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Abstract Consider (M, g) as an n-dimensional compact Riemannian man-
ifold. Our main aim in this paper is to study the first eigenvalue of (p, q)-
Laplacian system on C-totally real submanifold in Sasakian space of form
M̄2m+1 (κ). Also in the case of p, q > n we show that for λ1,p,q arbitrary large
there exists a Riemannian metric of volume one conformal to the standard
metric of Sn.
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1. Introduction

Studying the bounds of the eigenvalue of the Laplacian on a given manifold is
a key aspect in Riemannian geometry. A major objective of this purpose is to
study eigenvalue that appears as a solution of Dirichlet or Neumann boundary value
problems for curvatures functions. By reason of the theory of self-adjoint operators,
the spectral properties of linear Laplacian were studied extensively. As an example,
mathematicians are generally attracted to the spectrum of the Laplacian on compact
manifolds with or without boundary or on noncompact complete manifolds in these
two cases the linear Laplacian can be uniquely extended to self-adjoint operators
(see [7, 8]).

Consider (Mn, g) as an n-dimensional compact Riemannian manifold. Let u :
M −→ R be a smooth function on M or u ∈ W 1,p (M) where W 1,p (M) is the
Sobolev space. The p-Laplacian of u for 1 < p <∞ is defined as

∆pu = div
(
|∇u|p−2∇u

)
= |∇u|p−2∆u+ (p− 2) |∇u|p−4 (Hess u) (∇u,∇u) ,

where

(Hess u) (X,Y ) = ∇ (∇u) (X,Y )

= X (Y u)− (∇XY )u X, Y ∈ χ (M) .

The first eigenvalues of p-Laplace operator in both Dirichlet and Neumann cases
have been studied in many papers (see for example [14]).
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In this paper we are going to study the first Dirichlet eigenvalue of the system
∆pu = −λ|u|α|v|βv, in M,

∆qv = −λ|u|α|v|βu, in M,

u = v = 0, on ∂M,

(1.1)

where p, q > 1 and α, β are real numbers such that

α+ 1

p
+
β + 1

q
= 1.

Let (M, g) be an n-dimensional compact Riemannian manifold. The first Dirichlet
eigenvalue of system (1.1) is defined as

λ1,p,q (M) = inf
u,v ̸=0

{ 1∫
M

|u|α+1|v|β+1dv

[α+ 1

p

∫
M

|∇u|pdv + β + 1

q

∫
M

|∇v|qdv
]}
,

where

(u, v) ∈W 1,p
0 (M)×W 1,q

0 (M) \ {0}.

As an example, the second author studied the first eigenvalue of the system (1.1)
in [3].

The (p, q)-Laplacian system (1.1) was studied before in many papers. As an
example the authors of this paper studied the first eigenvalue of the general case
of the system (1.1) under the integral curvature condition in [9]. These types of
systems have been found in different cases in physics. For example, they are relevant
to the study of transport of electron temperature in a confined plasma and also to
the study of electromagnetic phenomena in nonhomogeneous super conductors (
see [5, 6]).

The study of submanifolds, especially Legendrian submanifolds in contact man-
ifolds from the Riemannian geometric perspective was initiated in the 1970s. The
main problem in this area is to establish the classes which include such subman-
ifolds. As an example, nonharmonic biharmonic submanifolds in Sasakian space
forms of low dimension were studied before in [11,17]. The importance of studying
eigenvalues of Laplacian was clearly obtained by Reilly in [15]. As a quick remark,
we recall that the n-manifold Mn is called a minimal submanifold, if the mean
curvature vector vanishes on Mn everywhere. In this case Reilly showed that the
first eigenvalue of the Laplacian for a compact n-manifold isometrically immersed
in Euclidean space is bounded above by n times the average value of the square
of the norm of the mean curvature vector. Moreover, if the eigenvalue achieves
this bound, then the submanifold is a minimal submanifold of some hypersphere in
the Euclidean space. Ali et al. studied the first non-zero eigenvalue of p-Laplacian
operator in [1].

Proposition 1.1. Let Σn be an n-dimensional closed oriented C-totally real sub-
manifold in a Sasakian space form M̄2m+1 (κ). The first non-zero eigenvalue λ1,p
of the p-Laplacian satisfies the following conditions.

• If 1 < p ≤ 2 then

λ1,p ≤ 2(1−
p
2 ) (m+ 1)(

1− p
2 ) n

p
2

(V ol (Σ))
p
2

(∫
Σn

((
κ+ 3

4

)
+ |H|2

)
dv

) p
2

.
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• If 2 < p ≤ n
2 + 1

λ1,p ≤ 2(1−
p
2 ) (m+ 1)(

1− p
2 ) n

p
2

(V ol (Σ))
p
2

∫
Σn

((
κ+ 3

4

)
+ |H|2

) p
2

dv,

where H denotes the mean curvature of the immersion of Σn into Rm.

As a quick review, in this paper, by improving this result for the first Dirichlet
eigenvalue of system (1.1) in the Sasakian space form, also we are going to prove
the following theorems.

Theorem 1.1. Let Mn be an n-dimensional compact Riemannian manifold and
consider Σn as an n-dimensional closed oriented C-totally real submanifold in a
Sasakian space form M̄2m+1 (κ) with a constant sectional curvature κ. If λ1,p,q
denotes the first eigenvalue of system (1.1), then for arbitrary natural N :

• For p ≥ q ≥ 2 we get

λ1,p,q ≤
√
2
p2

(m+ 1)
1
2p

2

n
p
2

∫
Σn

((
κ+ 3

4

)
+ |H|2

) p
2

dv.

• For 1 < q ≤ p < 2 we get

λ1,p,q ≤
√
2
−q(q+1)

(m+ 1)
− 1

2 q(q+1)
n

p
2

∫
Σn

((
κ+ 3

4

)
+ |H|2

) q
2

dv.

• For p ≥ q > 2 we get

λ1,p,q ≤
√
2
(p2−q)

(m+ 1)
1
2 (p

2−q) n
p
2

∫
Σn

((
κ+ 3

4

)
+ |H|2

) p
2

dv,

where H is the same as the previous one.

Theorem 1.2. Consider M as an n-dimensional compact manifold. If λ1,p,q de-
notes the first eigenvalue of the (p, q)-Laplacian system (1.1) and p ≥ q > n then
for ϵ > 0

lim sup
ϵ→0

λ1,p,q (ϵ) ϵ
p
n = ∞.

2. Preliminaries in Sasakian spaces

In this section, we are going to introduce the Sasakian space forms and some other
useful notations. Consider

(
M̄, g

)
as an odd dimensional smooth manifold with an

almost contact structure (φ, ξ, η), to be an almost contact metric manifold and also
for every U, V ∈ Γ

(
TM̄

)
the following relations hold.

φ2 = −I + η ⊗ ξ, η (ξ) = 1, φ (ξ) = 0, η ◦ φ = 0,

g (φU,φV ) = g (U, V )− η (U) η (V ) , η (U) = g (U, ξ) ,

where φ, ξ and η are called a (1, 1)-type tensor field, a structure vector field and a
dual 1-form respectively. In this case an almost contact metric manifold is called
Sasakian manifold with Riemannian connection(

∇̄Uφ
)
V = g (U, V ) ξ − η (V )U,
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where

∇̄Uξ = −φU,

U , V are vector fields on M̄2m+1 and ∇̄ denotes the Riemannian connection with
respect to g (for more details see [2]). We recall that for tangent vectors X, Y , Z,
W on Σn, the Gauss equation is given by

R̄ (X,Y, Z,W ) = R (X,Y, Z,W ) + g (h (X,Y ) , h (Y,W ))− g (h (X,W ) , h (Y, Z)) ,

where R̄, R are the curvature tensors on M̄2m+1 and Σn respectively. If M̄2m+1 (κ)
denotes the Sasakian space form of φ-sectional curvature κ, then the curvature
tensor R̄ of M̄2m+1 (κ) can be explained as

R̄ (X,Y, Z,W ) =

(
κ+ 3

4

){
g (Y, Z) g (X,W )− g (X,Z) g (Y,W )

}
(2.1)

+

(
κ− 1

4

){
η (X) η (Z) g (Y,W ) + η (W ) η (Y ) g (X,Z)

− η (Y ) η (Z) g (X,W )− η (X) g (Y,Z) η (W )

+ g (φY,Z) g (φX,W )− g (φX,Z) g (φY,W )

+ 2g (X,φY ) g (φZ,W )
}
,

where X,Y, Z ∈ Γ
(
TM̄

)
.

Let M̄2m+1 (κ) be a Sasakian space form of constant φ-sectional curvature κ.
The n-dimensional Riemannian submanifold Σn of M̄2m+1 (κ) is called C-totally
real submanifold in the case that ξ is a normal vector field on Σn. That is, the
standard almost contact structure φ of M̄2m+1 (κ) maps any tangent space of Σn

into the corresponding normal space (see [16]).
By the quantity ( 2.1) the curvature tensor R̄ for a C-totally real submanifold

in a Sasakian space form M̄2m+1 (κ) is given as

R̄ (X,Y, Z,W ) =

(
κ+ 3

4

){
g (Y,Z) g (X,W )− g (X,Z) g (Y,W )

}
.

In the case where χ is a C-totally real immersion from Σn to an (2m+ 1)-dimensional
Riemannian manifold

(
M̄, g

)
, Σn has an induced metric gΣ = χ∗g. If {ei}2m+1

i=1 is

an orthogonal frame for M̄2m+1 (κ) where {ej}nj=1 are tangent to Σn and {ek}2m+1
k=n+1

are normal to Σn as well, then A. Ali et al. have already proved in [1] that

R =

(
κ+ 3

4

)
n (n− 1) + n2|H|2 − S,

where R is the scalar curvature of Σn, S =
∑

i,j,k

(
πk
ij

)2
is the norm square of

the second fundamental form. H =
∑

kH
kek = 1

n

∑
k

(∑
i π

k
ij

)
ek is the mean

curvature vector of Σn and

1 ≤ i, j ≤ n, n+ 1 ≤ k ≤ 2m+ 1.

We recall that if M̄2m+1 is equipped with a new metric ḡ = e2µg which is conformal
to g, then {ēi}2m+1

i=1 = e−µ{ei}2m+1
i=1 is an orthogonal frame for

(
M̄, ḡ

)
where µ ∈

C∞ (M̄). In this case it was proved in [1] that

e2µ
(
S̄ − n|H̄|2

)
= S − n|H|2.
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Also, there are some other valuable works in which Sasakian space forms are ex-
amined (see [10, 12, 18]). We will use these relations to provide proof for our main
results.

3. Main results

In this section, we are going to give appropriate proofs for our main results. At the
first step, we must mention some lemmas which make our proofs more possible. The
conformal bounds for the first eigenvalue of the p-Laplacian operator were studied
by Matei in [13] extensively. The first eigenvalue of the (p, q)-Laplacian system
(1.1) can be viewed as a functional as

g 7−→ λ1,p,q (M, g) ,

on the space of Riemannian metrics on M . Since λ1,p,q is not invariant under
dilatations i.e. λ1,p,q (M,Kg) ̸= λ1,p,q (M, g) for a real constant K, we need a
normalisation when we study the uniform boundedness for the mentioned functional.
Consider M (M) as a set of Riemannian metrics of volume one. We consider the
unit sphere Sn and we construct metrics in M (M) conformal to the standard
metric which is denoted by can. For a Riemannian metric on M as g, we denote
the conformal class of g by

[g] =
{
fg|f ∈ C∞ (M) , f > 0

}
,

and also

G (N) =
{
γ ∈ Diff

(
SN
)
|γ∗can ∈ [can]

}
,

for a group of conformal diffeomorphisms of
(
SN , can

)
where N is an arbitrary

natural number. We will divide our main issue into two different parts, first of all
we consider the case where p, q ≤ n and then the case of p, q > n will be assumed.
In the first case we are going to study the upper bound for the first eigenvalue of
the (p, q)-Laplacian system (1.1) with respect to the Sasakian space form. For this
purpose, we have to prove some useful lemmas. For the first lemma which is called
Chebyshev inequality, a suitable proof can be found in many papers such as [4].

Lemma 3.1 (Chebyshev inequality). Consider {ai}ni=1 and {bi}ni=1 as two de-
creasing real sequences. Then

1

n

n∑
i=1

aibi ≥

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)
.

Lemma 3.2. Consider ϕ : (M, g) −→
(
SN , can

)
as a smooth map whose level sets

are of measure zero in (M, g). Then for α, β > 0 there exist γ, δ ∈ G (N) such that:

• If p, q ≥ 2, then

λ1,p,q (M) ≤ (N + 1)
1
2p

2
(
α+ 1

p

∫
M

|dψ|pdv + β + 1

q

∫
M

|dζ|qdv
)
.
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• If 1 < p, q < 2, then

λ1,p,q (M) ≤ (N + 1)
− 1

2 q(q+1)

(
α+ 1

p

∫
M

|dψ|pdv + β + 1

q

∫
M

|dζ|qdv
)
.

• If 1 < q < 2 ≤ p, then

λ1,p,q (M) ≤ (N + 1)
1
2 (p

2−q)
(
α+ 1

p

∫
M

|dψ|qdv + β + 1

q

∫
M

|dζ|qdv
)
,

where for arbitrary natural N and 1 ≤ i ≤ N + 1

ψi = (γ ◦ ϕ)i , ζi = (δ ◦ ϕ)i .

Proof. Consider ψi = (γ ◦ ϕ)i and ζi = (δ ◦ ϕ)i. For 1 ≤ i ≤ N + 1 we get

λ1,p,q (M) ≤ 1∫
M

|ψ̌i|α+1|ζ̌i|β+1dv

[α+ 1

p

∫
M

|dψ̌i|pdv +
β + 1

q

∫
M

|dζ̌i|q
]
,

where {ψ̌}i and {ζ̌}i denote the decreasing rearrangement of {ψ}i and {ζ}i respec-
tively. Thus

λ1,p,q (M)

≤ 1∫
M

∑N+1
i=1 |ψ̌i|α+1|ζ̌i|β+1dv

[α+ 1

p

∫
M

N+1∑
i=1

|dψ̌i|pdv +
β + 1

q

∫
M

N+1∑
i=1

|dζ̌i|q
]
,

where the last inequality comes from

λ

∫
M

|ψ̌i|α+1|ζ̌i|β+1dv ≤ α+ 1

p

∫
M

|dψ̌i|p +
β + 1

q

∫
M

|dζ̌i|qdv,

and summing both sides from 1 to n+ 1,

n+1∑
i=1

(
λ

∫
M

|ψ̌i|α+1|ζ̌i|β+1dv

)
≤

n+1∑
i=1

(
α+ 1

p

∫
M

|dψ̌i|p +
β + 1

q

∫
M

|dζ̌i|q
)
.

First consider p, q ≥ 2. Then

N+1∑
i=1

|dψ̌i|p =

N+1∑
i=1

(
|dψ̌i|2

) p
2 ≤

(
N+1∑
i=1

|dψ̌i|2
) p

2

= |dψ̌|p,

and

N+1∑
i=1

|dζ̌i|q =

N+1∑
i=1

(
|dζ̌i|2

) q
2 ≤

(
N+1∑
i=1

|dζ̌i|2
) q

2

= |dζ̌|q.

By Chebyshev inequality, we have

N+1∑
i=1

|ψ̌i|α+1|ζ̌i|β+1 ≥ 1

N + 1

N+1∑
i=1

|ψ̌i|α+1|ζ̌i|β+1
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≥

(
1

N + 1

N+1∑
i=1

|ψ̌i|α+1

)(
1

N + 1

N+1∑
i=1

|ζ̌i|β+1

)

≥

(
1

N + 1

N+1∑
i=1

|ψ̌i|p(α+1)

)(
1

N + 1

N+1∑
i=1

|ζ̌i|q(β+1)

)

=

(
N+1∑
i=1

1

N + 1

(
|ψ̌i|2

) p
2 (α+1)

)(
N+1∑
i=1

1

N + 1

(
|ζ̌i|2

) q
2 (β+1)

)
.

(3.1)

Since x 7→ x
R
2 for R

2 ≥ 1 is convex, and given that
∑N+1

i=1 |ψi|2 = 1 and
∑N+1

i=1 |ζi|2 =
1, by applying Jensen’s inequality to formula (3.1) we get

N+1∑
i=1

|ψ̌i|α+1|ζ̌i|β+1

≥

(
N+1∑
i=1

1

N + 1
|ψ̌i|2

) p
2 (α+1)(N+1∑

i=1

1

N + 1
|ζ̌i|2

) q
2 (β+1)

=

(
1

N + 1

) p
2 (α+1)

(
N+1∑
i=1

|ψ̌i|2
) p

2 (α+1)(
1

N + 1

) q
2 (β+1)

(
N+1∑
i=1

|ζ̌i|2
) q

2 (β+1)

=(N + 1)
− 1

2 (p(α+1)+q(β+1))
.

Now under consideration p ≥ q, we have

λ1,p,q (M) ≤ (N + 1)
1
2p

2
(
α+ 1

p

∫
M

|dψ|pdv + β + 1

q

∫
M

|dζ|qdv
)
.

For 1 < p, q < 2, since

|ψi| ≤ 1, |ζi| ≤ 1,

also x 7→ x
p+1
2 and x 7→ x

q+1
2 are convex, by the similar process we see

N+1∑
i=1

|ψ̌i|α+1|ζ̌i|β+1 ≥ 1

N + 1

N+1∑
i=1

|ψ̌i|α+1|ζ̌i|β+1

≥

(
1

N + 1

N+1∑
i=1

|ψ̌i|α+1

)(
1

N + 1

N+1∑
i=1

|ζ̌i|β+1

)

≥

(
1

N + 1

N+1∑
i=1

|ψ̌i|(p+1)(α+1)

)(
1

N + 1

N+1∑
i=1

|ζ̌i|(q+1)(β+1)

)

=

(
N+1∑
i=1

1

N + 1

(
|ψ̌i|2

) p+1
2 (α+1)

)(
N+1∑
i=1

1

N + 1

(
|ζ̌i|2

) q+1
2 (β+1)

)
.

Continuing from the last line of the previous formula by Jensen’s inequality, we get

N+1∑
i=1

|ψ̌i|α+1|ζ̌i|β+1
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≥

(
N+1∑
i=1

1

N + 1
|ψ̌i|2

) p+1
2 (α+1)(N+1∑

i=1

1

N + 1
|ζ̌i|2

) q+1
2 (β+1)

=

(
1

N + 1

) p+1
2 (α+1)

(
N+1∑
i=1

|ψ̌i|2
) p+1

2 (α+1)(
1

N + 1

) q+1
2 (β+1)

(
N+1∑
i=1

|ζ̌i|2
) q+1

2 (β+1)

=(N + 1)
− 1

2 ((p+1)(α+1)+(q+1)(β+1))
.

Since x 7→ x
p
2 and x 7→ x

q
2 are concave, we conclude that

N+1∑
i=1

|dψi|p =

N+1∑
i=1

(
|dψi|2

) p
2 ≤ (N + 1)

1− p
2

(
N+1∑
i=1

|dψi|2
) p

2

= (n+ 1)
1− p

2 |dψ|p,

and

N+1∑
i=1

|dζi|q =

N+1∑
i=1

(
|dζi|2

) q
2 ≤ (N + 1)

1− q
2

(
N+1∑
i=1

|dζi|2
) q

2

= (N + 1)
1− q

2 |dζ|q.

Now similar to the previous case, under consideration p ≥ q, we have

λ1,p,q (M) ≤ (N + 1)
− 1

2 q(q+1)

(
α+ 1

p

∫
M

|dψ|pdv + β + 1

q

∫
M

|dζ|qdv
)
.

In the third case for 1 < q < 2 ≤ p, since x 7→ x
p
2 is convex, by the similar process

we get

N+1∑
i=1

|ψ̌i|α+1|ζ̌i|β+1 ≥ 1

N + 1

N+1∑
i=1

|ψ̌i|α+1|ζ̌i|β+1

≥

(
1

N + 1

N+1∑
i=1

|ψ̌i|α+1

)(
1

N + 1

N+1∑
i=1

|ζ̌i|β+1

)

≥

(
1

N + 1

N+1∑
i=1

|ψ̌i|p(α+1)

)(
1

N + 1

N+1∑
i=1

|ζ̌i|p(β+1)

)

=

(
N+1∑
i=1

1

N + 1

(
|ψ̌i|2

) p
2 (α+1)

)(
N+1∑
i=1

1

N + 1

(
|ζ̌i|2

) p
2 (β+1)

)
,

and by Jensen’s inequality

N+1∑
i=1

|ψi|α+1|ζi|β+1 ≥ (N + 1)
− p

2 (α+β+2)
.

Furthermore, since x 7→ x
q
2 is convex,

N+1∑
i=1

|dψi|p ≤
N+1∑
i=1

|dψi|q =

N+1∑
i=1

(
|dψi|2

) q
2 ≤

(
N+1∑
i=1

|dψi|2
) q

2

= (N + 1)
1− q

2 |dψ|q,
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and

N+1∑
i=1

|dζi|q =

N+1∑
i=1

(
|dζi|2

) q
2 ≤

(
N+1∑
i=1

|dζi|2
) q

2

= (N + 1)
1− q

2 |dζ|q,

which conclude that

λ1,p,q (M) ≤ (N + 1)
1
2 (p

2−q)
(
α+ 1

p

∫
M

|dψ|qdv + β + 1

q

∫
M

|dζ|qdv
)
.

Proof. [Proof of Theorem 1.1] Taking account of Lemma 3.2, there exists a
function ϕ and γ, δ ∈ G (2m+ 2) such that

λ1,p,q

∫
Σn

∑
i

|ψi|α+1|ζi|β+1dv ≤ α+ 1

p

∫
Σn

∑
i

|dψi|pdv +
β + 1

q

∫
Σn

∑
i

|dζi|qdv,

where ψi = (γ ◦ ϕ)i, ζi = (δ ◦ ϕ)i and

1 ≤ i ≤ 2 (m+ 1) .

It should be mentioned that if

2m+2∑
i=1

|ψi|2 = 1,

then |ψi| ≤ 1. Now with respect to the preliminaries section, consider {ei}2m+1
i=1 as

an orthogonal frame for M̄2m+1 (κ) where {ei}ni=1 are tangent to Σn, we have

2m+2∑
i=1

|dψi|2 =

n∑
i=1

|∇eiψi|2 = ne2µ,

and

2m+2∑
i=1

|dζi|2 =

n∑
i=1

|∇eiζi|2 = ne2µ,

where ḡ = e2µg and µ ∈ C∞ (M). Now by applying Lemma 3.2 we have seen before,
as an example for p, q ≥ 2 and setting N as 2 (m+ 1), we get

λ1,p,q ≤
√
2
p2

(m+ 1)
1
2p

2

[
α+ 1

p

∫
Σn

2m+2∑
i=1

|dψi|pdv +
β + 1

q

∫
Σn

2m+2∑
i=1

|dζi|qdv

]
.

By Hölder’s inequality and under consideration of p ≥ q we easily get

λ1,p,q

≤
√
2
p2

(m+ 1)
1
2p

2

α+ 1

p

∫
Σn

(
2m+2∑
i=1

|dψi|2
) p

2

dv +
β + 1

q

∫
Σn

(
2m+2∑
i=1

|dζi|2
) q

2

dv


≤
√
2
p2

(m+ 1)
1
2p

2
(∫

Σn

(
ne2µ

) p
2 dv

)
,
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where we used the fact for system (1.1) that

α+ 1

p
+
β + 1

q
= 1.

Since by some conformal relationships and also by some calculations it was proved
before in [1] that ∫

Σn

epµdv ≤
∫
Σn

(
|κ+ 3

4
+ |H|2|

) p
2

dv,

we conclude that

λ1,p,q ≤
√
2
p2

(m+ 1)
1
2p

2

n
p
2

∫
Σn

((
κ+ 3

4

)
+ |H|2

) p
2

dv.

By the same process for other cases, we get

• If 1 < p, q < 2, then

λ1,p,q ≤
√
2
−q(q+1)

(m+ 1)
− 1

2 q(q+1)
n

p
2

∫
Σn

((
κ+ 3

4

)
+ |H|2

) p
2

dv.

• If 1 < q < 2 ≤ p, then

λ1,p,q ≤
√
2
(p2−q)

(m+ 1)
1
2 (p

2−q) n
p
2

∫
Σn

((
κ+ 3

4

)
+ |H|2

) p
2

dv.

Consider r ∈ [0, π] as a geodesic distance and ϵ > 0. In this case the radial
function fϵ : S

n → R is defined as

fϵ (r) = ϵ
4p

n(p−n) .χ[0,π2 −ϵ]∪[π2 +ϵ,π] (r) + χ(π
2 −ϵ,π2 +ϵ) (r) ,

thus the parametrisation of the first eigenvalue of the (p, q)-Laplacian (1.1) is given
by

λ1,p,q (ϵ) = inf
u,v ̸=0

{
Rϵ (u, v) | (u, v) ∈W 1,p

0 ×W 1,q
0 \ {0}

}
,

where

Rϵ (u, v) :=
1∫

Sn−1 f
n
2
ϵ |u|α+1|v|β+1dvcan

[α+ 1

p

∫
Sn−1

f
n−p

2
ϵ |du|pdvcan

+
β + 1

q

∫
Sn−1

f
n−p

2
ϵ |dv|qdvcan

]
.

Proof. [Proof of Theorem 1.2] The radial functions ūϵ, v̄ϵ : S
n → R are defined

as

ūpϵ (r) =
1

V

∫
Sn−1

|uϵ (r, .) |pdvcan,

v̄qϵ (r) =
1

V

∫
Sn−1

|vϵ (r, .) |qdvcan,
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where V = vol
(
Sn−1, can

)
. We just give calculations in the case of p and u and

also the same process holds for q and v. By taking derivatives with respect to r we
get

pūp−1
ϵ ū′ϵ =

p

V

∫
Sn−1

|uϵ|p−2uϵ
∂uϵ
∂r

dvcan.

By Hölder’s inequality we see

ūp−1
ϵ |ū′ϵ| ≤

1

V

∫
Sn−1

|uϵ|p−1|∂uϵ
∂r

|dvcan

≤ 1

V

(∫
Sn−1

|uϵ|pdvcan
) p−1

p
(∫

Sn−1

|∂uϵ
∂r

|pdvcan
) 1

p

,

which concludes that

|ū′ϵ|p ≤ 1

V

∫
Sn−1

|∂uϵ
∂r

|pdvcan ≤ 1

V

∫
Sn−1

|duϵ|pdvcan. (3.2)

Since α+1
p + β+1

q = 1, by Hölder’s inequality we get

∫
Sn

|uϵ|α+1|vϵ|β+1dvcan ≤
(∫

Sn

|uϵ|pdvcan
)α+1

p
(∫

Sn

|vϵ|qdvcan
) β+1

q

.

Now by some calculations we obtain∫
Sn

f
n
2
ϵ |ūϵ|α+1|v̄ϵ|β+1dvcan (3.3)

=V.

∫ π

0

f
n
2
ϵ |ūϵ|α+1|v̄ϵ|β+1 sin rn−1dr

=V.

∫ π

0

f
n
2
ϵ

(
1

V

∫
Sn−1

|uϵ|pdvcan
)α+1

p
(

1

V

∫
Sn−1

|vϵ|qdvcan
) β+1

q

sin rn−1dr

=

∫ π

0

f
n
2
ϵ

(∫
Sn−1

|uϵ|pdvcan
)α+1

p
(∫

Sn−1

|vϵ|qdvcan
) β+1

q

sin rn−1dr

≥
∫ π

0

f
n
2
ϵ

(∫
Sn−1

|uϵ|α+1|vϵ|β+1dvcan

)
sin rn−1dr

≥
∫
Sn

f
n
2
ϵ |uϵ|α+1|vϵ|β+1dvcan.

By formula ( 3.2) we conclude that∫
Sn

f
n−p

2
ϵ |ū′ϵ|pdvcan = V.

∫ π

0

f
n−p

2
ϵ |ū′ϵ|p sin rn−1dr

≤
∫ π

0

[ ∫
Sn−1

|duϵ|pdvcan
]
f

n−p
2

ϵ sin rn−1dr

=

∫
Sn

f
n−p

2
ϵ |duϵ|pdvcan,
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also by the similar process∫
Sn

f
n−p

2
ϵ |v̄′ϵ|qdvcan ≤

∫
Sn

f
n−p

2
ϵ |dvϵ|qdvcan.

If Sn
+ and Sn

− denote the upper and the lower hemispheres centered at x0 and −x0
respectively, then

λ1,p,q (ϵ)

≥ 1

ϑ!

[α+ 1

p

∫
Sn

f
n−p

2
ϵ |ū′ϵ|pdvcan +

β + 1

q

∫
Sn

f
n−p

2
ϵ |v̄′ϵ|qdvcan

]
≥min{λ+1,p,q, λ

−
1,p,q},

where λ+1,p,q and λ−1,p,q are determined by the case of taking integrals with respect

to upper or lower hemispheres respectively, and ϑ1 =
∫
Sn f

n
2
ϵ |ūϵ|α+1|v̄ϵ|β+1dvcan.

Without loss of generality, we assume

λ1,p,q (ϵ) ≥ λ+1,p,q (ϵ) ,

which means that

λ1,p,q (ϵ)

≥ 1

ϑ2

[α+ 1

p

∫
Sn
+

f
n−p

2
ϵ |ū′ϵ|pdvcan +

β + 1

q

∫
Sn
+

f
n−p

2
ϵ |v̄′ϵ|qdvcan

]
,

where ϑ2 =
∫
Sn
+
f

n
2
ϵ |ūϵ|α+1|v̄ϵ|β+1dvcan. Functions aϵ ∈W 1,p (M) and cϵ ∈W 1,q (M)

are defined as

aϵ =

 ūϵ [0, π2 − ϵ],

ūϵ
(
π
2 − ϵ

) (
π
2 − ϵ, π2

]
,

and bϵ = ūϵ − aϵ as well as

cϵ =

 v̄ϵ [0, π2 − ϵ],

v̄ϵ
(
π
2 − ϵ

) (
π
2 − ϵ, π2

]
,

where similarly dϵ = v̄ϵ − cϵ. It is obvious that on
[
0, π2 − ϵ

]
we have

bϵ = dϵ = 0,

and on
(
π
2 − ϵ, π2

]
also

a′ϵ = c′ϵ = 0,

and by the above definition we conclude that

|ū′ϵ|p = |a′ϵ|p + |b′ϵ|p,
|v̄′ϵ|q = |c′ϵ|q + |d′ϵ|q,

|ūϵ|α+1 ≤ 2α
(
|aϵ|α+1 + |bϵ|α+1

)
,

|v̄ϵ|β+1 ≤ 2β
(
|cϵ|β+1 + |dϵ|β+1

)
.
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By the definition of fϵ (r) and also substituting in the formula of λ1,p,q we get

λ1,p,q (ϵ) ≥
2−(α+β)

A

[
ϵ−

2p
n

(
α+ 1

p

∫
Sn
+

|a′ϵ|pdvcan +
β + 1

q

∫
Sn
+

|c′ϵ|qdvcan

)

+
α+ 1

p

∫
Sn
+

|b′ϵ|pdvcan +
β + 1

q

∫
Sn
+

|d′ϵ|qdvcan
]
,

where

A =

∫
Sn
+

f
n
2
ϵ |aϵ|α+1|cϵ|β+1dvcan +

∫
Sn
+

|aϵ|α+1|dϵ|β+1dvcan +

∫
Sn
+

|bϵ|α+1|cϵ|β+1dvcan

+

∫
Sn
+

|bϵ|α+1|dϵ|beta+1dvcan.

Let

A = 1.

It is clear that

λ1,p,q (ϵ) ≥ 2−(α+β)
[
ϵ−

2p
n

(
α+ 1

p

∫
Sn
+

|a′ϵ|pdvcan +
β + 1

q

∫
Sn
+

|c′ϵ|qdvcan

)
(3.4)

+

(
α+ 1

p

∫
S+
n

|b′ϵ|pdvcan +
β + 1

q

∫
S+
n

|d′ϵ|qdvcan
)]

.

There are two different cases. First of all,

lim sup
ϵ→0

[α+ 1

p

∫
Sn
+

|a′ϵ|pdvcan +
β + 1

q

∫
Sn
+

|c′ϵ|qdvcan
]
> 0.

In this case

λ1,p,q (ϵ) .ϵ
p
n ≥ 2−(α+β)ϵ−

p
n

(
α+ 1

p

∫
Sn
+

|a′ϵ|pdvcan +
β + 1

q

∫
Sn
+

|c′ϵ|qdvcan

)
,

which concludes that

lim sup
ϵ→0

λ1,p,q (ϵ) .ϵ
p
n = ∞.

In the other case

lim
ϵ→0

[α+ 1

p

∫
Sm
+

|a′ϵ|pdvcan +
β + 1

q

∫
Sn
+

|c′ϵ|qdvcan
]
= 0.

Now consider the sequence ϵN → 0 as aϵN + cϵn → a + c where a and c are some
constants. Since

lim
N→∞

∫
Sn
+

f
n
2
ϵN |aϵN |α+1|cϵN |β+1dvcan

= lim
N→∞

∫
Sn
+

f
n
2
ϵN

(
|aϵN |α+1|cϵN |β+1 − |a|α+1|c|β+1

)
dvcan
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+
(
|a|α+1|c|β+1

)
lim

N→∞

∫
Sn
+

f
n
2
ϵNdvcan = 0,

for p, q > n and arbitrary N , {fϵN } is uniformly bounded. Thus we have

lim
N→0

∫
Sn
+

f
n
2
ϵNdvcan = 0.

By substituting all those in ( 3.4), we get

λ1,p,q (ϵ) ≥
2−(α+β)

B

[α+ 1

p

∫
Sn
+

|b′ϵ|pdvcan +
β + 1

q

∫
Sn
+

|d′ϵ|qdvcan
]

=
2−(α+β)∫ π

2
π
2 −ϵN

D sin rn−1dr

∫ π
2

π
2 −ϵN

(
α+ 1

p
|b′ϵ|p +

β + 1

q
|d′ϵ|q

)
sin rn−1dr

≥ 2−(α+β)
(
sin
(π
2
− ϵN

))n−1
α+1
p

∫ π
2
π
2 −ϵN

|b′ϵ|pdr +
β+1
q

∫ π
2
π
2 −ϵN

|d′ϵ|qdr∫ π
2
π
2 −ϵN

Ddr
,

where

B =

∫
Sn
+

|aϵ|α+1|dϵ|β+1dvcan +

∫
Sn
+

|bϵ|α+1|cϵ|β+1dvcan

+

∫
Sn
+

|bϵ|α+1|dϵ|β+1dvcan,

and

D = |aϵ|α+1|dϵ|β+1 + |bϵ|α+1|cϵ|β+1 + |bϵ|α+1|dϵ|β+1.

Similar to the previous one, we define āϵN ∈W 1,p
0 (−ϵN , ϵN ) as

āϵN (x) = aϵN

(
x+

π

2
− ϵN

)
.

Also, the similar definition works for b̄ϵN from W 1,p
0 (−ϵN , ϵN ) and c̄ϵN , d̄ϵN ∈

W 1,q
0 (−ϵN , ϵN ). Thus

α+1
p

∫ π
2
π
2 −ϵN

|b′ϵ|pdr +
β+1
q

∫ π
2
π
2 −ϵN

|d′ϵ|qdr∫ π
2
π
2 −ϵN

Ddr
=

α+1
p

∫ ϵn
0

|b′ϵ|pdr +
β+1
q

∫ ϵN
0

|d′ϵ|qdr∫ ϵN
0

Ddr

=

α+1
p

∫ ϵN
−ϵN

|b′ϵ|pdr +
β+1
q

∫ ϵN
−ϵN

|d′ϵ|qdr∫ ϵn
−ϵN

Ddr
≥ λ1,p,q (−ϵN , ϵN )

= ϵ−p
N λ1,p,q (−1, 1) ,

and

λ1,p,q (ϵ) ≥ 2−(α+β).ϵ−p
N

(
sin
(π
2
− ϵN

))n−1

λ1,p,q (−1, 1) ,
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which finally concludes

lim sup
ϵ→0

λ1,p,q (ϵ) .ϵ
p
n = ∞.

For ϵ > 0, f̄ ∈ C∞ (Sn) is a radial function such that f̄ϵ ≤ fϵ. Also, on[
π
2 − ϵ

2 ,
π
2 + ϵ

2

]
we have

f̄ϵ (r) = fϵ (r) = 1,

and

f̄ϵ (π − r) = f̄ (r) .

Thus

vol
(
Sn, f̄ϵcan

)
=

∫
Sn

f̄
n
2
ϵ dvcan =

∫
Sn−1

∫ π
2

−π
2

f̄
n
2
ϵ sin rn−1drdvcan

> V.

∫ π
2 + ϵ

2

π
2 − ϵ

2

sin rn−1dr

> ϵV
[
sin
(π
2
− ϵ
) ]n−1

,

where V = vol
(
Sn−1, can

)
.

Corollary 3.1. Let p ≥ q > n and λ1,p,q denote the first eigenvalue of the (p, q)-
Laplacian system (1.1). Then for arbitrary large λ1,p,q there exists a Riemannian
metric of volume one conformal to standard metric can.

Proof. By improving a method from [13], let ūϵ and v̄ϵ denote the eigenfunctions
for λ1,p,q

(
Sn, f̄ϵcan

)
. Also ū+ϵ , ū

−
ϵ , v̄

+
ϵ and v̄−ϵ are assumed as the positive and

negative values of ūϵ and v̄ϵ respectively. For the system (1.1) we conclude that

λ1,p,q
(
Sn, f̄ϵcan

)
=

1∫
Sn |ū+ϵ |α+1|v̄+ϵ |β+1f̄

n
2
ϵ dvcan

[α+ 1

p

∫
Sn

|dū+ϵ |pf̄
n−p

2
ϵ dvcan

+
β + 1

q

∫
Sn

|dv̄+ϵ |q f̄
n−p

2
ϵ dvcan

]
=

1∫
Sn |ū−ϵ |α+1|v̄−ϵ |β+1f̄

n
2
ϵ dvcan

[α+ 1

p

∫
Sn

|dū−ϵ |pf̄
n−p

2
ϵ dvcan

+
β + 1

q

∫
Sn

|dv̄−ϵ |q f̄
n−p

2
ϵ dvcan

]
.

Set t ∈ R such that

ūϵ,t = tū+ϵ + ū−ϵ .

So we get

λ1,p,q
(
Sn, f̄ϵcan

)
=

1∫
Sn |ūϵ|α+1|v̄ϵ|β+1f̄

n
2
ϵ dvcan

[α+ 1

p

∫
Sn

|dūϵ|pf̄
n−p

2
ϵ dvcan
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+
β + 1

q

∫
Sn

|dv̄ϵ|q f̄
n−p

2
ϵ dvcan

]
≥ 1∫

Sn |ūϵ|α+1|v̄ϵ|β+1f
n
2
ϵ dvcan

[α+ 1

p

∫
Sn

|dūϵ|pf
n−p

2
ϵ dvcan

+
β + 1

q

∫
Sn

|dv̄ϵ|qf
n−p

2
ϵ dvcan

]
≥ λ1,p,q (ϵ) .

Under the consideration that p ≥ q and by Theorem 1.2, we finally see

lim sup
ϵ→0

λ1,p,q
(
Sn, f̄ϵcan

)
vol
(
Sn, f̄ϵcan

) p
n ≥ V

p
n . lim sup

ϵ→0
λ1,p,q (ϵ) .ϵ

p
n = ∞.

Just setting

hϵ = vol
(
Sn, f̄ϵcan

)− 2
n f̄ϵ,

we have

vol (Sn, hϵcan) = 1,

and

lim sup
ϵ→0

λ1,p,q (S
n, hϵcan) = ∞.

Remark 3.1. Someone may consider the situation q < n < p. In this case by the
same process as in Theorem 1.2, consider the radial function fϵ : S

n → R as

fϵ (r) = ϵ
4q

n(n−q) .χ[0,π2 −ϵ]∪[π2 +ϵ,π] (r) + χ(π
2 −ϵ,π2 +ϵ) (r) ,

and we have

Rϵ (u, v) :=
1

ϑ3

[α+ 1

p

∫
Sn−1

f
q−n
2

ϵ |du|pdvcan +
β + 1

q

∫
Sn−1

f
q−n
2

ϵ |dv|qdvcan
]
,

where ϑ3 =
∫
Sn−1 f

n
2
ϵ |u|α+1|v|β+1dvcan and

λ1,p,q (ϵ) = inf
u,v ̸=0

{
Rϵ (u, v) | (u, v) ∈W 1,p

0 ×W 1,q
0 \ {0}

}
.

By the same process as in Theorem 1.2 we finally get

lim sup
ϵ→0

λ1,p,q (ϵ) .ϵ
q
n = ∞,

which means that the same statement as Corollary 3.1 holds for the first eigenvalue
of system (1.1) when q < n < p.
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