emphasizing the potential connections to specialized Finsler spaces.

References

- [1] M. Atashafrouz, B. Najafi, On D-Recurrent Finsler metrics, Bull. Iran Math. Soc, 47 (2021), 143-156.
- [2] A. A. Abdallah, Study on the relationships between two Curvature tenesors in Finsler space, J. Math. analysis and Modeling, 4(2) (2023), 112-120.
- [3] A.A.A. Abdallah, On generalized BR-recurrent Finsler space, M. Sc. Thesis, University of Aden, (2017), Yemen.
- [4] Z. Ahsan and M. Ali, On some properties of W-curvature tensor, Palestine Journal of Mathematics, vol. 3(1), (2014), 61-69.
- [5] A.M.A. AL-Qashbari and F.Y.A. Qasem, Study on Generalized BR-Trirecurrent Finsler Space, Journal of Yemen engineer, Faculty of Engineering, University of Aden, Vol.15, (2017), 79-89.
- [6] A.M.A. AL-Qashbari, On Generalized for Curvature Tensors P_{jkh}^i of Second Order in Finsler Space, Univ. Aden J. Nat. and Appl, Sc., Vol.24, No.1 (2020), 171-176.
- [7] A.M.A. AL-Qashbari, Some Identities for Generalized Curvature Tensors in B-Recurrent Finsler space, Journal of New Theory, 32(2020), 30-39.
- [8] A.M.A. AL-Qashbari, Recurrence Decompositions in Finsler Space, Journal of Mathematical Analysis and Modeling, Vol. 1, (2020), 77-86.
- [9] A.M.A. AL-Qashbari and A.A.M. AL-Maisary, Study On Generalized of Fourth order Recurrent in Finsler space, Journal of Yemen Engineer, Vol.17, (2023),1- 13.
- [10] H. Abu-Donia, S. Shenawy and A. Abdehameed, The W^{*}-Curvature Tensor on Relativistic Space-times, Kyungpook Mathematical Journal, Vol. 60, (2020), 185-195.
- [11] M. Ali, M. Salman, F. Rahaman, and N. Pundeer, On some properties of M-projective curvature tensor in space-time of general relativity, arXiv:2209.12692v2, (2023), 1-17.
- [12] M. Ali, M. Salman, and M. Bilal, Conharmonic Curvature Inheritance in Spacetime of General Relativity, Universe 7, 505,(2021), 1-21.
- [13] M. Ali, N. Pundeer, and Z. Ahsan, Semi-conformal symmetry-a new symmetry of the spacetime manifold of the general relativity, arXiv:1901.03746v1,(2019), 1-12.
- [14] B. Bidabad, and M. Sepasi, Complete Finsler Spaces of Constant Negative Ricci Curvature, J. of Math. D.G. Vol. 1, (2020), 1–12.
- [15] S.M.S. Baleedi, On certain generalized BK-recurrent Finsler space, M.Sc. Thesis, University of Aden, (2017), Yemen.
- [16] B. Y. Chen, Recent developments in Wintgen inequality and Wintgen ideal submanifolds, Int. Electron. J. Geom. 14 (2021), 1- 40.
- [17] S. Decu , R. Deszcz, and S. Haesen, A classification of Roter type spacetimes, Int. J. Geom. Meth. Modern Phys. 18 (2021), art. 2150147, 13 pp.
- [18] M. A. Opondo, Study of Projective curvature tensor W_{jkh}^i in bi-recurrent Finsler space, M. Sc. Thesis, Kenyatta University, (Nairobi), (Kenya), (2021).
- [19] F.Y.A. Qasem and A.A.A. Abdallah, On study generalized BR-recurrent Finsler space, International Journal of Mathematics and its Applications, Vol. 4 (2016), 113-121.
- [20] H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen-Heidelberg, (1959), 2^{nd} Edit. (in Russian), Nauka, (Moscow), (1981).
- [21] A.A. Shaikh, and H. Kundu, On generalized Roter type manifolds, Kragujevac J. Math. 43 (2019), 471-493.
- [22] A.A. Shaikh, S. K. Hul, B. R. Datta, and M. Sakar, On Curvature Related Geometric Properties of Hayward Black Hole Space-time, arXiv:2303.00932v1 (2023), 1-29.
- [23] A. A. Saleem and Alaa A. Abdallah, On U-Recurrent Finsler Space, Inter. Rese. J. of Innovations in Eng. and Tech., $6(1)(2022)$, 58-63.
- [24] B.B Sinha and S. P. Singh, Recurrent Finsler space of second order II, Indian Journal of Pure and Applied Mathematics, 4(1), (1973), 45-50.