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On the Cauchy Problem for a Viscous
Cahn-Hilliard-Oono System with Chemotaxis

Ning Duan'' and Ping Fang!

Abstract In this paper, we are concerned with the well-posedness and large
time behavior of Cauchy problem for viscous Cahn-Hilliard-Oono system with
chemotaxis in 3D whole space. By using the pure energy method, stan-
dard continuity arguments together with negative Sobolev norm estimates,
one proves the global well-posedness and time decay estimates.
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1. Introduction

In this paper, we consider the following system of partial differential equations [11]
in 3D whole space

Do =A(V(9) — Ap — xo + D) —ap,  in R® x (0, +00), (1.1)

8tg = A(U - X‘P)7 in Rs X (07 +OO)7 (12)

together with the initial conditions

@l = @0, 0l,_g =00, in R®. (1.3)

Systems (1.1)-(1.2) can be seen as a simplified, fluid-free version of the general
thermodynamically consistent diffuse interface model derived in [12]. This model
is suitable for a two-phase incompressible fluid mixture with chemical species sub-
ject, which are influenced by important mechanisms such as diffusion, chemotactic
interactions, and active transport. The order parameter (phase function) ¢ is the
difference in volume fractions between the two components, while the variable o is
the standard for nutrient concentration. p = ¥/ (¢) — Ap — xo + Oy is regarded
as the chemical potential associated with (¢,0), in which the function ¥'(¢p) is
the derivative of a potential ¥ with double-well structure. A physically significant
example of U is given by the so-called Flory-Huggins logarithmic potential [8,10,16]

U(r) = g[u —7r)In(l =)+ (1 +7)In(1 +7)] + %0 (1-r%),vre(-1,1) (1.4)

fthe corresponding author.
Email address: duanning@mail.neu.edu.cn.(Ning Duan),
2200108@stu.neu.edu.cn(Ping Fang)

LCollege of Sciences, Northeastern University, Shenyang, 110004, China


http://dx.doi.org/10.12150/jnma.2024.1228

Viscous Cahn-Hilliard-Oono System 1229

with 0 < 0 < 0. It is referred to as a singular potential since its derivative ¥'(¢y)
blows up at the pure phases +1. In the literature, the singular potential V¥ is often
approximated by a fourth order polynomial [17,18]

U(r) = i (1-s°)?, VseR. (1.5)
The nontrivial coupling between Cahn-Hilliard equations (1.1) and the diffusion
equation (1.2) for the nutrient is characterized by the constant x, which models some
specific mechanisms such as chemotaxis/active transport in the context of tumor
growth modeling (see, e.g., Garcke and Lam [6] and Garcke et al [5]). Cahn-Hilliard
equation (1.1) also involves some nonlocal interaction that is given by Oono’s type
—ap for the sake of simplicity(cf., e.g., Giorgini et al. and Miranville [7,13]), where
a 2 0. Recently, He [11] considered the properties of solutions for the initial-
boundar value problem of equations (1.1)-(1.2) with singular potentials including
the physically relevant logarithmic potential in the 3D bounded domain. The au-
thors proved the existence and uniqueness of a global weak solution, obtained some
regularity properties of the weak solution when ¢ > 0, and studied the longtime
behavior of the system. We remark that there is no paper related to the Cauchy
problem of equations (1.1)-(1.2). This is just the main purpose of this paper. In
this paper, we consider the global existence and long time behavior of global strong
solutions for equations (1.1)-(1.2) in 3D whole space.

Remark 1.1. If 0 = 0 in equations (1.1)-(1.2), we obtain the well-known classical
Cahn-Hilliard equation, which has been employed as an efficient mathematical tool
for the study on dynamics of binary mixtures, particularly, recently for the tumor
growth modeling [3,9, 15]. Concerning the mathematical analysis of the Cahn-
Hilliard equation and its variants, we refer to several studies [1,2,4,13]. And the
references cited therein (see also the recent book [14]).

Our main result is stated as follows:

Theorem 1.1. Assume that g, 00 € R? for an integer N > 2 and 2\/a—1—2x% >
0. Then there exists a constant dg such that if

leoll g2 + Vol g2 + llooll g2 < do, (1.6)
then problem (1.1) admits a unique global solution (v, o) satisfying that for allt > 0,
leON7y + 1V 7 + o)l
t
+ [ (196 + 9200w + 190l) dr (1.7)
<C (Ileolifr + 1900l + lloll3 ) -

If further, @o, 00 € H™* for some s € [O, %), then for allt > 0,

le@®N%-. + IVe®IF-. + lo@®lF-. < Co, (1.8)

and the following decay result holds for 1 =0,--- N — 1:

I+s

HVZSO(t)HHN4 + Hvl—‘rl@(t)HHNfl + HVZO'(L‘)HHN# < 00(1 +t)_ 5 .
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Note that the Hardy-Littlewood-Sobolev theorem implies that for p € (1,2],
LP C H™* with § = 3 (% - %) € [0,2). Then by Theorem 1.1, we have the
following corollary of the usual LP? — L? type of the optimal decay results:
Corollary 1.1. Under the assumptions of Theorem 1.1 except thal we replace the
H=3 assumption with the condition that pg, 00 € R® for some p € (1,2], then the
following decay results hold for 1 =0,--- ;N — 1:

960+ 9960+ 700 s < Cal1 402G 27,

The rest of this paper is organized as follows. In the next section, we establish
the energy estimates for problems (1.1)-(1.2); Section 3 is devoted to proving some
negative Sobolev norm estimates which are useful for the study of the longtime
behavior. The proof of Theorem 1 is shown in Section 4.

2. Energy estimates

In this section, we derive the a priori energy estimates for problems (1.1)-(1.2).
Suppose that there exists a small positive constant § > 0 such that

&) = lle®luz + IVella + llofm < 6. (2.1)

Lemma 2.1. If \/E3(t) < 8, Na, and 2/a —1—2x* > 0, then for k=0,...,N, then

we have

1d
2dt
2 k41, (2 Lokt 2 2.2
+(@2Va-1-2x%) |V 90HL2+§||V ‘7HL2 (22)
2
<Cllellz= V¥ ol -

Proof. Applying V* to (1.1), multiplying the resulting identity by V¥, and then

integrating over R® by parts, we arrive at
1d
2 dt

2 2 2
(I9* 61152 + 195+ ¢l + "1}

(9%l + 19" 6ll52) + 9520 ] 5 + al|V¥e];
=/, VFeVFT2 (03 — o — o) da.

Applying V¥ to (1.2), multiplying the resulting identity by V¥, and integrating
over R? by parts, we arrive at

Ld
2dt
Adding (2.3)-(2.4) together gives

¥l + V4 el = —x | TRov* 2 24
RS

5 (19502 + IV el + 901
+I7 2]+ @ [Tl + 750, 2.5)

= [ VRV (P —p—xo)dz—x | VFeVFPpdz = J) + Jo.
R3 R3
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Using Holder’s inequality and Sobolev’s embedding theorem, we have

= [ (6 < [P 95
R3

C IV ol (IVFP | L + [[VF 0] 12) (2.6)
ClIVE el . (lellze [[VE el o + [V L)
< Cllol2= IV ol 22 + | V|2

NN

and

Jo==2x | V*25VF*pda
R3

< 2)(/ VeV pdr (2.7
R3

< 5 IV ol +2¢ 94
Substituting (2.6),(2.7) into (2.5), we obtain
1d
2 dt
+ V5200 + @ [T + [V 0], (2:8)

2 2 2
(I9*llza + 175+ el + 9%l

1
<l Il + 95 el + 5 195 ol + 2 |94,
Note that

V5205 + | V5e ] > 2val|V* g, (2.9)
Summing up, we obtain
1d k,_||2 k41|12 k|2 k4112 k41, |2
531 (IVEellzs + 1951 + V5o, ) + (V4 o], + 2va [ V54| 7,
1
<Cllellip [V el + 5 [V ol + 0 +2) [VH s
(2.10)
then (2.2) is obtained directly. O

3. Negative Sobolev estimate

Lemma 3.1. If \/E2(t) <6, N > 2, and 2\/a — 1 —2x? > 0, then for s € (0, 3],
we have

1d s s s —s
L Aol + AVl + [A~5a) + (2va - 1 - 2:2) A=,
1
+ 5 A7 Vo5, < (920l + IVelE ) [1A]) .
(3.1)
Moreover, if s € (%, %), the following inequality holds:
ld
2 dt
s—1

1 -8 2 —s 3_5
+ 5 [A7Vo[ . < CAT| . I1Aglze el Vel Za

(1470l + 1AVl + 14721) + (2 = 1= 220) A~ Tl

(3.2)



1232 N. Duan & P. Fang

Proof. Taking A=° to (1.1) and (1.2), multiplying by A~*¢ and A~%c respectively
and integrating over R3, we deduce that

1d

—Ss 2 —s 2 —s 2 _s 2
g (A0l + 1AVl 5.) + A=, + oA,

= / ATPpATA (<p3 —p— XO') dz,
RS

and

1d
57 1Al + A Vo], = ‘X/RS Ao A, (3.4
Adding (3.3) and (3.4) together gives
1d
2 dt
Azl = / ATA (9% — ) A pda — 2x/ A~ AcA pder
R3 RS

=W+ W,

(A=l + 1AV el2. +IA~*0ll7. ) + A" A¢| 7, +[|A~*Vo] 7,

where
-5 —s -5 2
Wy, = / A AQDBA gOd(E + ||A VQOHLz = W1 + Wia,
R3
(3.6)
Wy = =2y AT AcA™ P pdzx.
R3
Ifse (O, %], we easily obtain %—l— % <land % > 6. Then, applying the Kato-Ponce
inequality and Sobolev’s embedding theorem together with Holder’s and Young’s
inequalities, it yields that

Wit <IA0 2 A= A¢° 2 < CILA 0 2] A
<C A7 s gl Ag ] el oo/
<ClA~¢] 2 I18elelielsors a7

<C A% 12 V20| s IVl | V20|12

<C (192617 + 19612 ) 1A~ ,
and

1
Wa <2 [A=Vo || 2 [[A7Vell o < 1A Vo e + 207 AVl (38)

5 5), we will
estimate the right-hand sides of (3.5) and obtain the negative Sobolev norm esti-
mates in a different way. Note that s € (%, %), it is easy to see that % + 5 <1land
3 € (2,6). Therefore, by using Kato-Ponce inequality and Sobolev’s embedding
theorem, we derive that

Summing up, we obtain (3.1) directly. On the other hand, if s € (1 3

_s S—1/2 3/2—s
Wi < C A0 . 1Al 2 llel s /2 Vel 327 (3.9)

Substituting (3.7)-(3.9) into (3.5), we obtain (3.2) directly. Then, the proof is
complete. m
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4. Global well-posedness and decay

In this section, we shall combine all the energy estimates that we have derived in
the previous two sections and the Sobolev interpolation to prove the main result.

Let N>1and 0 <! <m with 1 <m < N . Summing up the estimates (2.2)
from k =1 to m , since \/EZ(t) < § is small, we obtain

d 2 2 2
= 50 (IV¥ellze + V5. + Vo5

I<k<m

SES . - . ) (4.1)
+Co Y (Ml +IV¥ellh.) <82 X [9H el

I+1<k<mA+1 I<k<m
It is easy to see that there exists a constant Cy > 0 such that for 0 <1 <m — 1,

d
i 2 > (9%l + v el + Il

I<k<mI<k<m

+C Y (Ve + [VFe].) <o.

I<k<m

(4.2)

Define £"(t) to be 1/Cy times the expression under the time derivative in (4.2).
Hence, we may write (4.2) as that for 0 <1 <m —1,

d om 41|12 e
& O+ (v el + V07 ) < 0. (4.3)
Taking [ = 0 and m = 2 in (4.3) and integrating directly in time, we deduce that
IVe®)Il= + llo@®l7 < CE0) < C (||V¢0||i12 + ||ao||§{2) : (4.4)

By a standard continuity argument, if at the initial time is sufficiently small. This
in turn allows us to take [ =0 and m = N in (4.4) and obtain

d
&0 ) + 1Vl + ol <0, (4.5)

which implies that

t
N (1) + / (190l + lolZ) ds < £5(0). (4.6)

By a standard continuity argument, this establishes the a priori estimates (1.1) if
at the initial time we assume that ¢ is sufficiently small.

In the following, we consider the decay estimates for problems (1.1)-(1.2). It
is worth pointing out that we are not able to prove them for all s € |0, %) at this
moment. We shall first prove them for s € [O, %]

Define ) ) )

&0 = V| + 9L, + [l

and ) ) )
Es(t) = [|A 0|z + [AT Ve o + [[A7a |2
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Integrating in time, we obtain

e) <E0)+C | (9l + 196l ) VEST,

(4.7)
<Cy (1 + sup \/(S_S(T)dT> ,
o<t
which implies that for s € [0, %},
1A= ()] + 147 Vo(0)] o + A0 ()]}, < Co. (4.8)
Moreover, if l =0,1,2,--- | N |
921l = ClA £ + 917 (4.9)
Then, by this facts, we deduce that
I+
IV (0, Vo, 0)|[52 > (Co [V (e, V%U)H;) o (4.10)
Thus, we deduce from (4.3) the following inequality:
%&JFCO (&) <0.for 1 =0,1,2,-- N, (4.11)
which implies
E(t) <Co(141)717% for1=0,1,2,---N. (4.12)

On the other hand, the arguments for s € [0 7] cannot be applied to s € (2, 2)

However observing that g, 09 € H=Y/2 hold since H* N L2 ¢ H* for any
€ [0, s], we can deduce from what we have proved for (1.4) with s =  that the
following estimate holds:

IV'6]l52 + [V Vele + [ Viol;. < Coll+ 672 for 1=0.1--- N, (4.13)
Therefore, for s € (2, 2)
E-(t) SE(0)+C / lelz=" IVl Ve (r)dr

<C+C/ (1 +7)" 4=/ dr sup /E_(7) +C sup VE_ (1) (4.14)
0

7€[0,t] T€[0,t]
<C+C sup E_s(7),
T€[0,t]
that is
HA’Sc,o(t)HL2 + ||A’5Vg0(t)||L2 + HA’SJ(t)HL2 < Cy. (4.15)

We may repeat the arguments for s € [0, 2] to prove that they also hold for s €

(é, 2) Hence, the proof of the main result is complete.
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