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Analytical and Numerical Investigation of
Fractional Delay Differential Equations under

Relaxed Lipschitz Assumptions

Sami Segni1,†, Hamza Guebbai1 and Ridha Dida1

Abstract Fractional delay differential equations constitute a powerful math-
ematical framework for modeling complex dynamical phenomena exhibiting
memory and delay effects. In this study, we investigate a class of fractional
delay differential equations incorporating Caputo and Riemann-Liouville frac-
tional derivatives with a delay term. Unlike previous approaches, we establish
the existence and uniqueness of the analytical solution under relaxed Lipschitz
conditions on the nonlinear terms, without requiring contraction assumptions.
Utilizing Picard iteration techniques, we demonstrate convergence of the nu-
merical method under these Lipschitz conditions, thereby broadening the ap-
plicability of our model to a wider range of real-world scenarios. Additionally,
numerical tests are conducted to validate the effectiveness and accuracy of the
proposed method, further highlighting its utility in practical applications. Our
findings offer new insights into the modeling and analysis of complex dynamical
systems, with implications for various scientific and engineering disciplines.
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1. Introduction

Fractional differential equations (FDEs) provide a powerful mathematical frame-
work for modeling complex dynamical phenomena across various scientific domains,
ranging from physics to biology to engineering. The introduction of fractional
derivatives generalizes classical derivatives, allowing for a more precise description
of non-local and non-stationary phenomena.

Incorporating both Riemann-Liouville and Caputo fractional derivatives [9] into
differential equations with a delay term constitutes a particularly fascinating and
relevant area of research. This class of problems offers several scientific and practical
advantages: Modeling Non-Local Temporal Dynamics [10], Flexibility in Modeling
Real-World Phenomena [12,13], In-Depth Mathematical Analysis and Practical Ap-
plications in Technology and Engineering [11].
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In this study, we focus on a specific class of FDEs that incorporate both Caputo
and Riemann-Liouville fractional derivatives along with a delay term introduced by
Hallaci et al [1]. The equation under investigation is given by:

∀t ∈ [0, T ] , RLDα
(C
Dβu (t)− g(t, u (t− τ))

)
= f(t, u(t)),

∀t ∈ [−τ, 0] , u (t) = ϕ(t),

lim
t−→0

t1−α CDβu (t) = 0,

u′ (0) = 0.

This equation captures the intricate interplay between fractional calculus, delay
dynamics, and nonlinearity, making it a subject of considerable interest in both the-
oretical and applied mathematics. The Caputo and Riemann-Liouville derivatives
offer a comprehensive framework for describing the temporal behavior of systems
with memory and non-local effects, while the delay term accounts for delayed in-
teractions in the system.

In this paper, we aim to explore the analytical properties and numerical solu-
tions of this fractional delay differential equation. We investigate the existence and
uniqueness of solutions using Picard’s sequence under some lipschitz conditions. For
the numerical analysis, we employ numerical integration techniques to approximate
the solutions.

By delving into this class of equations, we contribute to the broader understand-
ing of fractional calculus and its applications in dynamical systems theory, paving
the way for advancements in modeling and analysis of complex phenomena.

In our study, we utilized Picard iteration techniques to establish the existence
and uniqueness of the analytical solution, under relaxed Lipschitz conditions on f
and g, without the need for contraction assumptions as in previous works [1, 10,
11]. Moreover, these Lipschitz conditions were found to be sufficient for ensuring
convergence of the numerical method. This approach allowed us to broaden the
scope of applicable scenarios and enhance the robustness of our model in handling
various real-world complexities.

2. Problem position

In this section, we introduce the fractional differential problem to be studied in this
paper and his integral equivalent form. Let f, g : [0, T ]×R → R be two continuous
functions, where T > 0. Our goal is to solve numerically the following fractional
differential equation (FDE) with a delay τ > 0

∀t ∈ [0, T ] , RLDα
(C
Dβu (t)− g(t, u (t− τ))

)
= f(t, u(t)),

∀t ∈ [−τ, 0] , u (t) = ϕ(t),

lim
t−→0

t1−α CDβu (t) = 0,

u′ (0) = 0,

where 0 < α < 1, 1 < β < 2, ϕ is a given continuous function and u is the unknown
to be found in C0[0, T ], RLDα the Riemann-Liouville fractional derivative is given,
for α ∈ ]n− 1, n[, n ∈ N, by
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∀t ≥ 0, RLDαψ (t) =
1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)
n−α−1

ψ (s) ds,

and CDα is the Caputo fractional derivative, which is given for α ∈ ]n− 1, n[,
n ∈ N by

∀t ≥ 0, CDαψ (t) =
1

Γ(n− α)

∫ t

0

(t− s)
n−α−1

ψ(n) (s) ds,

where, Γ is the Euler gamma function defined for α by

Γ(α) =

∫ ∞

0

e−ηηα−1dη.

Hallaci et al. [1] showed that (FDE) is equivalent to the following fractional
integral equation (FIE)

u(t) =
1

Γ(α+ β)

∫ t

0

(t− s)α+β−1f(s, u(s− τ))ds

+
1

Γ(β)

∫ t

0

(t− s)β−1g(s, u(s− τ))ds+ ϕ(0),

with,
∀t ∈ [−τ, 0] , u (t) = ϕ (t) .

In the next section, we are going to deal directly with the integral version (FIE)
of our problem. Firstly, we show that (FIE) has a unique solution u ∈ C0 [0, T ]
supposed to be equipped with its usual norm,

∀ψ ∈ C0 [0, T ] , ∥ψ∥ = max
0≤t≤T

|ψ(t)|.

Secondly, we use numerical integration to build an approximation of u.

3. Analytical approach

Our goal in this section is to build acceptable hypotheses in order to obtain a unique
solution u of the following (FIE)

u(t) =
1

Γ(α+ β)

∫ t

0

(t− s)α+β−1f(s, u(s− τ))ds

+
1

Γ(β)

∫ t

0

(t− s)β−1g(s, u(s− τ))ds+ ϕ(0). (3.1)

Changing s by s+ τ , we get

u(t) =
1

Γ(α+ β)

∫ t−τ

−τ

(t− τ − s)α+β−1f(s+ τ, u(s))ds

+
1

Γ(β)

∫ t−τ

−τ

(t− τ − s)β−1g(s+ τ, u(s))ds+ ϕ(0). (3.2)
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But, for all t ∈ [−τ, 0], u(t) = ϕ(t), then

u(t) =
1

Γ(α+ β)

∫ t−τ

0

(t− τ − s)α+β−1f(s+ τ, u(s))ds

+
1

Γ(β)

∫ t−τ

0

(t− τ − s)β−1g(s+ τ, u(s))ds+ h(t), (3.3)

where ∀t ∈ [0, τ ], and

h(t) =
1

Γ(α+ β)

∫ 0

−τ

(t− τ − s)α+β−1f(s+ τ, ϕ(s))ds

+
1

Γ(β)

∫ 0

−τ

(t− τ − s)β−1g(s+ τ, ϕ(s))ds+ ϕ(0). (3.4)

Theorem 3.1. Assume that f and g verify the following Lipshitz proprieties

(C1) :∃L1 > 0, ∀t ∈ [0, T ], ∀x, x ∈ R |f(t, x)− f(t, x)| ≤ L1|x− x|,
(C2) :∃L2 > 0, ∀t ∈ [0, T ], ∀x, x ∈ R |g(t, x)− g(t, x)| ≤ L2|x− x|.

Then, equation (3.3) admits a unique solution u ∈ C0[0, T ].

Proof. We introduce a Picard sequence {un}n∈N as

u0 = h,

∀t ∈ [0, T ], ∀n ≥ 0, un+1(t) =
1

Γ(α+ β)

∫ t−τ

0

(t− τ − s)α+β−1f(s+ τ, un(s))ds

+
1

Γ(β)

∫ t−τ

0

(t− τ − s)β−1g(s+ τ, un(s))ds+ h(t).

We obtain, ∀t ∈ [0, T ],

|un+1(t)− un(t)|

=
∣∣∣ 1

Γ(α+ β)

∫ t−τ

0

(t− τ − s)α+β−1
[
f(s+ τ, un(s))− f(s+ τ, un−1(s))

]
ds

+
1

Γ(β)

∫ t−τ

0

(t− τ − s)β−1
[
g(s+ τ, un(s))− g(s+ τ, un−1(s))

]
ds
∣∣∣

≤ L1

Γ(α+ β)

∫ t−τ

0

(t− τ − s)α+β−1
∣∣un(s)− un−1(s)

∣∣ds
+

L2

Γ(β)

∫ t−τ

0

(t− τ − s)β−1
∣∣un(s)− un−1(s)

∣∣ds.
Therefore, ∀ n ≥ 1, ∀ t ∈ [0, T ],

|un+1(t)−un(t)| ≤

(
L1(T − τ)α+β−1

Γ(α+ β)
+
L2(T − τ)β−1

Γ(β)

)∫ t

0

|un(s)− un−1(s)|ds.
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Repeating the last inequality n−times, we obtain: ∀ t ∈ [0, T ],

|un+1(t)− un(t)| ≤

(
L1(T − τ)α+β−1

Γ(α+ β)
+
L2(T − τ)β−1

Γ(β)

)
Tn

n!
H,

where,

H =
L1(T − τ)α+β−1

Γ(α+ β)

∫ T−τ

0

|f(s+τ, h(0))|ds+L2(T − τ)β−1

Γ(β)

∫ T−τ

0

|g(s+τ, h(0))|ds,

proving that
∑
n≥1

(un − un−1) is uniformly convergent in C0[0, T ] to a function u,

i.e

∀t ∈ [0, T ] :

+∞∑
n=1

(un(t)− un−1(t)) = lim
n−→+∞

un(t) = u(t).

We use the continuity of fand g to prove that u is solution of (3.3). Now, to
show the uniqueness, we set ũ ∈ C0[0, T ] as a new solution of (3.3).

Then, ∀t ∈ [0, T ]

|u(t)− ũ(t)| =

(
L1 (T − τ)

α+β−1

Γ(α+ β)
+
L2 (T − τ)

β−1

Γ(β)

)∫ t

0

|u(s)− ũ(s)| ds

≤

(
L1 (T − τ)

α+β−1

Γ(α+ β)
+
L2 (T − τ)

β−1

Γ(β)

)∫ t

0

|u(s)− ũ(s)| ds.

We use Lemma 3 from [2] to obtain ∀t ∈ [0, T ], u(t) − ũ(t) = 0, proving the
uniqueness.

4. Numerical approach

From the previous section, we understand that if (C1) and (C2) are verified, the
system

u(t) =ϕ(t), t ∈ [−τ, 0], (4.1)

u(t) =
1

Γ(α+ β)

∫ t−τ

0

(t− τ − s)α+β−1f(s+ τ, u(s))ds

+
1

Γ(β)

∫ t−τ

0

(t− τ − s)β−1g(s+ τ, u(s))ds+ ϕ(0) (4.2)

admits a unique solution u ∈ C0[−τ, T ].
The objective of this section is to build a numerical approximation of the exact

solution u. For that, we use Nyström method because of its efficiency to deal
with this type of Volterra equation as show in many previous works [2–6]. Let us
introduce a subdivision of the interval [−τ, T ] in the following sense.

For an integer N ≥ 2, we define h = τ
N and M ∈ N such that −τ + (M − 1)h <

T ≤ −τ +Mh, let now {ti}Mi=1 be a subdivision of [−τ, T ] such that

ti = −τ + ih, 0 ≤ i ≤M − 1,

tM = T.
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With this subdivision, we use trapezoidal weights {Wi}Mi=0 given by:

W0 =
h

2
, WM =

T + τ − (M − 1)h

2
,

Wi = h, 1 ≤ i ≤M − 1,

WM =
T + τ − (M − 1)h

2

as a numerical integration method. This is the most adequate method with our
equation because it verifies ( see [7]):

∀x ∈ C0[−τ, T ], lim
h−→0

∣∣∣ M∑
i=0

Wix(ti)−
∫ T

−τ

x(t)dt
∣∣∣ = 0. (4.3)

Applying Nyström method with trapezoidal rule to the systems (4.1)-(4.2) gives us
the following discrete system

ui =ϕ(ti), 0 ≤ i ≤ N, (4.4)

ui =
1

Γ(α+ β)

i−N∑
j=0

Wj(ti − τ − tj)
α+β−1f(tj + τ, uj)

+
1

Γ(β)

i−N∑
j=0

Wj(ti − τ − tj)
β−1g(tj + τ, uj) + h(ti) N + 1 ≤ i ≤M, (4.5)

where, Ui ≈ u(ti) for 0 ≤ i ≤M .
Unlike system obtained with Nyström method in [2,8] the delay term gives us an

explicit numerical systems (4.4)-(4.5) which facilitates the convergence study and
programming.

To study the convergence of our numerical method, we introduce the discrete
error {εi}Mi=0 as

εi = Ui − u(ti), 0 ≤ i ≤M.

Now, we introduce the consistence errors for :
N + 1 ≤ i ≤ 2N,

δ̂1i =

∫ ti−τ

0

(ti − τ − s)α+β−1f(s+ τ, ϕ(s))ds

−
N∑

j=i−N

Wj(ti − τ − tj)
α+β−1f(tj + τ, ϕ (tj)),

δ̂2i =

∫ ti−τ

0

(ti − τ − s)β−1g(s+ τ, ϕ(s))ds

−
N∑

j=i−N

Wj(ti − τ − tj)
β−1g(tj + τ, ϕ(tj)).



Fractional Delay Equation with Relaxed Lipschitz Conditions 1251

But, for 2N+1 ≤ i ≤M, (T >> τ and ℏ small enough to obtain M ≥ 2N + 2),
the consistence errors are given by

δ1i =

∫ ti−τ

0

(ti − τ − s)α+β−1f(s+ τ, u(s))ds

−
i−N∑
j=N

Wj(ti − τ − tj)
α+β−1f(tj + τ, u(tj)),

δ2i =

∫ ti−τ

0

(ti − τ − s)β−1g(s+ τ, u(s))ds

−
i−N∑
j=N

Wj(ti − τ − tj)
β−1g(tj + τ, u(tj)).

Using (4.3), it is obvious to obtain that

lim
h−→0

max
N+1≤i≤2N

|δ̂1i | = lim
h−→0

max
N+1≤i≤2N

|δ̂2i | = lim
h−→0

max
2N+1≤i≤M

|δ1i |

= lim
h−→0

max
2N+1≤i≤M

|δ2i | = 0.

Also, it is clear that

εi = 0, 0 ≤ i ≤ N.

Theorem 4.1. Supposing that (C1) , (C2) hold, then

lim
h−→0

max
N≤i≤M

|εi| = 0.

Proof. For all 2N + 1 ≤ i ≤M, we have:

|εi| = |Ui − u (ti)|

= | 1

Γ(α+ β)

i−N∑
j=N

Wj(ti − τ − tj)
α+β−1f(tj + τ, uj)

+
1

Γ(β)

i−N∑
j=N

Wj(ti − τ − tj)
β−1g(tj + τ, uj)

− 1

Γ(α+ β)

∫ ti−τ

0

(ti − τ − s)α+β−1f(s+ τ, u(s))ds

− 1

Γ(β)

∫ ti−τ

0

(ti − τ − s)β−1g(s+ τ, u(s))ds |

≤ h

Γ(α+ β)

i−N∑
j=N

(ti − τ − tj)
α+β−1 | f(tj + τ, uj)− f(tj + τ, u (tj)) |

+
h

Γ(β)

i−N∑
j=N

(ti − τ − tj)
β−1 | g(tj + τ, uj)− g(tj + τ, u (tj)) |
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+ max
2N+1≤i≤M

|δ1i |+ max
2N+1≤i≤M

|δ2i |

≤ 2h (T − τ)
α+β−1

Γ(β)
max {L1, L2}

i−N∑
j=N

|εj |+ max
2N+1≤i≤M

|δ1i |+ max
2N+1≤i≤M

|δ2i |,

which means, for all 2N + 1 ≤ i ≤M,

|εi| ≤
2h (T − τ)

α+β−1
max {L1, L2}

Γ(β)− 2h (T − τ)
α+β−1

max {L1, L2}

i−N−1∑
j=N

|εj |

+
Γ(β)

Γ(β)− 2h (T − τ)
α+β−1

max {L1, L2}

(
max

2N+1≤i≤M

(
|δ1i |+ |δ2i |

))
.

Applying Theorem 7.1 page 101 from [7], we obtain for all 2N + 1 ≤ i ≤M,

|εi|≤AN,M · Γ(β)

Γ(β)−2h (T−τ)α+β−1
max {L1, L2}

(
max

2N+1≤i≤M
|δ1i |+ max

2N+1≤i≤M
|δ2i |
)
,

where

AN,M =

(
1 +

2h (T − τ)
α+β−1

max {L1, L2}
Γ(β)− 2h (T − τ)

α+β−1
max {L1, L2}

)M−N

.

But,

1

AN,M
=

(
1− 2τ (T − τ)

α+β−1
max {L1, L2}

N Γ(β)

)M−N

.

Then,

AN,M ∼ exp

(
2τ (T − τ)

α+β−1
max {L1, L2}

Γ(β)

)
.

Now, for N + 1 ≤ i ≤ 2N, we use the same previous steps to obtain,

|εi| ≤
2h (T − τ)

α+β−1
max {L1, L2}

Γ(β)

N∑
j=i−N

|εj |

+ max
N+1≤i≤2N

|δ̂1i |+ max
N+1≤i≤2N

|δ̂2i |.

We use |εj | = 0, i−N ≤ j ≤ N, to achieve the proof.

5. Numerical example

We take the same analytical example studied in [1], i.e

α = 0.5, β = 1.5, T = 1, f(t, x) =
sin(x)

1 + t2
, g(t, x) = cos(t)

(
t2e−e−2

− t2

2
+

sin(tx)

e

)
.

If we take ϕ(t) = t exp(t), τ = 0.2, the numerical results are presented in figure 1.
But, figure 2 represents the case where ϕ(t) = −0.1 sin(10πt), τ = 0.3.
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Figure 1. ϕ(t) = t exp(t), τ = 0.2
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Figure 2. ϕ(t) = −0.1 sin(10πt), τ = 0.3
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