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1. Introduction

Avian influenza(AI) is an animal infection caused by an avian influenza virus (AIV),
a type of influenza A virus, which normally does not infect humans [1]. However,
since human infection with avian influenza (highly pathogenic A (H5N1)) was dis-
covered in Hong Kong in 1997, the disease has become a zoonotic disease and has
been of great concern to WHO worldwide [2]. From 2003 to July 14, 2023, 878 con-
firmed human cases of H5N1 virus infection have been reported to WHO including
458 deaths [3]. In addition, in the biological sense, there is a gap between the host
types of different types of avian influenza viruses, and there are many subtypes
of influenza viruses which can infect humans, such as, H1N1, H5N6, H7N9, and
H9N2 [4], which belong to zoonotic virus AIV. The outbreak and epidemic of AI
has had a serious impact on the aquaculture, catering, international trade and the
ecological environment [5]. Therefore, it is necessary and meaningful to study in-
fluenza dynamics and design control strategies by understanding of the transmission
mechanism of pathogenic AIV among birds, poultry and humans.

In recent years, it has been well-recognized that mathematical models are one of
the most powerful tools for studying the dynamics of infectious disease because they
can provide some useful epidemiological characteristics and effective prevention and
control measures for relevant departments [6–10]. In particular, a number of sophis-
ticated mathematical models for the spread of AI have been previously developed,
see e.g. [11–20]. In particular, Liu et al. [19] introduced two different laws for the
avian population into an AI bird-to-human model and analyzed their dynamical
behavior. Bourouiba et al. [20] used the patch-type delay model to characterize
the transmission mechanism migratory birds and non-migratory poultry, and fur-
ther studied the role of migratory birds in the spread of H5N1 avian influenza. In
addition, considering the effect of seasonal temperature and spatial heterogeneity
environment on AI, Zheng et al. [14] proposed a time-spatial heterogeneity reaction-
diffusion AI model. And Calvin et al. [12] formulated an avian–human influenza
epidemic model with diffusion, nonlocal delay and spatial homogeneous environ-
ment to describe the transmission of avian influenza among poultry, humans and
environment. However, there are many noises in the real world that affect the
spread of diseases in different degrees [24,25]. Mate et al. [17] proposed a stochastic
AI model with Ornstein–Uhlenbeck (O-U) process to investigate the relative con-
tribution of direct and environmental transmission routes in the recurrence of AI
epidemics. Zhou et al. [9] examined a stochastic avian influenza model with a non-
linear incidence rate within avian populations and the psychological effect within
the human population, and they obtained the threshold dynamics of AI and the
probability density function.

Although many avian influenza dynamics models, such as ODE, PDE, DDE,
and SDE, have been discussed above, most of these models are only related to
two compartments: birds and poultry, birds and humans. In fact, the spread of
avian influenza often involves three groups: birds, poultry and humans. And the
transmission path is also relatively complex, for example, wild birds and poultry
can infect each other, and the wild birds can infect humans and even humans can
be infected by poultry. Hence, it is meaningful and reasonable to incorporate the
complex transmission routes among wild birds, poultry and humans. Nevertheless,
it poses significant challenges to the dynamic analysis of the system, especially the
existence and global stability of endemic equilibrium. In addition, although there
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Figure 1. The diagram of the AI transmission

are few multi population dynamics models for avian influenza, there is some research
on multi population dynamics models for other diseases, e.g., [21–23] and references
therein, which can provide us with some reference for our analysis.

The organization of this paper is as follows. In Section 2, we establish the
avian influenza model and introduce some preliminaries. In Section 3, the dynamic
behavior of three sub-models are discussed, especially, the poultry-birds models.
Sections 4 analyzes the dynamics of the whole system. The sensitivity analysis and
an optimal control problem are discussed in Section 5. Section 6 carries out some
numerical simulations to illustrate our theoretical results and visualize the impact
of various parameters on model dynamics. A brief conclusion and discussion ends
the paper.

2. Model formulation and preliminaries

To use mathematical models to characterize the dynamics of AI transmission be-
tween among birds, poultry and humans, we let Nb(t), Np(t) and Nh(t) represent
the total population of birds, poultry and humans, respectively, at time t. In fact,
populations infected with avian influenza have a higher mortality rate and generally
do not recover. This is sufficient to divide the bird population under consideration
into two classes: Sb(t) and Ib(t), representing the number of susceptible and in-
fected birds at time t, respectively. And the poultry population is further divided
as Sp(t) and Ip(t), which denote the number of susceptible and infected poultry at
time t. For human population, we divide Nh(t) into three classes: Sh(t), Ih(t) and
Rh(t), which respectively denote the number of susceptible, infected and recovered
humans at time t. Based on the discussion above, we use the following diagram
Fig.1 to illustrate the transmission mechanism among birds, poultry and humans,
which gives rise to the following evolution model:
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dSb(t)

dt
=Λb − βbbSb(t)Ib(t)− βpbSb(t)Ip(t)− µbSb(t),

dIb(t)

dt
=βbbSb(t)Ib(t) + βpbSb(t)Ip(t)− (µb + db)Ib(t),

dSp(t)

dt
=Λp − βppSp(t)Ip(t)− βbpSp(t)Ib(t)− µpSp(t),

dIp(t)

dt
=βppSp(t)Ip(t) + βbpSp(t)Ib(t)− (µp + dp)Ip(t),

dSh(t)

dt
=Λh − βbhSh(t)Ib(t)− βphSh(t)Ip(t)− µhSh(t),

dIh(t)

dt
=βbhSh(t)Ib(t) + βphSh(t)Ip(t)− (γh + µh + dh)Ih(t),

dRh(t)

dt
=γhIh(t)− µhRh(t).

(2.1)

Here, Λi(i = b, p, h) and di(i = b, p, h) are the recruitment rate and the disease-
induced death rate of bird/poultry/human population, respectively; µi(i = b, p)
and µh are the death rate of bird/poultry(including natural death and culling) and
the natural death rate of human, respectively; γh is the recover rate of human; βbb,
βpb, βpp, βbp, βbh and βph represent the transmission rate from bird to bird, from
poultry to bird, from poultry to poultry, from bird to poultry, from bird to human
and from poultry to human, respectively. Without loss of generality, we make the
following assumptions:

(H1) All parameters used in model (2.1) are positive constants.

(H2) Duo to the more frequent contact between similar populations, the transmis-
sion rate between similar populations is greater than that between different
populations, i.e., βbb ≥ βpb and βpp ≥ βbp.

Before introducing the main results, based on practical biological significance,
we first provide the following basic but necessary result for the solutions of model
(2.1).

Theorem 2.1. All solutions of model (2.1) are nonnegative and bounded if the
initial conditions are nonnegative. Moreover,

Ω =

{
(Sb, Ib, Sp, Ip, Sh, Ih, Rh) ∈ R7

+ |0 < Nb(t) ≤
Λb

µb
, 0 < Np(t) ≤

Λp

µp
,

0 < Nh(t) ≤
Λh

µh

}
,

is a positively invariant with respect to model (2.1).

Proof. Using the similar arguments as in [26, Theorem 3.1 and Theorem 3.2], we
can easily complete this proof, so we omit it.

3. Analysis of sub-model

In fact, humans are the ultimate host of avian influenza virus, which does not
spread between humans or from humans to birds or poultry. From a mathematical
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modeling perspective, it is evident that the fifth, sixth and seventh equations of
model (2.1) can be decoupled. Hence, we are interested in studying the dynamics
of the bird-only model, poultry-only model and bird-poultry model.

3.1. Bird/Poultry-only model

In this subsection, we analyze the dynamics of bird-only model and poultry-only
model. Obviously, from model (2.1), it can be seen that when there are no birds or
poultry, the model can degenerate into the following form

dSi(t)

dt
=Λi − βiiSi(t)Ii(t)− µiSi(t),

dIi(t)

dt
=βiiSi(t)Ii(t)− (µi + di)Ii(t),

(3.1)

where i = b, p represents the bird-only model and poultry-only model, respectively.
It is obviously that model (3.1) always has the disease-free equilibrium ei0 = (Si∗, 0),
where Si∗ = Λi/µi. The basic reproduction number of model (3.1) is given by

Ri
0 =

Λiβii

µi(µi + di)
,

which is defined as the average number of new infections generated by a single
infected bird (i = b)/poultry(i = p) in a completely susceptible population. In
addition, by simple computation, there exists an endemic equilibrium for model
(3.1) as follows,

ei1 =

(
µi + di
βii

,
Λiβii − µi(µi + di)

βii(µi + di)

)
, i = b, p,

which is only biologically meaningful for Ri
0 ≥ 1, i = b, p. Furthermore, in terms of

the threshold dynamics for model (3.1), we have the following result.

Theorem 3.1. If Ri
0 < 1, then ei0 is globally asymptotically stable; and if Ri

0 > 1,
then ei1 is globally asymptotically stable.

Proof. The proof is the same as [6, Lemma 2] with b = 0, hence, we omit it.

3.2. Bird-poultry model

As the main transmission host of avian influenza virus, the dynamics of birds and
bird coupling models are crucial for the dynamic of the whole system. Hence, we
mainly give the dynamics analysis for the following bird-poultry coupled model:

dSb(t)

dt
=Λb − βbbSb(t)Ib(t)− βpbSb(t)Ip(t)− µbSb(t),

dIb(t)

dt
=βbbSb(t)Ib(t) + βpbSb(t)Ip(t)− (µb + db)Ib(t),

dSp(t)

dt
=Λp − βppSp(t)Ip(t)− βbpSp(t)Ib(t)− µpSp(t),

dIp(t)

dt
=βppSp(t)Ip(t) + βbpSp(t)Ib(t)− (µp + dp)Ip(t).

(3.2)
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From Theorem 2.1, we can similarly obtain that model (3.2) possesses the following
positively invariant set

Ωbp =

{
(Sb, Ib, Sp, Ip) ∈ R4

+ | 0 < Nb(t) ≤
Λb

µb
0 < Np(t) ≤

Λp

µp

}
.

In addition, model (3.2) always has a disease-free equilibrium given by Ebp
0 =

(Sb∗, 0, Sp∗, 0). Now, we use the next generation matrix method developed by [28,
Lemma 1] to calculate the basic reproduction number for model (3.2). Let

F =

 βbbΛb

µb

βpbΛb

µb

βbpΛp

µp

βppΛp

µp

 , V =

µb + db 0

0 µp + dp

 .

The basic reproduction number R0 is defined to be the spectral radius (dominant
eigenvalue) of the non-negative matrix FV −1, denoted by ρ(FV −1). Thus,

R0 =
1

2

[
Rb

0 +Rp
0 +

√
(Rb

0 −Rp
0)

2 + 4Rb
0R

p
0

βbpβpb

βbbβpp

]
.

Remark 3.1. According to the positivity of model parameters and the expression
of R0, it is easy to obtain R0 > max{Rb

0,R
p
0}. In fact, if βbp = 0 or βpb = 0,

then R0 = max{Rb
0,R

p
0}, which implies that poultry-to-bird and bird-to-poultry

transmission increases the risk of infection.

When it comes to our greatest concern about the existence of endemic equi-
librium for model (3.2), biologically speaking, the question is whether birds and
poultry can coexist while infected with avian influenza in the absence of any control
strategies. Denote (S̃∗

b , Ĩ
∗
b , S̃

∗
p , Ĩ

∗
p ) as an arbitrary equilibrium of the bird-poultry

model (3.2), which satisfies the following equations:

Λb − βbbS̃
∗
b Ĩ

∗
b − βpbS̃

∗
b Ĩ

∗
p − µbS̃

∗
b = 0, βbbS̃

∗
b Ĩ

∗
b + βpbS̃

∗
b Ĩ

∗
p − (µb + db)Ĩ

∗
b = 0,

Λp − βppS̃
∗
p Ĩ

∗
p − βbpS̃

∗
p Ĩ

∗
b − µpS̃

∗
p = 0, βppS̃

∗
p Ĩ

∗
p + βbpS̃

∗
p Ĩ

∗
b − (µp + dp)Ĩ

∗
p = 0.

(3.3)
From the first two equations of model (3.3), we have

Ĩ∗p = −βbb

βpb
Ĩ∗b +

Λbµb

βpb

1

Λb − (µb + db)Ĩ∗b
− µb

βpb
. (3.4)

Further, by the last two equations of model (3.2), we can easily obtain

Ĩ∗b = −βpp

βbp
Ĩ∗p +

Λpµp

βbp

1

Λp − (µp + dp)Ĩ∗p
− µp

βbp
. (3.5)

For simplicity, let (x, y) = (Ĩ∗b , Ĩ
∗
p ). It follows from equations (3.4) and (3.5) that

the following two curves:

C1 :y = f(x) = −βbb

βpb
x+

Λbµb

βpb

1

Λb − (µb + db)x
− µb

βpb
,

and

C2 :x = g(y) = −βpp

βbp
y +

Λpµp

βbp

1

Λp − (µp + dp)y
− µp

βbp
.
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Obviously, seeking the endemic equilibrium of system (3.2) is transformed into
finding the intersection point of curve C1 and curve C2 in the feasible region [0, Λb

µb
)×

[0,
Λp

µp
). By calculation, curve C1 intersects the X-axis at two points denoted by

O(0, 0) and A = (x1, 0) = (
µb(Rb

0−1)
βbb

, 0), and the asymptote equations of curve C1

are as follows,

L11 : y = −βbb

βpb
x− µb

βpb
and L12 : x =

Λb

µb + db
.

Clearly, the asymptote L12 is not going to be the right of line x = Λb/µb. Moveover,

the slope of the tangent line of curve C1 at the point O(0, 0) is k1 =
βbb(1−Rb

0)

βpbRb
0

.

Similarly, curve C2 intersects the y−axis at the two points denoted by O(0, 0) and

B = (0, y1) = (0,
µp(Rp

0−1)
βpp

), and the asymptote equations of curve C2 are given by

L21 : y = −βbp

βpp
x− µp

βpp
and L22 : y =

Λp

µp + dp
.

Obviously, the asymptote L22 is not going to be higher than line y = Λp/µp. More-

over, the slope of the tangent line of curve C2 at the point O(0, 0) is k2 =
βbpRp

0

βpp(1−Rp
0)
.

From the expression of curves C1 and C2, we obtain that

y′′ = f ′′(x) =
2Λbµb(µb + db)

2

βpb[Λb − (µb + db)x]3
, x′′ = g′′(y) =

2Λpµp(µp + dp)
2

βbp[Λp − (µp + dp)y]3
.

Furthermore, curve C1 is concave for x ∈ (−∞, Λb

µb+db
), while it is convex for x ∈

( Λb

µb+db
,∞); and curve C2 is concave for y ∈ (−∞,

Λp

µp+dp
), while it is convex for

y ∈ (
Λp

µp+dp
,∞). Based on the above basic analysis, we can obtain the following

facts:

y → ∞, as x →
[

Λb

µb + db

]−
; y → −∞, as x →

[
Λb

µb + db

]+
and x → ∞;

and

x → ∞, as y →
[

Λp

µp + dp

]−
; x → −∞, as y →

[
Λp

µp + dp

]+
and y → ∞.

It can be concluded from the above analysis that curve C1 only has at most two
points of intersection with the X-axis and curve C2 only has at most two points of
intersection with the Y-axis. Considering other basic characteristics of these two
curves (limit, concavity, asymptote), they have at most one positive intersection

point, and they can only intersect within the space

(
0, Λb

µb+db

)
×

(
0,

Λp

µp+dp

)
.

It is easily to verify that curves C1 and C2 always have an intersection O(0, 0).
It corresponds to the disease-free equilibrium of system (3.2). Moreover, based on
the above discussion, the existence of endemic equilibria for system (3.2) in Ωbp can
be divided into the following six cases:

(i) : Rb
0 > 1,Rp

0 > 1; (ii) : Rb
0 < 1,Rp

0 < 1; (iii) : Rb
0 ≤ 1,Rp

0 > 1;

(iv) : Rb
0 > 1,Rp

0 ≤ 1; (v) : Rb
0 = 1,Rp

0 < 1; (vi) : Rb
0 ≤ 1,Rp

0 = 1.
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For case (i): Rb
0 > 1,Rp

0 > 1. In this case, x1 = µb(Rb
0 − 1)/βbb and

y1 = µp(Rp
0 − 1)/βpp are positive. And curves C1 and C2 exist a unique posi-

tive intersection in Ωbp, as shown in Fig.2 (c). Hence, model (3.2) exists a unique

coexistence equilibrium denoted by Ebp
+ .
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Figure 2. The intersections of curve C1 and C2 when Rb
0 > 1 and Rp

0 > 1.

For case (ii): Rb
0 < 1 and Rp

0 < 1. Obviously, x1 and y1 are negative. In
this case, whether curves C1 and C2 intersect depends on the slope of the tangent
line at the origin O(0, 0). From the expressions of k1, k2 and the basic reproduction
number R0, we obtain that k1 > 0, k2 > 0, and

k1
k2

=
βbbβpp(1−Rb

0)(1−Rp
0)

βbpβpbRb
0R

p
0

.

In addition, we have

R0 > 1 ⇔

√
(Rb

0 −Rp
0)

2 + 4Rb
0R

p
0

βbpβpb

βbbβpp
> 2− (Rb

0 +Rp
0) > 0

⇔ Rb
0R

p
0

βbpβpb

βbbβpp
> 1−Rb

0 −Rp
0 +Rb

0R
p
0 ⇔ βbbβpp(1−Rb

0)(1−Rp
0)

βbpβpbRb
0R

p
0

< 1.
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Hence, R0 > 1 if and only if k1 < k2 and R0 ≤ 1 if and only if k1 ≤ k2. With the
help of computer simulation, we can easily obtain curves C1 and C2 have a unique
positive intersection in the feasible region when R0 > 1 (see Fig.3 (c)). That is to
say, if R0 > 1, then model (3.2) exists a unique coexistence equilibrium. Curves C1

and C2 have no positive intersection in the feasible region when R0 ≤ 1 (see Fig.3
(a) and (b)), i.e., there exists no positive equilibrium when R0 ≤ 1.
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Figure 3. The intersections of curves C1 and C2 when Rb
0 < 1 and Rp

0 < 1.

For case (iii) : Rb
0 ≤ 1 and Rp

0 > 1. In this case, x1 is not positive and y1
is positive. Similarity, we get curves C1 and C2 exist a unique positive intersec-

tion in

(
0, Λb

µb+db

)
×

(
0,

Λp

µp+dp

)
. Hence, model (3.2) exists a unique coexistence

equilibrium, as shown in Fig.4(a).

For case (iv): Rb
0 > 1 and Rp

0 ≤ 1. In this case, x1 is positive and y1 is not
positive. Moreover, similar to case (iii), curves C1 and C2 exists a unique positive

intersection in

(
0, Λb

µb+db

)
×
(
0,

Λp

µp+dp

)
, i.e. model (3.2) exists a unique coexistence

equilibrium, as shown in Fig.4(b).

For case (v): Rb
0 = 1 and Rp

0 ≤ 1. In this case, x1 is equal to zero and y1 is
negative. And the trend of curve C1 and curve C2 cannot be determined, so the
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Figure 4. The intersections of curves C1 and C2 for cases (iii)-(vi).

existence of the intersection point of the two curves in Ωbp cannot be determined.
Therefore, in the following, we will analyze the existence of the intersection point
through detailed calculation and combining the basic characteristics of the two
curves.

Since Rb
0 = 1, by calculation, the equations of curves C1 and C2 become the

following equations

y =
β2
bbx

2

βpbµb − βpbβbbx
, x =

β2
ppy

2 + βppµp(1−Rp
0)y

βbpµpRp
0 − βbpβppy

.

Solving the above two equations, we can obtain a cubic equation with x as follows,

a3x
3 + a2x

2 + a1x+ a0 = 0, (3.6)

where

a3 = β2
ppβ

4
bb

(
1− βbpβpb

βbbβpp

)
, a0 = −βbpβ

2
pbµpµ

2
bR

p
0,

a2 = βbpβpbβppβ
2
bbµb − βbpβ

2
pbβ

2
bbµpRp

0 − βppβpbβ
3
bbµp(1−Rp

0),

a1 = 2βbbβbpβ
2
pbµbµpRp

0 + βppβpbβ
2
bbµbµp(1−Rp

0).
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It is easy to see that a3 > 0, a0 < 0 and then equation (3.6) has a unique positive
root x∗ ∈ (0, Λb

µb+db
), i.e., curves C1 and C2 only has one positive intersection.

In addition, due to x∗ ∈ (0, Λb

µb+db
) and Rb

0 = 1, we have y∗ = β2
bbx

∗2/(βpbµb −
βpbβbbx

∗) > 0. It can be concluded from the above analysis that system (3.2) exists
a unique coexistence endemic equilibrium, as shown in Fig.4(c).

For case (vi): Rb
0 ≤ 1 and Rp

0 = 1. Using a similar discussion as in case (v),
we can easily obtain that system (3.2) exists a unique coexistence equilibrium when
Rb

0 ≤ 1 and Rp
0 = 1.

To sum up the above discussion, we can get the following conclusion.

Theorem 3.2. If R0 > 1, then the bird-poultry model (3.2) exists a unique coexis-

tence equilibrium Ebp
+ = (S∗

b , I
∗
b , S

∗
p , I

∗
p ).

Theorem 3.3. If R0 < 1, then Ebp
0 is locally asymptotically stable in Ωbp.

Proof. The eigenvalue of the Jacobian matrix of model (3.2) at Ebp
0 are −µb, −µp,

and the roots of the following polynomial

λ2 +A1λ+B1 = 0, (3.7)

where

A1 =µb + db −
Λbβbb

µb
+ µp + dp −

Λpβpp

µp
= (1−Rb

0)(µb + db) + (1−Rp
0)(µp + dp),

B1 =

(
µb + db −

Λbβbb

µb

)(
µp + dp −

Λpβpp

µp

)
− ΛbΛpβbpβpb

µbµp

=(1−Rb
0)(1−Rp

0)

[
1− βbpβpbRb

0R
p
0

βbbβpp(1−Rb
0)(1−Rp

0)

]
(µb + db)(µp + dp).

It follows from Remark 3.1 that R0 > max{Rb
0,R

p
0}. Hence, if R0 < 1, we have

Rb
0 < 1 and Rp

0 < 1. Further, A1 is positive. And, based on Rb
0 < 1, Rp

0 < 1, we
have

R0 < 1 ⇔ βbpβpbRb
0R

p
0

βbbβpp(1−Rb
0)(1−Rp

0)
< 1.

This implies that B1 is positive when R0 < 1. Therefore, both roots of equation
(3.7) have a negative real part when R0 < 1.

Theorem 3.4. If
βpp(1−Rp

0)(µb+db)

Rb
0βbp(µp+dp)

> 1 and
βbb(1−Rb

0)(µp+dp)
Rp

0βpb(µb+db)
> 1, then Ebp

0 is

globally asymptotically stable in Ωbp.

Proof. Choosing the following Lyapunov function

L(t) =

(
Sb(t)− Sb∗ − Sb∗ ln

Sb(t)

Sb∗

)
+ Ib(t) +

(
Sp(t)− Sp∗ − Sp∗ ln

Sp(t)

Sp∗

)
+ Ip(t),

we have
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dL(t)

dt
=

(
1− Sb∗

Sb

)(
Λb − βbbSbIb − βpbSbIp −

Λb

Sb∗Sb

)
+

(
1− Sp∗

Sp

)(
Λp − βppSpIp − βbpSpIb −

Λp

Sp∗Sp

)
=− Λb(Sb − Sb∗)

2

SbSb∗
+ [βbbSb∗Ib + βpbSb∗Ip − (µb + db)Ib]

=− Λp(Sp − Sp∗)
2

SpSp∗
+ [βppSp∗Ip + βbpSp∗Ib − (µb + db)Ip]

≤
[
Λbβbb

µb
+

Λpβbp

µp
− (µb + db)

]
Ib(t) +

[
Λbβbp

µb
+

Λpβpp

µp
− (µp + dp)

]
Ip(t)

=

[
(Rb

0 − 1)(µb + db) +
βbpRp

0

βpp
(µp + dp)

]
Ib(t) +

[
(Rp

0 − 1)(µp + dp)

+
βpbRb

0

βbb
(µb + db)

]
Ip(t).

It is evident that dL(t)/dt < 0 if

(Rb
0−1)(µb+db)+

βbpRp
0

βpp
(µp+dp) < 0 and (Rp

0−1)(µp+dp)+
βpbRb

0

βbb
(µb+db) < 0,

which is equivalent that

βpp(1−Rp
0)(µb + db)

Rb
0βbp(µp + dp)

> 1,
βbb(1−Rb

0)(µp + dp)

Rp
0βpb(µb + db)

> 1. (3.8)

Therefore, if the two inequalities in (3.8) hold, then dL(t)/dt ≤ 0, and it can be
verified that dL(t)/dt = 0, if and only if Sb = Sb∗, Ib = 0, Sp = Sp∗ and Ip = 0.
That is to say that the largest invariant set in {(Sb, Ib, Sp, Ip) : dL(t)/dt = 0}
is the singleton {Ebp

0 }. By the LaSalle’s invariance principle [29], Ebp
0 is globally

asymptotically stable.

Remark 3.2. Multiplying the two inequalities in (3.8), we get
βbbβpp(1−Rb

0)(1−Rp
0)

βbpβpbRb
0R

p
0

>

1. It is not hard to see that from R0 < 1, we can obtain that this inequality holds.
However, we can not obtain that Ebp

0 is globally asymptotically stable when R0 < 1,
which is still an open problem.

Theorem 3.5. If R0 > 1, then Ebp
+ = (S∗

b , I
∗
b , S

∗
p , I

∗
p ) is globally attractive in Ωbp.

Proof. Define ϕ(x) = x− lnx− 1, we have ϕ(x) ≥ 0 for all x > 0. Let

W (t) =βbpS
∗
bS

∗
pI

∗
b ϕ

(
Sb

S∗
b

)
+ βbpS

∗
pI

∗2
b ϕ

(
Ib
I∗b

)
+ βpbS

∗
bS

∗
pI

∗
pϕ

(
Sp

S∗
p

)
+ βpbS

∗
b I

∗2
p ϕ

(
Ip
I∗p

)
.
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Then

dW (t)

dt
=− βbpS

∗
pI

∗
b µb

(Sb − S∗
b )

2

Sb
+ βbpS

∗
pI

∗
b (1−

S∗
b

Sb
)

[
βbbS

∗
b I

∗
b + βpbS

∗
b I

∗
p

− βbbSbIb − βpbSbIp

]
+ βbpS

∗
pI

∗
b

(
1− I∗b

Ib

)[
βbbSbIb + βpbSbIp

− (µb + db)Ib

]
− βpbS

∗
b I

∗
pµp

(Sp − S∗
p)

2

Sp
+ βpbS

∗
b I

∗
p

(
1−

S∗
p

Sp

)
×
[
βppS

∗
pI

∗
p + βbpS

∗
pI

∗
b − βppSpIp − βbpSpIb

]
+ βpbS

∗
b I

∗
p

(
1−

I∗p
Ip

)
×
[
βppSpIp + βbpSpIb − (µp + dp)Ip

]
≤βbpβbbS

∗
bS

∗
pI

∗2
b

[
2− S∗

b

Sb
− Sb

S∗
b

]
+ βppβpbS

∗
bS

∗
pI

∗2
p

[
2−

S∗
p

Sp
− Sp

S∗
p

]
+ βbpβpbS

∗
bS

∗
pI

∗
b I

∗
p

[
2 +

Ip
I∗p

− S∗
b

Sb
− Ib

I∗b
− SbIpI

∗
b

S∗
b I

∗
pIb

]
+ βbpβpbS

∗
bS

∗
pI

∗
b I

∗
p

[
2 +

Ib
I∗b

−
S∗
p

Sp
− Ip

I∗p
−

SpIbI
∗
p

S∗
pI

∗
b Ip

]
≤− βbpβpbS

∗
bS

∗
pI

∗
b I

∗
p

(
ϕ

(
S∗
b

Sb

)
+ ϕ

(
S∗
p

Sp

)
+ ϕ

(
SbIpI

∗
b

S∗
b I

∗
pIb

)
+ ϕ

(
SpIbI

∗
p

S∗
pI

∗
b Ip

))
.

Therefore, if R0 > 1, then dW (t)/dt ≤ 0, and it can be verified that dW (t)/dt = 0,
if and only if Sb = S∗

b , Ib = I∗b , Sp = S∗
p and Ip = I∗p . That is to say that the largest

invariant set in {(Sb, Ib, Sp, Ip) : dW (t)/dt = 0} is the singleton {Ebp
+ }. By the

LaSalle’s invariance principle [29], Ebp
+ is globally attractive for model (3.2).

4. Analysis of the whole model

In this section, we discuss the threshold dynamics for the whole model (2.1). Clearly,

model (2.1) always has a disease-free equilibrium E0 = (Λb

µb
, 0,

Λp

µp
, 0, Λh

µh
, 0, 0), and

has a unique positive equilibrium E∗
+ = (S∗

b , I
∗
b , S

∗
p , I

∗
p , S

∗
h, I

∗
h, R

∗
h) when R0 > 1,

where

S∗
h =

Λh

βbhI∗b + βphI∗p + µh
, I∗h =

Λh − µhS
∗
h

γh + µh + dh
, R∗

h =
γh(Λh − µhS

∗
h)

µh(γh + µh + dh)
.

The positivity of S∗
h follows from Theorem 3.3. Let E∗ = (S̃∗

b , Ĩ
∗
b , S̃

∗
p , Ĩ

∗
p , S̃

∗
h, Ĩ

∗
h, R̃

∗
h)

be an arbitrary equilibrium of model (2.1). Then the Jacobian matrix at E∗ of the
corresponding model (2.1) is

J(E∗) =

J11 0

J12 J22

 ,
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where J11 and J22 are given by

J11 =
−βbbĨ

∗
b − βpbĨ

∗
p − µb −βbbS̃

∗
b 0 −βpbS̃

∗
b

βbbĨ
∗
b + βpbĨ

∗
p βbbS̃

∗
b − (µb + db) 0 βpbS̃

∗
b

0 −βbpS̃
∗
p −βppĨ

∗
p − βbpĨ

∗
b − µp −βppS̃

∗
p

0 βbpS̃
∗
p βppĨ

∗
p + βbpĨ

∗
b βppS̃

∗
p − (µp + dp)


and

J22 =


−βbhĨ

∗
b − βphĨ

∗
p − µh 0 0

βbhĨ
∗
b + βphĨ

∗
p −(γh + dh + µh) 0

0 γh −µh

 .

Obviously, the eigenvalues of the matrix J22 have negative real parts, hence, the
stability of the equilibria is determined by the eigenvalues of the matrix J11, which
is also the Jacobian matrix of the first four equations of model (2.1) at an arbitrary

equilibrium E∗
bp = (S̃∗

b , Ĩ
∗
b , S̃

∗
p , Ĩ

∗
p ). Therefore, we can obtain the following results.

Theorem 4.1. The following statements are valid:
(i) If R0 < 1, then E0 is locally asymptotically stable in Ω;

(ii) If
βpp(1−Rp

0)(µb+db)

Rb
0βbp(µp+dp)

> 1 and
βbb(1−Rb

0)(µp+dp)
Rp

0βpb(µb+db)
> 1, then E0 is globally asymp-

totically stable in Ω.
(iii) If R0 > 1, then E∗

+ = (S∗
b , I

∗
b , S

∗
p , I

∗
p , S

∗
h, I

∗
h, R

∗
h) is globally attractive in Ω.

Proof. (i). From Theorem 3.3 and the fact that all eigenvalues of the matrix J22
have negative reals parts, the proof is immediate.

(ii). From Theorem 3.4, we see that if
βpp(1−Rp

0)(µb+db)

Rb
0βbp(µp+dp)

> 1 and
βbb(1−Rb

0)(µp+dp)
Rp

0βpb(µb+db)
>

1, then
lim
t→∞

(Sb(t), Ib(t), Sp(t), Ip(t)) = (Sb∗, 0, Sp∗, 0).

Consider the following limit system

dSh(t)

dt
=Λh − µhSh(t),

dIh(t)

dt
=− (γh + µh + dh)Ih(t),

dRh(t)

dt
=γhIh(t)− µhRh(t).

(4.1)

Solving the first two equations of model (4.1), we get

Sh(t) = Sh0e
−µht +

Λh

µh
, Ih(t) = Ih0e

−(γh+µh+dh)t.

It follows that Sh(t) → S∗
h and Ih(t) → 0 as t → ∞. We further consider the limit

equation of Rh(t), dRh(t)/dt = −µhRh(t). Thus, we have Rh(t) → 0 as t → ∞.
(iii). From Theorem 3.5, we see that if R0 > 1, then

lim
t→∞

(Sb(t), Ib(t), Sp(t), Ip(t)) = (S∗
b , I

∗
b , S

∗
p , I

∗
p ).
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Consider the following limit equation,

dSh(t)

dt
= Λh − (βbhI

∗
b + βphI

∗
p + µh)Sh(t). (4.2)

Solving equation (4.2), we get

Sh(t) = Sh0e
−(βbhI

∗
b +βphI

∗
p+µh)t +

Λ

βbhI∗b + βphI∗p + µh
.

It follows that Sh(t) → S∗
h as t → ∞. Using a similar argument, we can show that

limt→∞ Ih(t) = I∗h and limt→∞ Rh(t) = R∗
h.

5. Sensitivity analysis and optimal control problem

Based on the discussion in Sections 3 and 4, we can conclude that the basic repro-
duction number R0 is an important threshold value for determining whether the
disease becomes endemic or extinct. However, there are many parameters in the ex-
pression of basic reproduction number R0, but which parameters have the greatest
impact on the basic regeneration number R0? In other words, biologically speak-
ing, what measures are more likely to be taken to control the spread of diseases? In
order to settle this problem, in this section, we firstly discuss the sensitivity of some
parameters in model (2.1) to the basic reproduction number R0, and then propose
a corresponding control problem based on the results of sensitivity analysis. In
order to conduct sensitivity analysis, we first need to introduce the definition of
sensitivity index.

Definition 5.1. The normalized forward sensitivity index of a variable, u, which
depends differentiable on a parameter, p, is defined as,

γu
p :=

∂u

∂p
× p

u
. (5.1)

Table 1. Sensitivity index of the reproduction number R0.

Param. Description Value

Λp Recruitment rate of poultry population 0.6515

βbb Transmission rate from bird to bird 0.2463

βpb Transmission rate from poultry to bird 0.1022

βpp Transmission rate from poultry to poultry 0.5493

βbp Transmission rate from bird to poultry 0.1022

µp Death rate of poultry (including natural death and culling) -0.8526

Due to the practical biological significance of certain parameters, we mainly
focus on the sensitivity of parameters shown in Table 1. Based on the study in
[5, 19, 32], we fix some parameter values Λb = 108/520, βbb = 2.0 × 10−9, βpb =
9.3114× 10−10, µb = 1/520, db = 0.18, Λp = 1.0438× 108/6, βpp = 3.8164× 10−9,
βbp = 6.3243 × 10−10, µp = 1/8 and dp = 0.28. Then using the equation (5.1), we
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can obtain the sensitivity index of the basic reproduction numberR0 regarding some
key parameters of model (2.1) as shown in Table 1 and Figure 5. From e Figure
5, we can see that R0 is the most sensitive to poultry mortality µp, followed by
the recruitment rate of poultry Λp, and finally, the rate of transmission poultry-to-
poultry βpp and bird-to-bird βbb. Specifically, Table 1 shows that a reduction of the
poultry death rate by 10% increases R0 by 8.526%; the increase in the recruitment
rate of poultry by 10% would increase R0 by 6.515%; a reduction of the rate of
transmission poultry-to-poultry and bird-to-bird by 10% decreases R0 by 5.493%
and 2.463%, respectively.

p bb pb pp bp p
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Figure 5. Sensitivity indices of R0 to parameters for model (2.1).

Although birds are one of the major potential vectors for the spread of highly
pathogenic avian influenza, given their importance to the ecosystem, the removal
and killing of birds can easily cause an imbalance in the ecosystem and make it dif-
ficult to maintain. Therefore, combined with the above sensitivity analysis results,
the effective strategy to control the transmission of avian influenza virus is to adopt
relevant control on poultry. The most effective strategy is to increase the mortality
rate of poultry by large-scale killing, followed by reducing the recruitment rate of
susceptible poultry through immunization. The third is to reduce the contact rate
between birds and poultry (such as changing the free-range poultry to captivity,
and disinfecting the living environment of captive poultry).

In terms of the results of the sensitivity analysis, we design a control model to
the optimal level of effort required for controlling the transmission of avian influenza
virus. We introduce four time-dependent control strategies, u1(t), u2(t), u3(t) and
u4(t) regarding the recruitment rate of susceptible poultry, the cull rate of suscep-
tible poultry, the cull rate of infected poultry and the personal protection rate of
susceptible human. u1(t) ∈ [0, 1] measures the level of reduction in the number of
susceptible poultry, which can be achieved by increasing the immunization ratio of
susceptible poultry. u1(t) = 1 indicates that full immunization coverage of poultry
population(including those in concentrated farms and those in free-range farming
households). The costs associated with this control strategy include raising the
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public awareness of the disease through publicity and education, so that farmers
can regularly vaccinate hatching poultry. u2(t) ∈ [0, 1] and u3(t) ∈ [0, 1] represent
the level of culling susceptible poultry and infected poultry, respectively, which are
common control measures during avian influenza epidemics. Here u2(t) = u3(t) = 1
means culling all poultry, which will bring huge economic losses. u4(t) measures
the level of successful prevention (personal protection) through public health edu-
cation. Personal protection includes wearing protective equipment such as masks
and gloves when in contact with birds or poultry, and even avoiding contact with
live birds or poultry to minimize or eliminate poultry-human and bird-human direct
contacts. Therefore, we analysis the following avian influenza model with control
strategy terms:

dSb(t)

dt
=Λb − βbbSb(t)Ib(t)− βpbSb(t)Ip(t)− µbSb(t),

dIb(t)

dt
=βbbSb(t)Ib(t) + βpbSb(t)Ip(t)− (µb + db)Ib(t),

dSp(t)

dt
=(1− u1(t))Λp − βppSp(t)Ip(t)− βbpSp(t)Ib(t)− (µp + u2(t))Sp(t),

dIp(t)

dt
=βppSp(t)Ip(t) + βbpSp(t)Ib(t)− (µp + dp + u3(t))Ip(t),

dSh(t)

dt
=Λh − (1− u4(t))Sh(t)(βbhIb(t) + βphIp(t))− µhSh(t),

dIh(t)

dt
=(1− u4(t))Sh(t)(βbhIb(t) + βphIp(t))− (γh + dh + µh)Ih(t),

dRh(t)

dt
=γhIh(t)− µhRh(t).

(5.2)
Obviously, when ui(t)(i = 1, 2, 3, 4) are constants, the dynamic behavior of model
(5.2) is similar to the dynamic behavior of model (2.1), so we do not discuss it. We
focus on minimizing susceptible poultry and infected poultry, as well as minimizing
infected human. Therefore, an optimal control problem with the objective is given
by

min J(u1, u2, u3, u4) =

∫ tend

0

[q1Sp(t) + q2Ip(t) + q3Ih(t) + q4u
2
1

+ q5u
2
2 + q6u

2
3 + q7u

2
4]dt,

(5.3)

where q1, q2 and q3 represent weight constants of the number of susceptible poultry,
infected poultry and infected human; q4, q5 and q6 are weight constants for poultry
immunization, culling of susceptible poultry and culling of infected poultry , respec-
tively; q7 is a weight constant for the personal protection of susceptible human. We
will investigate optimal control functions (u∗

1, u
∗
2, u

∗
3, u

∗
4) such that

J(u∗
1, u

∗
2, u

∗
3, u

∗
4) = min

(
J(u1, u2, u3, u4)|(u1, u2, u3, u4) ∈ Γ

)
, (5.4)

where Γ = {(u1, u2, u3, u4)|ui(t) is Lebesgue measurable on [0, tend] and 0 ≤ ui(t) ≤
1, i = 1, 2, 3, 4} is the control strategy set. Using the similar arguments as in [27],
we have the following result for the existence of an optimal control about (5.2) and
(5.3).

Theorem 5.1. There exists an optimal control set (u∗
1, u

∗
2, u

∗
3, u

∗
4) ∈ Γ with cor-

responding nonnegative states (Sb, Ib, Sp, Ip, Sh, Ih, Rh) that minimize the objective



Avian Influenza Model among Multi-populations 907

functional J(u1(t), u2(t), u3(t), u4(t)).

Proof. The positivity and uniform boundedness of the state variables as well as
the controls on [0, tend] entail the existence of a minimizing sequence:

J (un
1 (t), u

n
2 (t), u

n
3 (t), u

n
4 (t)) ,

such that

lim
n−→∞

J (un
1 (t), u

n
2 (t), u

n
3 (t), u

n
4 (t))

= inf
(un

1 (t),u
n
2 (t),u

n
3 (t),u

n
4 (t))∈Γ

J (un
1 (t), u

n
2 (t), u

n
3 (t), u

n
4 (t)) .

The boundedness of all the state and control variables implies that all the deriva-
tives of the state variables are also bounded. If the corresponding sequence of state
variables is denoted by (Sb, Ib, Sp, Ip, Sh, Ih, Rh), then all state variables are Lips-
chitz continuous with the same Lipschitz constant. This implies that the sequence
(Sb, Ib, Sp, Ip, Sh, Ih, Rh) is uniformly equicontinuous in [0, tend]. Following the ap-
proach in [30], the state sequence has a subsequence that converges uniformly to
(Sb, Ib, Sp, Ip, Sh, Ih, Rh) in [0, tend]. In addition, we can establish that the control
sequence un =

(
Sn
b , I

n
b , S

n
p , I

n
p , S

n
h , I

n
h , R

n
h

)
has a subsequence that converges weakly

in L2(0, tend). Let (u
∗
1, u

∗
2, u

∗
3, u

∗
4) ∈ Γ be such that un

i −→ u∗
i weakly in L2(0, tend)

for i = 1, 2, 3, 4. Applying the lower semicontinuity of norms in weak L2, we have

∥u∗
i ∥2L2 ≤ lim inf

n→∞
∥un

i (t)∥2L2 .

This means that

J(u∗
1, u

∗
2, u

∗
3, u

∗
4) ≤ lim

n→∞

∫ tend

0

[q1S
n
p (t) + q2I

n
p (t) + q3I

n
h (t)

+ q4u
n
1 + q5u

n
2 + q6u

n
3 + q7u

n
4 ]dt,

which completes the proof.
In the following part, we derive necessary conditions for an optimal control and

formulate an optimality system that characterizes the optimal control using upper
and lower bound techniques. According to the Ponteyagins maximum principle [31],
the necessary conditions for an optimal control problem can be obtained. The
principle converts system (5.2) and equation (5.3) into a problem of maximizing
pointwise Hamilton H, with respect to u1, u2, u3, and u4 defined by :

H = q1Sp(t) + q2Ip(t) + q3Ih(t) + q4u
2
1 + q5u

2
2 + q6u

2
3 + q7u

2
4 +

7∑
i=1

λifi, (5.5)

where fi is the right-hand side for the different equation of i-th state variable. By
Ponteyagins maximum principle and the existence result for the optimal control,
we derive the following result of the necessary conditions for the optimal control
problem.

Theorem 5.2. For the optimal solution (S̃b(·), Ĩb(·), S̃p(·), Ĩp(·), S̃h(·), Ĩh(·), H̃h(·),
R̃h(·)) associated with an optimal control J∗(u∗

1, u
∗
2, u

∗
3, u

∗
4) on [0, tend], there exist

adjoint functions, λi(t), for i = 1, 2, · · · , 7, satisfying
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

dλ1(·)
dt

=(λ1 − λ2)(βbbĨb + βpbĨp) + λ1µb,

dλ2(·)
dt

=(λ1 − λ2)βbbS̃b + (λ3 − λ4)βbpS̃p + (λ5 − λ6)βbhS̃h(1− u∗
4)

+ λ2(µb + db),

dλ3(·)
dt

=− q1 + (λ3 − λ4)(βppĨp + βbpĨb) + (µp + u∗
2)λ3,

dλ4(·)
dt

=− q2 + (λ1 − λ2)βpbS̃b + (λ3 − λ4)βppS̃p + (λ5 − λ6)βphS̃h

× (1− u∗
4) + λ4(µp + dp + u∗

3),

(5.6)



dλ5(·)
dt

=(λ5 − λ6)(βphĨp + βbhĨb)(1− u∗
4) + λ5µh,

dλ6(·)
dt

=− q3 + (λ6 − λ7)γh + λ6(µh + dh),

dλ7(·)
dt

=λ7µh,

and the terminal conditions are λi(tend) = 0, i = 1, 2, · · · , 7. Furthermore, optimal
control strategies u∗

1, u
∗
2, u

∗
3 and u∗

4 are given by

u∗
1 = min

{
1,max

{
0,

λ3Λp

2q4

}}
, u∗

2 = min

{
1,max

{
0,

λ3S̃p

2q5

}}
,

u∗
3 = min

{
1,max

{
0,

λ4Ĩp
2q6

}}
,

u∗
4 = min

{
1,max

{
0,

(λ6 − λ5)(βphĨp + βbhĨb)S̃h

2q7

}}
.

Proof. Adjoint equations and transversality conditions can be obtained using
Pontryagin’s Maximum Principle such that

dλ1(t)

dt
= − ∂H

∂Sb
, λ1(tend) = 0,

dλ2(t)

dt
= −∂H

∂Ib
, λ2(tend) = 0,

· · · · · ·
dλ7(t)

dt
= − ∂H

∂Rh
, λ7(tend) = 0.

The optimal control strategies u∗
1, u

∗
2, u

∗
3, u

∗
4 can be solved from the optimality con-

ditions
∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0,

∂H

∂u4
= 0.
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6. Numerical simulation

6.1. Verification of theoretical results

In this subsection, to illustrate the theoretical results, two examples are carried out
using the Runge–Kutta method in the software MATLAB routines with different
parameters values. Based on the actual biological significance of the parameters,
we need to fix some parameters as in Table 2.

Table 2. Values of some parameters in model (2.1)

Parameter Value Reference Parameter Value Reference

Λb 108/520 [32] µb 1/520 [32]

db 0.18 [5] dp 0.28 [19]

Λh 2.269741× 108/3640 [32] µh 1/3640 [5]

γh 0.36 [32] dh 7/3.3 [32]

Example 1: In order to verify the globally asymptotically stability of the
disease-free equilibrium E0 for system (2.1), we select a set of parameter values
from [19]: βbb = 1.3×10−9, βpb = 7.3114×10−10, Λp = 0.9×108/6, βpp = 2.3×10−9,
βbp = 4.3243× 10−10, µp = 1/8, βbh = 2.6245× 10−10 and βph = 1.1542× 10−9. It
is easy to calculate that the threshold values Rb

0 = 0.7146 < 1, Rp
0 = 0.6815 < 1 and

βpp(1−Rp
0)(µb+db)

Rb
0βbp(µp+dp)

= 1.0649 > 1,
βbb(1−Rb

0)(µp+dp)
Rp

0βpb(µb+db)
= 1.6578 > 1, then model (2.1) has

a unique globally asymptotically stable disease-free equilibrium by Theorem 4.1,
which is verified here by Figs. 6 (a) and (b). However, in this case, we calculate
that R0 = 0.9256 < 1, i.e., indicating that the disease-free equilibrium E0 is globally
asymptotically stable by numerical simulations but it is still an open problem in
theoretical analysis.
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Figure 6. The global asymptotically stability of the disease-free equilibrium E0

Example 2: In order to verify the globally asymptotically stability of the
endemic equilibrium E0 for system (2.1), we choose βbb = 2.0 × 10−9, βpb =
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9.3114 × 10−10, Λp = 1.0438 × 108/6, βpp = 3.8164 × 10−9, βbp = 6.3243 × 10−10,
µp = 1/8, βbh = 2.6245 × 10−10 and βph = 1.1542 × 10−9. It is easy to calculate
that the threshold values Rb

0 = 1.0994 > 1, Rp
0 = 1.3115 > 1 and R0 = 1.5554 > 1,

then model (2.1) has a unique globally asymptotically stable endemic equilibrium
by Theorem 4.1, which is verified here by Figs. 7 (a) and (b).
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Figure 7. The global asymptotically stability of the endemic equilibrium E∗
+

6.2. Visualization of the impact of various parameters on model
dynamics

In this subsection, we mainly visualize the impact of some key parameters on model
dynamics based on the discussion in Section 5. Firstly, we keep the same parameters
as in Example 2 except the recruitment rate Λp to investigate its impact on model
dynamics. Taking Λp = 1.0438× 108/7, Λp = 0.9438× 108/7, Λp = 0.8438× 108/7,
and Λp = 0.7438 × 108/7, the evolution solutions of Ib, Ip and Ih for system (2.1)
are obtained

(
see Figs.8(a)-(c)

)
, respectively. Obviously, the peak values of infected

patients, infected poultry, and infected birds increase as Λp increases, and the time
they reach the peaks also migrate with the increase of Λp. Biologically, during the
outbreak of avian influenza, reducing the recruitment rate of susceptible poultry
can effectively reduce the number of infected patients, infected birds, and infected
poultry. At the same time, it can delay the time of the pandemic and help disease
control departments take relevant control measures in time.

In addition, while keeping the other parameters in Example 2 unchanged, we
take three cases for the values of Λp, βbp and βbh, and then calculate the corre-
sponding values of Rb

0, R
p
0 and R0 to get the final state values for infected humans,

infected birds, and infected poultry(see Table 3). At the same time, the evolution
solutions of system (2.1) for infected humans, infected birds, and infected poultry
are respectively obtained (see Figs.8(d)-(f)). Contrasting Case I and Case II in
Table 3, we can easily obtain that Rb

0 > 1, Rp
0 > 1, and R0 > 1 change to Rb

0 > 1,
Rp

0 < 1, and R0 > 1. The final size of infected birds, infected poultry and infected
human has decreased, which means that the decrease of the recruitment rate Λp

can effectively reduce the final scale of the epidemic outbreak but can not control
the disease transmission even if Rp

0 < 1. Moreover, contrasting Case II and Case
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Figure 8. The impact of Λp on the solutions related to infected population for model (2.1)

III in Table 3, even though the basic reproduction numbers Rb
0 > 1, Rp

0 < 1, and
R0 > 1 unchanged, the final scale of the infected scale of infected poultry and in-
fected humans comes to zero. Biologically, keeping the same recruitment rate Λp

and cutting off the transmission from birds to poultry and humans(βbp = βbh = 0)
can make the final scale of the infected poultry and infected humans zero even if
the basic reproduction numbers Rb

0 > 1, Rp
0 < 1, and R0 > 1.
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Similarly, we keep the same parameters in Example 2 except the death rate
µp to investigate its impact on model dynamics. Taking µp = 1/8, µp = 1/7.5,
µp = 1/7, µp = 1/6.5 and µp = 1/6, the evolution solutions of Ib, Ip and Ih for
system (2.1) are obtained

(
see Figs.9(a)

)
, respectively. Obviously, the peak values

of infected patients, infected poultry, and infected birds decrease with the increase
of µp. Biologically, during the outbreak of avian influenza, increasing the death rate
of poultry can effectively reduce the number of infected patients, infected birds, and
infected poultry.
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Figure 9. The impact of µp on the solutions related to infected population for model (2.1)

In addition, keeping the other parameters in Example 2 unchanged, we take
three cases for the values of µp, βbp and βbh, and then calculate corresponding val-
ues of Rb

0, R
p
0 and R0 and get the final state values for infected patients, infected

birds, and infected poultry(see Table 4). At the same time, the evolution solutions
of system (2.1) for infected patients, infected birds, and infected poultry are respec-
tively obtained (see Figs.9(b)-(d)). Similar to the arguments in Table 4, contrasting
Case I and Case II in Table 4, we can also obtain that Rb

0 > 1, Rp
0 > 1, and R0 > 1

change to Rb
0 > 1, Rp

0 < 1, and R0 > 1 and the final size of infected birds, infected
poultry and infected human has decreased, which means that the increase of the
death rate µp can effectively reduce the final scale of the epidemic outbreak but can
not control the disease transmission even if the Rp

0 < 1. Moreover, contrasting Case
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II and Case III in Table 4, even though the basic reproduction numbers Rb
0 > 1,

Rp
0 < 1, and R0 > 1 unchanged, the final scale of the infected scale of infected poul-

try and infected humans comes to zero. Biologically, keeping the same death rate µp

and cutting off the transmission from birds to poultry and humans(βbp = βbh = 0)
can make the final scale of the infected poultry and infected humans zero even if
the basic reproduction numbers Rb

0 > 1, Rp
0 < 1, and R0 > 1. Furthermore, we
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Figure 10. The impact of βbh and βph on the solutions Ih for model (2.1)

investigate the influence of the transmission rate βbh and βph on disease dynam-
ics. In fact, the expression of basic reproduction number R0 does not conclude βbh

and βph, which means that the values of βbh and βph can not change the threshold
dynamics. However, based on the sixth equation of system (2.1), it is not hard to
find that their values will affect the scale of the number of infected humans. In
order to visualize this phenomenon, we take different values of βbh and keep the
other parameters the same as Example 2. We get the evolution solutions of Ih
(see Fig.10(a)), which shows that the peak values of infected humans will increase
with the increase of βbh. And then we take different values of βph and keep the
other parameters the same as Example 2. We get the evolution solutions of Ih (see
Fig.10(b)), which shows that the peak values of infected humans will increase with
the increase of βph. Hence, we can conclude that enhancing public awareness of
prevention, such as wearing protective clothing, can reduce the transmission from
birds and poultry to humans, thereby reduce the scale of disease incidence.

7. Conclusion and discussion

This work focuses on AV transmission dynamics model with high coupled transmis-
sion routes among wild birds, poultry and humans. Our proposed model stems form
the actual biological background and has strong practical biological significance but
it poses great challenges to qualitative and quantitative analysis, especially the ex-
istence of an endemic equilibrium and its global asymptotic stability. Firstly, the
threshold dynamics of three sub-models: (the bird-only model, poultry-only model
and bird-poultry model in terms of the corresponding basic reproduction numbers
are discussed in detail. Here, we use a lot of mathematical analysis techniques and
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Graphic analysis with Matlab to study the bird-poultry model. Then, we discuss
the threshold dynamics criteria for the whole model. Furthermore, the sensitivity of
some parameters in model (2.1) to the basic reproduction number R0 is conducted.
Based on the results of sensitivity analysis, an optimal control problem is proposed,
and finally the theoretical results are verified and the effects of some parameters on
dynamics are visualized through numerical simulation. The visualization results of
the numerical simulation reveal many important and practical conclusions: reducing
the reproductive rate and increasing the mortality rate of poultry, can only control
the disease by simultaneously cutting off the transmission from birds to poultry and
humans even if the ultimate scale of the disease can be effectively controlled. In
addition, enhancing public awareness of prevention to reduce the transmission from
bird and poultry to humans is also effective in controlling the final scale of disease.

On the other hand, there are a lot of significant topics that deserve further con-
sideration other than the open problems proposed in this manuscript. For instance,
in this paper, we assume that the population is homogeneous. It may be more prac-
tical to consider the effects of spatial heterogeneity and white noise on the dynamics
of AI. To the best of our knowledge, there is little literature studying the dynamics
of reaction-diffusion AI with white noise because the Itô’s formula is not applicable
for mild solutions. In the future, we will develop research methods to solve such
problems.
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