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Exact Solution to the Compressible Euler System
in 1-D∗

Jiang Zhou1 and Jinbo Geng1,†

Abstract In this paper, the exact solution of one-dimensional isentropic Eu-
ler equations is studied. When the exponent of the state equation satisfies
γ = 2, we get an exact solution which is linear with respect to the spatial
variable x. For this end, we solve some ordinary differential equations with
time dependent variable coefficients.

Keywords Euler equations, compressible, exact solutions, ordinary differen-
tial equation

MSC(2010) 74G05, 35L70.

1. Introduction

As the most basic equations in the field of fluid mechanics, the compressible Euler
system can be used to describe and simulate many physical phenomena in real fluids.
The long time behavior of the solution to the equations has been widely studied.
Although there is no complete explanation so far, the research in this aspect is going
on all the time. There have been a lot of results. The isentropic compressible Euler
equations in n-d are as follows∂tρ+∇ · (ρu) = 0, (t, x) ∈ R+ ×Rn,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0, (t, x) ∈ R+ ×Rn,
(1.1)

where ρ = ρ(t, x), u = u(t, x) = (u1(t, x), u2(t, x), · · · , un(t, x)) and p = p(t, x) as
the real value of the unknown functions, represent the density, velocity and pressure
of the fluid, respectively.

System (1.1) is a nonlinear system of partial differential equations. General
speaking, it is very difficult to obtain the exact solution. The exact solution results
are mainly for one-dimensional Euler equations or high dimensional radial sym-
metry cases so far. Li and Wang considered radially symmetric solutions in any
dimension and constructed an exact solution of the form u = c(t)r (where r = |x|
and c(t) satisfies a second-order ordinary differential equation) and the blow up
of the solution of the compressible Euler equations was further analyzed [1]. Liang
constructed an exact solution to the non-isentropic one-dimensional Euler equations
in the form of u = c(t)x [2]. Furthermore, the blow up result is discussed by setting
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appropriate initial values c(0) and c′(0). Using similar methods, Yuen obtained the
following analytic solution in one-dimensional case:

ργ−1(x, t) = max
{
ργ−1(0, t)− γ−1

Kγ

[
ḃ(t) + b(t) ȧ(t)a(t)

]
x

− (γ−1)ξ
2Kγaγ+1(t)x

2, 0
}
,

u(x, t) = ȧ(t)
a(t)x+ b(t),

(1.2)

where a(t), b(t), and c(t) satisfy a system of differential equations [3]. Dong and Li
obtained radially symmetric and self-similar analytic solutions to compressible Euler
equations with time dependent damping and free boundary in three dimensional
space, and proved the global existence of such solutions [4]. Jia considered one-
dimensional isothermal Euler equations (p = aρ) with time dependent damping, and
an exact solution of the form ρ (x, t) = ec(t)x+d(t) was obtained [5]. For compressible
Navier-Stokes equations, there has also been a lot of work on solving the analytical
solutions and further studying the large time behavior of the solutions, see [6–8]
and the references therein.

The existing results show that the exact analytical solution is possible to obtain
in the case of one-dimensional or high-dimensional radial symmetry. In other cases,
although it is not easy to obtain the exact solution directly, it is very important
to study the large time behavior of the solution. Since the compressible Euler
equations can be written in the form of the symmetric hyperbolic system, which
admits a common phenomenon of singularity formation. We refer to [9–20] and
references therein for such kinds of results.

In this paper, the compressible Euler equations in one-dimension are mainly
considered. If the state equation is p = 1

2ρ
2, by solving an ordinary differential

equation, we obtain an exact solution, in which the density ρ(t, x) and the velocity
u(t, x) are linear with respect to the space variable x.

Specifically, we consider the following theorem.ρt + (ρu)x = 0, (x, t) ∈ R× R+,

(ρu)t +
(
ρu2

)
x
+
(
1
2ρ

2
)
x
= 0, (x, t) ∈ R× R+.

(1.3)

Then we have

Theorem 1.1. For system (1.3), there exists an exact solution of the following
form

ρ(x, t) = c(t)x+ d(t),

u(x, t) = − c′(t)

2c(t)
x+

c′(t)d(t)− 2c(t)d′(t)

2c2(t)
,

(1.4)

where

c(t) =
c2

(t+ 2c1)2
,

d(t) =
c3

t+ 2c1
+

c4 − c22 − c22 log (t+ 2c1)

(t+ 2c1)2
,

(1.5)

and c1, c2, c3, c4 are constants.
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2. The proof of Theorem 1.1

First, we verify that the solution given by (1.4) satisfies the first formula in system
(1.3). According to the expression in (1.4), it can be calculated directly that

ρx = c(t),

ρt = c′(t)x+ d′(t),

ux = − c′(t)
2c(t) ,

ut =
c′2(t)−c(t)c′′(t)

2c2(t) x+ c(t)c′′(t)d(t)+3c(t)c′(t)d′(t)−2c2(t)d′′(t)−2c′2(t)d(t)
2c3(t) .

(2.1)

From the first formula of equation (1.3), we substitute the above formula, and get

ρt + (ρu)x

=ρt + ρxu+ ρux

=c′x+ d′ + cu+ ρ ·
(
− c′

2c

)
=c′x+ d′ − 1

2
c′x+

c′d− 2cd′

2c
− 1

2
c′x− c′

2c
d

=0.

(2.2)

Therefore, we can get that the solution (1.4) satisfies the above mass equation.
Next we consider the second formula of equation (1.3). From the second formula of
equation (1.3), it can be obtained

ρtu+ ρut + ρxu
2 + 2ρuux + ρρx = 0, (2.3)

then the first formula of the side end (1.3), that is

−ρxu
2 − ρuux + ρut + ρxu

2 + 2ρuux + ρρx = 0, (2.4)

which can be simplified to

uxu+ ut + ρx = 0. (2.5)

The formula (2.1) is substituted into

uxu+ ut + ρx

= − c′

2c

(
− c′

2c

)
x− c′2d−2cc′d′

4c3 + c′2−cc′′

2c2 x+ cc′′d+3cc′d′−2c2d′′−2c′2d
2c3 + c

=
(

c2

4c2 + c′2−cc′′

2c2

)
x− c′2d−2cc′d′

4c3 + cc′′d+3cc′d′−2c2d′′−2c′2d
2c3 + c

= 3c′2−2cc′′

4c2 x− c′2d−2cc′d′

4c3 + cc′′d+3cc′d′−2c2d′′−2c′2d
2c3 + c = 0.

(2.6)

By comparing the coefficients of the primary term of x and the constant term, a
system of equations about c and d is obtained as follows 3c′2−2cc′′

4c2 = 0

− c′2d−2cc′d′

4c3 + cc′′d+3cc′d′−2c2d′′−2c′2d
2c3 + c = 0.

(2.7)
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d′′(t)− 2c′(t)
c(t) d′(t) + 5c′2(t)−2cc′′(t)

4c2(t) d(t) = c2(t).
(2.8)

For the first equation in the above equation, we have

2
(
c′2 − cc′′

)
+ c′2 = 0, (2.9)

that is

2

(
c′2 − cc′′

c′2

)
+ 1 = 0. (2.10)

So, it can be converted to ( c

c′

)′
= −1

2
, (2.11)

and integrating both sides, we get

c(t)

c′(t)
= −1

2
t+ c1, (2.12)

where c1 is an arbitrary constant. Separating the variables, we get

dc

c
=

1

− 1
2 t+ c1

dt, (2.13)

so we integrate both sides again to get

log |c| = −2 log

∣∣∣∣−1

2
t+ c1

∣∣∣∣ = log
1(

− 1
2 t+ c1

)2 + c, (2.14)

and hence,we have

c(t) =
c2(

− 1
2 t+ c1

)2 =
c2

(t+ 2c1)
2 . (2.15)

Next we solve for d(t). From (2.15), we obtain c′(t) = −2c2 (t+ 2c1)
−3

= −2c (t+ 2c1)
−1

,

c′′(t) = 6c2 (t+ 2c1)
−4

= 6c (t+ 2c1)
−2

.
(2.16)

Therefore, the second equation in the above (2.8) can be reduced to

d′′(t) +
4

t+ 2c1
d′(t) +

2

(t+ 2c1)
2 d(t) =

c22

(t+ 2c1)
4 . (2.17)

This is a second-order nonhomogeneous ordinary differential equation with vari-
able coefficients. First,we try to obtain the general solution of the corresponding
homogeneous equation, that is

(t+ 2c1)
2d′′(t) + 4(t+ 2c1)d

′(t) + 2d(t) = 0. (2.18)

This equation is a typical Euler equation, and it is considered to be transformed
into an ordinary differential equation with constant coefficients.
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Let τ = t+ 2c1, then the above expression is converted to

τ2d′′ (τ − 2c1) + 4τd′ (τ − 2c1) + 2d (τ + 2c1) = 0. (2.19)

Let m = log τ , then τ = em. Thus it follows that

d
dτ = d

dm · dm
dτ = 1

τ
d

dm ,

d2

dτ2 = d
dτ

1
τ

d
dm = 1

τ2

(
d2

dm2 − d
dm

)
= 1

τ2
d

dm

(
d

dm − 1
)
.

(2.20)

Therefore, equation (2.18) can be reduced to

d′′(m)− d′(m) + 4d′(m) + 2d(m) = d′′(m) + 3d′(m) + 2d(m) = 0. (2.21)

The second order ordinary differential equations with constant coefficients can be
solved by eigenroot method. The characteristic equation of this equation is

r2 + 3r + 2 = 0, (2.22)

and two eigenroots can be solved as r1 = −1, r2 = −2. So the general solution is

d(m) = c3e
−m + c4e

−2m, (2.23)

that is
d(t) =

c3
t+ 2c1

+
c4

(t+ 2c1)
2 . (2.24)

We get the general solution of equation (2.17) corresponding to the homogeneous
equation. Now let’s think about the particular solution. Let’s assume the general
solution is

d(t) = c3y1(t) + c4y2(t), (2.25)

where y1(t) =
1

t+2c1
and y2(t) =

1
(t+2c1)2

. It’s easy to verify that both y1(t) =
1

t+2c1

and y2(t) = 1
(t+2c1)2

satisfy the homogeneous equation (2.18), that is, y1(t) =
1

t+2c1
, y2(t) =

1
(t+2c1)2

are the corresponding solution of homogeneous equation for

equation (2.17).
The following uses the method of constant variation to find the special solution

of the above nonhomogeneous equation. We set

y∗ = y1(x)v1(x) + y2(x)v2(x). (2.26)

In order to make the above nonhomogeneous equation (2.17), we first need to de-
termine the unknown functions v1(x) and v2(x). Taking the derivative of (2.26),
we have

y∗′ = y1v
′
1 + y2v

′
2 + y′1v1 + y′2v2. (2.27)

By v1(x) and v2(x), as defined by the solution of y∗ for the nonhomogeneous equa-
tion (2.17), it is better to make them meet another relationship. According to y∗

expression, in order to make the y′′ not contain the v′′1 and v′′2 , we can set

y1v
′
1 + y2v

′
2 = 0. (2.28)

Hence, we have
y∗′ = y′1v1 + y′2v2. (2.29)
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Furthermore we take the second derivative to get

y∗′′ = y′1v
′
1 + y′2v

′
2 + y′′1 v1 + y′′2 v2. (2.30)

We substitute y∗,y∗′,y∗′′ into equation(2.17), which is simplified to

y′1v
′
1 + y′2v

′
2 +

(
y′′1 + 4

t+2c1
y′1 +

2
(t+2c1)

2 y1

)
v1

+
(
y′′2 + 4

t+2c1
y′2 +

2
(t+2c1)

2 y2

)
v2 =

c22
(t+2c1)

4 .
(2.31)

Since y1 and y2 are the solutions of equation (2.17) corresponding to the homoge-
neous equation, the above formula can be simplified to

y′1v
′
1 + y′2v

′
2 =

c22

(t+ 2c1)
4 = f(t). (2.32)

Simultaneously equation (2.28) and equation (2.32) imply that it can be calculated
when the coefficient matrix determinant

W =

∣∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1
t+2c1

1
(t+2c1)

2

−1
(t+2c1)

2
−2

(t+2c1)
3

∣∣∣∣∣∣ = − 1

(t+ 2c1)
4 ̸= 0. (2.33)

We have  v′1(t) = −y2f
W =

c22
(t+2c1)

2

v′2(t) =
y1f
W = − c22

t+2c1
.

(2.34)

What we get when we integrate it is as follows

v1(t) = C1 −
c22

t+ 2c1
, v2(t) = C2 − c22 log (t+ 2C1) . (2.35)

Therefore, the special solution is

y⋆(t) = y1(t)v1(t) + y2(t)v2(t)

=
−c22

(t+ 2c1)
2 − c22 log(t+ 2c1)

(t+ 2c1)2
.

(2.36)

According to the relevant theory of the linear differential equation solution, the
general solution of the above non-homogeneous equation (2.17) is

d(t) = D(t) + y∗(t) =
c3

t+ 2c1
+

c4 − c22 − c22 log (t+ 2c1)

(t+ 2c1)2
, (2.37)

then Theorem 1.1 is proved.
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