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Exact Solutions and Optimal System of
Hyperbolic Monge-Ampère Equation
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Abstract Based on Lie symmetry theory, the exact solutions of the hyper-
bolic Monge-Ampère equation are studied. Firstly, the invariance of the Lie
symmetry group is applied to obtain the six-dimensional Lie algebras, then the
commutator table and the adjoint representation of the equation are obtained,
based on which the optimal system is found. Finally, the exact solutions are
obtained by symmetry reduction which transforms the PDEs into easily solv-
able ODEs.
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1. Introduction

Many important scientific and engineering problems can be summarised by the
study of nonlinear partial differential equations. Mathematical models in many
areas of real life can be described by NLPDEs, and many important fundamen-
tal equations in physics, mechanics, fiber optic communication [1], biologic [2] and
other disciplines [3] are NLPDEs. Progress has been made in the study of inte-
grable models. For example, Ma [4–6] has proposed many new integrable equa-
tions, including coupled modified Korteweg-de Vries four-component equation, cou-
pled nonlinear Schrodinger equation and AKNS type equation, and has achieved
breakthrough research results. As research progresses, methods for solving PDEs
become more sophisticated. Such as, linear superposition method [7], Bäcklund
transformation method [8–11], Darboux transformation method [12–14], Hirota bi-
linear method [15–21], Inverse scattering method [22–24], Jacobi elliptic function
expansion method [25–28], Lie symmetry analysis [29–35], maximum likelihood es-
timation [36], etc [37–39].

The Monge-Ampère equation was originally formulated by mathematicians Gas-
pard Monge and André-Marie Ampère in the late eighteenth century and first in-
troduced as a concept in differential geometry. The Monge-Ampère equation is
one of the fundamental equations widely used in the fields of elementary unitary
calculus and geometric growth. It has demonstrated its importance in this field,
not only for solving complex non-linear equations but also for calculating a large
number of parameters in fluid mechanics and detecting characteristic parameters
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of electromagnetic and acoustic fields. These properties have made the Monge-
Ampère equation very popular in the physical and mathematical community, and
its theoretical study and applications have been widely explored [40, 41]. The hy-
perbolic Monge-Ampère equation is used to describe a class of mechanical systems
with singular terminal constraints, and its greatest advantage lies in the fact that
its definition can be expressed exactly. Because of the practicality of the hyper-
bolic Monge-Ampère equation, scholars have done a lot of research. In [42], Kong
et al. found that the initial value problem of a one-dimensional hyperbolic mean
curvature flow F of a closed plane curve which can be simplified to the initial value
problem of a PDE satisfied by the support function of the curve, which is hyperbolic
Monge-Ampère equation

Sττ =
S2
θτ − 1

S + Sθθ
.

In [43], Michal et al. solved the equivalence problem based on the construction of
the hyperbolic Monge-Ampère equation, which had a fundamental differential in-
variants of the exposure transformation. In [44], Chen proved degenerate hyperbolic
Monge-Ampère equation in the existence of smooth solution near zero. Moreover,
the linearized equation was transformed into a simpler form by a transformation of
variables, leading to its a priori estimate. Finally the existence of local solutions
was proved by an iterative method. It was verified that the zero set of small per-
turbations has a simple structure. What has been studied by the above scholars, as
well as the exact solutions in our paper helps us to better understand the structure
and properties of the equation.

Nowadays, it is widely used in differential geometry, variational methods, opti-
mization problems, and transmission problems. Its mathematical expression is as
follows: the unknown function z = z(x, t) defined in (x, t) ∈ R2 corresponds to
Monge-Ampère equation

F +Gzxx +Hzxt + Iztt + J(zxxztt − z2xt) = 0, (1.1)

where F , G, H, I, J are first-order variables and x, t, zx, zt are the only non-
independent variables. F , G, H, I, J depend on x, t, z, zt, zx. If conditions

∆2(x, t, z, zt, zx)
∆
= H2 − 4GI + 4FJ > 0,

and
ztt +G(x, t, z, zt, zx) ̸= 0

are satisfied, then (1.1) is hyperbolic.
According to [45], we have

det(D2z) = k(x, t)(1 + z2x + z2t )
2, (1.2)

where G,H, I = 0, F = (1 + z2t + z2x)
2 and k(x, t) stands for the Gaussian curvature

of the surface. Hyperbolic Monge-Ampère equations are closely related to geometric
applications. A surface with negative Gaussian curvature at each point is a solution
to Equation (1.2). We call that a minimal surface, such as a Costa surface. Min-
imal surfaces cover a wide domain and have negative Gaussian curvature at every
point, so the existence of minimal surfaces is closely related to the solvability of the
hyperbolic Monge-Ampère equation. Therefore, it is extremely important to find
the solutions of the hyperbolic Monge-Ampère equations.
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In this article, we mainly apply the classic Lie symmetry method to study exact
solutions of hyperbolic Monge-Ampère Equation (1.3)

zttzxx − z2tx = −(1 + z2t + z2x)
2, (1.3)

which is the special case of k(x, t) = −1 in Equation (1.2). Clearly, because of
∆ > 0, it follows that Equation (1.3) is hyperbolic.

The article is divided into five main parts. Section 2 focuses on the Lie symmetry
analysis of the equation. Section 3 is devoted to finding the optimal system of the
equation. Section 4 has the main aim of finding the exact solutions of the equation,
and finally gives a small summary.

2. Lie symmetry analysis of Equation (1.3)

We will use the knowledge of group invariant solutions to obtain the Lie algebra of
the equation, and the vector is

X = ξ
∂

∂x
+ τ

∂

∂t
+ ϕ

∂

∂z
, (2.1)

where ξ, τ , ϕ are functions on x, t, z.

Pr(2)X(∆)|∆=0 = 0, (2.2)

in which ∆ = ztt − zxx − z2tx = −(1 + z2t + z2x)
2 . Pr(2)X is a second-order prolon-

gation of X.

Pr(2)X(∆) = X + ϕx ∂

∂zx
+ ϕt ∂

∂zt
+ ϕxx ∂

∂zxx
+ ϕtt ∂

∂ztt
+ ϕtx ∂

∂ztx
, (2.3)

in which
ϕx = Dx(ϕ)− zxDx(ξ)− ztDx(τ),

ϕt = Dt(ϕ)− zxDt(ξ)− ztDt(τ),

ϕxx = Dx(ϕ
x)− zxxDx(ξ)− ztxDx(τ),

ϕtt = Dt(ϕ
t)− zttDt(ξ)− ztxDt(τ),

ϕtx = Dx(ϕ
t)− zttDx(ξ)− ztxDx(τ),

(2.4)

where Dx, Dt are whole derivative with respect to x, t.

Dx =
∂

∂x
+ zx

∂

∂z
+ zxt

∂

∂zt
+ zxx

∂

∂zx
+ .... (2.5)

Substituting (2.4) and (2.5) into (2.3) yields the following determining equations:

ϕt = −τz, ϕx = −ξz, ϕz = 0, τt = 0, τxx = 0, τzz = 0,

ξt = −τx, ξx = 0, ξzz = 0, τzx = 0.
(2.6)

By solving (2.6), we can get :

ξ = −c1t+ c4z + c5,

τ = c1x+ c2z + c3,

ϕ = −c2t− c4x+ c6,

(2.7)
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where cj(j = 1...6) are arbitrary constants. Substituting (2.7) into (2.1), we can
get:

X = (−c1t+ c4z + c5)
∂

∂x
+ (c1x+ c2z + c3)

∂

∂t
− c2t− c4x+ c6. (2.8)

Then, we get the following subalgebra:

X1 =
∂

∂x
,X2 =

∂

∂t
,X3 =

∂

∂z
,X4 = z

∂

∂x
− x,

X5 = z
∂

∂t
− t,X6 = −t

∂

∂x
+ x

∂

∂t
.

(2.9)

3. The optimal system of the equation of Equation
(1.3)

The commutator table for the equation is obtained from the Lie bracket, through
which the adjoint representation for the equation is acquired. The Lie bracket is

[Xj , Xi] = XjXi −XiXj .

Table 1. Commutator table

[Xi, Xj ] X1 X2 X3 X4 X5 X6

X1 0 0 0 −X3 0 X2

X2 0 0 0 0 −X3 −X1

X3 0 0 0 X1 X2 0

X4 X3 0 −X1 0 −X6 X5

X5 0 X3 −X2 X6 0 −X4

X6 −X2 X1 0 −X5 X4 0

Table 2. Adjoint representation

Ad X1 X2 X3 X4 X5 X6

X1 X1 X2 X3 X4 + εX3 X5 X6 − εX2

X2 X1 X2 X3 X4 X5 + εX3 X6 + εX1

X3 X1 X2 X3 X4 − εX1 X5 − εX2 X6

X4

X1 cos(ε)

− X3 sin(ε)
X2

X3 cos(ε)

+ X1 sin(ε)
X4

X5 cos(ε)

+ X6 sin(ε)

X6 cos(ε)

− X5 sin(ε)

X5 X1

X2 cos(ε)

− X3 sin(ε)

X3 cos(ε)

+ X2 sin(ε)

X4 cos(ε)

− X6 sin(ε)
X5

X6 cos(ε)

+ X4 sin(ε)

X6

X1 cos(ε)

+ X2 sin(ε)

X2 cos(ε)

− X1 sin(ε)
X3

X4 cos(ε)

+ X5 sin(ε)

X5 cos(ε)

− X4 sin(ε)
X6

We consider the vector X,

X = b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6. (3.1)

We find the optimal system of equation in the following way.
(A) b4 ̸= 0, b4 = 1.
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Letting X act on Ad(exp(−b3X1)), Ad(exp(b1X3)) successively, eliminating the
coefficients of X1 and X3 successively, we get

X = (b2 + b3b6 − b1b5)X2 +X4 + b5X5 + b6X6. (3.2)

(a) If b6 = 0, then (3.2) becomes

X = (b2 − b1b5)X2 +X4 + b5X5. (3.3)

(b) When b6 ̸= 0, let X act on Ad(exp(arctan(
b5
b6
)X4))

X = (b2 + b3b6 − b1b5)X2 +X4 + hX6, (3.4)

where h is related to b5 and b6.
(B) b4 = 0, assume b5 ̸= 0, b5 = 1.
We obtain X = b1X1 + b2X2 + b3X3 + X5 + b6X6, then let Ad(exp(−b3X2)),

Ad(exp(b2X3)) work on X respectively. The vector is equivalent to

X = (b1 − b3b6)X1 +X5 + b6X6. (3.5)

(C) b4 = b5 = 0, assume b6 ̸= 0, b6 = 1,

Ad(exp(−b1X2)) ◦Ad(exp(b2X1))X = b3X3 +X6. (3.6)

(D) b4 = b5 = b6 = 0, assume b2 ̸= 0, b2 = 1,

X = b1X1 +X2 + b3X3. (3.7)

(a) b1 = 0,
X = X2 + b3X3, (3.8)

X(1) = Ad(exp(arctan b3X5))X = pX2, (3.9)

where p depends on b3.
(b) b1 ̸= 0,

X(1) = Ad(exp(arctan
b3
b1
X4))X = mX1 +X2, (3.10)

X(2) = Ad(exp(arctan(− 1

m
)X6))X

(1) = cX1. (3.11)

(E) b4 = b5 = b6 = b2 = 0, assume b1 ̸= 0,b1 = 1,

X = X1 + b3X3, (3.12)

X(1) = Ad(exp(arctan(b3)X4))X = X1. (3.13)

(F ) b4 = b5 = b6 = b2 = b1 = 0, and the vector X is tantamount to X3.
In summary, the optimal system for Equation (1.3) is

X2 ±X4 ±X5, b4 ̸= 0, b6 = 0,

X2 ±X4 ±X6, b4 = b6 ̸= 0,

X1 ±X5 ±X6, b4 = 0, b5 ̸= 0,

X3 ±X6, b4 = b5 = 0, b6 ̸= 0,

X2 ±X3, b4 = b5 = b6 = b1 = 0, b2 ̸= 0,

X1, b4 = b5 = b6 = 0, b1 = b2 ̸= 0,

X3, b1 = b2 = b4 = b5 = b6 = 0.

(3.14)
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4. Exact solutions

Case 1.For generatorX2+X4+X5 = (1+z)
∂

∂t
+z

∂

∂x
+(−t−x)

∂

∂z
, its characteristic

equation is the following form

dx

z
=

dt

(1 + z)
=

dz

(−t− x)
. (4.1)

Based on its characteristic equation, we can obtain an expression for the implicit
function on z,

z2 + z +
(x+ t)

2

2
= c, (4.2)

then we get

z1,2 = −1

2
± 1

2

√
−2t2 − 4tx− 2x2 − 4c+ 1. (4.3)

When c = 1, (4.3) is a solution to Equation (1.3).

(a) (b) (c)

Figure 1. The dynamical structures of z1: (a) 3D plot; (b) contour plot; (c) density plot.

(a) (b) (c)

Figure 2. The dynamical structures of z2: (a) 3D plot; (b) contour plot; (c) density plot.

Case 2. For generator X2 + X4 + X6 = (1 + x)
∂

∂t
+ (z − t)

∂

∂x
− x

∂

∂z
, its

corresponding characteristic equation can be written as

dx

z − t
=

dt

1 + x
=

dz

−x
. (4.4)

Depending on (4.4), we get

(z − t)2 − 2(−x2 − x) = c, (4.5)



Exact Solutions of Hyperbolic Monge-Ampère Equation 925

z1,2 = ±
√

2(−x2 − x) + c+ t, (4.6)

where c = −1

2
, (4.6) is the solution.

Case 3. For generator X1+X2 =
∂

∂x
+

∂

∂t
, its corresponding invariant is x− t,

and the corresponding form of the solution is

z = f(x− t). (4.7)

Substituting (4.7) into (1.3), we have

(1 + 2(f ′)2)2 = 0, (4.8)

so

f1,2 = ±1

2

√
2ξi+ c1. (4.9)

z1,2 = ±1

2

√
2(x− t)i+ c1, (4.10)

where c1 is an arbitrary constant. We get complex solutions.

Case 4. For generator X3 +X6 =
∂

∂z
− t

∂

∂x
+ x

∂

∂t
, we find its characteristic

equation as
dx

−t
=

dt

x
=

dz

1
, (4.11)

and the corresponding group invariant solution is

z = f(ξ) + arcsin

(
t√
ξ

)
, (4.12)

where ξ = x2 + t2. Substituting (4.12) into (1.3), we obtain an ODE that is not
suitable for solving.

Case 5. For generator X1 +X5 +X6 = (1− t)
∂

∂x
+ (z + x)

∂

∂t
− t

∂

∂z
, we get

dx

1− t
=

dt

z + x
=

dz

−t
. (4.13)

Using (4.13), we can obtain the implicit equation of z,

(z + x)2 − 2(t− t2) = c, (4.14)

and we have

z1,2 = ±
√

2(t− t2) + c− x, (4.15)

where c = −1

2
, (4.15) is the solution.

Case 6. For generators X2 and X3, we obtain the invariants as x, t, and the
group invariant solutions are z = f(x), z = f(t) ,respectively. The solutions are
z = c1 ± ix and z = c1 ± it, which are the complex solutions.
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5. Conclusion

In this paper, we aim to construct invariant solutions via Lie symmetry method.
Firstly, we obtain the six-dimensional Lie algebras of the equation using the invari-
ance of the Lie symmetry group solutions. Then, according to the Lie algebra, we
obtain the commutator table and the adjoint representation of the equation respec-
tively. Under these, we gain the optimal system of the equation. Finally the PDEs
are symmetrically reduced to the ODEs to obtain the exact solutions of the equa-
tion. The solutions obtained have not appeared in the previous literature, which
enriches the solutions of the equation. In addition, the solutions have the property
that every point is a saddle point. The result proves that the Lie symmetry method
could be applied to hyperbolic Monge-Ampère to derive exact solutions, and the
method is effective.
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[11] Y. H. Yin, X. L and W. X. Ma, Bäcklund transformation, exact solutions
and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution
equation, Nonlinear Dynamics, 2022, 108(4), 4181-4194.

[12] P. G. Estvez, Darboux transformation and solutions for an equation in (2+1)
dimensions, Journal of Mathematical Physics, 1999, 40(3), 1406-1419.

[13] X. Guan, W. Liu, Q. Zhou and A. Biswas, Darboux transformation and analytic
solutions for a generalized super-NLS-mKdV equation, Nonlinear Dynamics,
2019, 98, 1491-1500.

[14] M. Wang, B. Tian and T. Y. Zhou, Darboux transformation, generalized Dar-
boux transformation and vector breathers for a matrix Lakshmanan-Porsezian-
Daniel equation in a Heisenberg ferromagnetic spin chain, Chaos, Solitons &
Fractals, 2021, 152, 111411.

[15] D. Gao, X. L and M. S. Peng, Study on the (2+1)-dimensional extension of
Hietarinta equation: soliton solutions and Bäcklund transformation, Physica
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