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Bright-Dark Solitons, Kink Wave and Singular
Periodic Wave Solutions for the Lonngren-Wave

Equation

Ben Yang1,†, Yunjia Song1 and Xinxue Zhang1

Abstract In this article, exact solutions of the Lonngren-wave equation are
investigated. Firstly, the equation is transformed into an ordinary differential
equation by traveling wave transformation. Based on the homogeneous balance
method, bright-solitons and singular periodic wave solutions of the equation
are derived by applying the simple function expansion method and the Riccati
equation method. Applying the Exp(−φ(ς)) expansion method, we construct
dark-solitons and kink wave solutions of the equation. Moreover, the 3-D,
2-D and density plots are drawn by choosing the appropriate parameters so
that the properties of the solutions can be better studied. According to the
Figures, the analysis of the dynamical behavior of the solutions is provided.
This article enriches the diversity of the solutions of the equation.
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1. Introduction

Researchers have devoted more and more attention to the study of nonlinear par-
tial differential equations (NLPDEs), which have appeared in various fields, such as
physical engineering and biomedical science [1]. Hence, finding the solutions of the
equations is significant. There are many methods for solving NLPDEs, for instance,
the Jacobi elliptic function method [2], the inverse (G′/G)-expansion method [3],
the Exp(−φ(ς)) expansion method [4,5], the improved F-expansion method [6], the
sine-Gordon expansion approach [7], the Lie symmetry method [8–10], the Riccati
equation method [11, 12], the extended simple equation method [13, 14], the ho-
mogeneous balance method [15,16], the Hirota bilinear transformation [17,18], the
modified tanh method [19,20], the generalized unified method [21,22], etc [23,24].

Consider the following Lonngren-wave equation [25](
vxx − αv + βv2

)
tt
+ vxx = 0, (1.1)

in which α and β are real constants. Many scholars have studied the properties of
the Lonngren-wave equation. Eq. (1.1) describes the propagation of the electrical
signal in the tunnel diode [26]. In [27], Durur and Hülya acquired the traveling
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wave solutions of Eq. (1.1) by applying the generalized exponential rational func-
tion method, and concluded that the velocity is an important factor affecting the
wave diffraction by parameter assignment. Duran [28] investigated the effect of
conductivity on the electrical signal propagation and distribution by taking values
to the parameters in the solutions. Baskonus et al. [29] constructed the hyperbolic
function solutions of Eq. (1.1) by the sine-Gordon expansion method. Yokuş [30]
succeeded in deriving the soliton solutions by the auxiliary equation method, and
investigated the effect of bright and dark-solitons on the charge distribution. Bar-
man et al. [31] employed the generalized Kudryashov method to yield the wave
structure under different parameters.

The equation can be used to explain the transmission of electrical signals in
semiconducting materials and the storage of energy in charged circuits, which has
great practical significance. In addition, the exact solutions of the equation can help
explain the intrinsic motivation, such as the problem of the dispersion of electrical
signals, especially in semiconductors. In this paper, three methods are used to
obtain the corresponding bright-solitons, dark-solitons, and kink wave solutions
in [31], but with different functional expressions. Furthermore, the singular periodic
wave solutions of Eq.(1.1) are derived which are of great interest.

This article is organized into the following sections. In Section 2, Eq. (1.1) is
converted into an ODE by the traveling wave transformation. In Section 3, bright-
solitons solutions are yielded by utilizing the simple equation expansion method.
In Section 4, based on the Exp(−φ(ς)) expansion method, dark-solitons, singular
periodic wave and kink wave solutions are constructed. In Section 5, applying the
Riccati equation method, singular periodic wave and bright-solitons solutions of Eq.
(1.1) are derived. A brief discussion of the obtained graphs is given in Section 6.
Section 7 gives the remark and comparisons. Finally, the results of the study are
summarized in Section 8.

2. Preliminary

The key steps of the extended simple equation method, the Exp(−φ(ς)) expansion
method and the Riccati equation method are given. Applying the above three
methods, we obtain bright-dark solitons, singular periodic wave and kink wave
solutions.

Assume that the NLPDE takes the following form

Ψ (v, vx, vt, vxx, vtt, · · ·) = 0, (2.1)

in which Ψ is a polynomial function of v = v(x, t) and its partial derivatives.
Consider the following traveling wave transformation

v (x, t) = V (ς) , ς = kx− wt, (2.2)

in which k, w are constants. Putting (2.2) into Eq. (2.1), we have

Φ (V, V ′, V ′′, · · ·) = 0, (2.3)

where the superscript is denoted as the derivative with respect to ς.
Eq. (1.1) can be rewritten as the following ODE

w2k2V (4) − αw2V ′′ + 2βw2V ′′ + 2βw2V V ′′ + k2V ′′ = 0. (2.4)
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Integrating Eq. (2.4) twice with respect to ς, we get

k2w2

(
βV 2

k2
− αV

k2
+

V

w2

)
+ k2w2V ′′ = 0. (2.5)

3. Application of extended simple equation method

The Eq. (2.5) has the solution of the form

V (ς) =

s∑
i=−s

aiφ (ς), (3.1)

where ai (i = −s, · · · ,−1, 0, 1, · · · , s) are constants. Let φ satisfy the equation

φ′ (ς) = m0 +m1φ+m2φ
2 +m3φ

3, (3.2)

in which m0, m1, m2, m3 are constants. The general solution of new simple ansatz
(3.2) satisfies

φ (ς) = −
m1 −

√
4m0m2 −m2

1 tan

(√
4m0m2 −m2

1

2
(ς + ς0)

)
2m2

.

Applying the homogeneous balance principle, s = 4 can be determined. Thus,
(3.1) can be rewritten as

V (ς) = a−4φ
−4 + a−3φ

−3 + a−2φ
−2 + a−1φ

−1 + a0 + a1φ+ a2φ
2 + a3φ

3 + a4φ
4.

(3.3)
By taking (3.3) and (3.2) into Eq. (2.5), and collecting the coefficients of φl, a

set of algebraic equations about the parameters m0, m1, m2, m3, k, w, a−4, a−3,
a−2, a−1, a0, a1, a2, a3, a4 are yielded. The values of these parameters can be
found by Maple, and here are the following cases.

Case (1).

a−4 = 0, a−3 = 0, a−2 = 0, a−1 = 0,a1 =
2
√
−6a0βw2 − 3αw2 + 3k2m2k

wβ
,

a2 = −6k2m2
2

β
, a3 = 0, a4 = 0,m0 =

1

6

−a0βw
2 + αw2 − k2

k2b2w2
,

m1 = −1

3

√
6βw2a0 − 3αw2 + 3k2

kw
, m2 = m2, m3 = 0.

We can derive the singular periodic wave solution as follows

v1 (x, t) = a0 +
1

3

h (kwhm2 + 3 tan lp)

m2kw3β
− 1

6

(kwhm2 + 3 tan lp)
2

k2m2
2βw

4
, (3.4)

where h =
√
−6βw2a0 − 3αw2 + 3k2, p =

√
αk2w4m2

2 − k4w2m2
2, l =

1

2

p (c1 + ς)

k2m2w2

and k, w, α, β, m2, a0, are constants.
Case (2).
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a−4 = 0, a−3 = 0, a−2 = 0, a−1 = 0, a0 =
1

24

36αw2k2b22 − β2w2a21 − 36k4b22
βk2w2b22

,

a1 = a1, a2 = −6k2m2
2

β
, a3 = 0, a4 = 0,

m0 = − 1

144

36αw2k2m2
2 − β2w2a21 − 36k4m2

2

k4w2m3
2

, m1 = −1

6

βa1
k2m2

,

m2 = m2,m3 = 0.

The following solution is yielded

v2 (x, t) =
1

24

36αk2w2m2
2 − βw2a21 − 36k4m2

2

βk2w2m2
2

+
1

12

a1

(
f − 6 tan

(
1

2

r (c1 + ς)

k4w2m3
2

))
k4w2m4

2

− 1

24

(
f − 6 tanh

(
1

2

r (c1 + ς)

k4w2m3
2

)
r

)2

k6βm6
2w

4
,

(3.5)

in which r =
√
αk6w4m6

2 − k8w2m6
2, f = βk2w2a1m

2
2 and a1, m2, k, w, α, β are

constants.

(a) (b) (c)

Figure 1. Bright-soliton solution (3.4) for α = −1, β = 1, ω = 1, k = 1, b2 = 1, a0 = −1, c1 = 1. (a).
3-D plot; (b). The way of wave propagation along the x-axis at different time; (c). Density plot.

(a) (b) (c)

Figure 2. Singular periodic wave solution (3.5) for α = −1, β = −1, ω = 1, k = −1, b2 = 1, a1 = 2,
c1 = −0.5. (a).3-D plot; (b). the way of wave propagation along the x-axis; (c). Density plot.
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4. Application of the Exp (−φ (ς)) expansion method

Assume that Eq. (2.5) has an exact solution of the following form

V (ς) = ai(exp (−φ (ς)))
i
+ · · · , (i = 1, 2, 3, · · ·) , (4.1)

where ai ̸= 0. We can acquire the value of i by the homogeneous balance principle.
The φ satisfies the equation

φ′ (ς) = exp (−υ (ς))− µ exp (υ (ς)) + κ, (4.2)

where µ, κ are constants.
The solutions of (4.2) are as follows:

When κ2 − 4µ > 0, µ ̸= 0,

φ (ς) = ln


−
√

κ2 − 4µ tanh

(√
κ2 − 4µ

2
(ς + ε0)

)
− κ

2µ

 , (4.3)

When κ2 − 4µ < 0,

φ (ς) = ln


√
4µ− κ2 tan

(√
4µ− κ2

2
(ς + ε0)

)
− κ

2µ

 . (4.4)

By balancing Eq. (2.5), we get s = 2, the solution can be rewritten as

V (ς) = a0 + a1 exp (−φ (ς)) + a2(exp (−φ (ς)))
2
, (4.5)

in which a0, a1, a2 are constants and can be identified later. Putting (4.5) along
with (4.2) into Eq. (2.5), a system of parametric algebraic equations about a0, a1,
a2, w, k can be yielded. With Maple software, and the values of parameters can be
derived as follows.

Family I.

a1 =
a0κ

µ
, a2 =

a0
µ
, k =

1

6

√
−6βµa0

µ
, w =

√
− (βκ2a0 − 4βµa0 + 6αµ)βa0

βκ2a0 − 4βµa0 + 6αµ
.

Case (1).
When κ2 − 4µ > 0, µ ̸= 0,

v3 (x, t) =a0 −
2a0κ

tanh

(
1

2
C1

√
κ2 − 4µ+

1

2
ς
√
κ2 − 4µ

)√
κ2 − 4µ− κ

+
4a0µ(

− tanh

(
1

2
C1

√
κ2 − 4µ+

1

2
ς
√
κ2 − 4µ

)√
κ2 − 4µ− κ

)2 .
(4.6)
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Case (2).

When κ2 − 4µ < 0,

v4 (x, t) =a0 +
2a0κ

tan

(
1

2
C1

√
4µ− κ2 +

1

2
ς
√

4µ− κ2

)√
4µ− κ2 − κ

+
4a0µ(

tan

(
1

2
C1

√
4µ− κ2 +

1

2
ς
√

4µ− κ2

)√
4µ− κ2 − κ

)2 .
(4.7)

Family II.

a1 =
6a0κ

κ2 + 2µ
, a2 =

6a0
κ2 + 2µ

, k =

√
− (κ2 + 2µ)βa0

κ2 + 2µ
,

w =

√
− (−βκ2a0 + ακ2 + 4βµa0 + 2αµ)βa0

−βκ2a0 + ακ2 + 4βµa0 + 2αµ
.

Case (1).

When κ2 − 4µ > 0, µ ̸= 0,

v5 (x, t) =
12a0κµ

(κ2 + 2µ)

(
− tanh

(
1

2
C1
√

κ2 − 4µ+
1

2
ς
√
κ2 − 4µ

)√
κ2 − 4µ− κ

)
+

24a0µ
2

(κ2 + 2µ)

(
− tanh

(
1

2
C1
√
κ2 − 4µ+

1

2
ς
√
κ2 − 4µ

)√
κ2 − 4µ− κ

)2

+ a0.
(4.8)

Case (2).

When κ2 − 4µ < 0,

v6 (x, t) =a0 +
12a0κµ

(κ2 + 2µ)

(
tan

(
1

2
C1
√

4µ− κ2 +
1

2
ς
√
4µ− κ2

)√
4µ− κ2 − κ

)
+

24a0µ
2

(κ2 + 2µ)

(
tan

(
1

2
C1
√
4µ− κ2 +

1

2
ς
√

4µ− κ2

)√
4µ− κ2 − κ

)2 .

(4.9)
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(a) (b) (c)

Figure 3. Dark-soliton solution (4.6) for α = 2, β = −1, κ = 2.5, µ = 1, a0 = 1, c1 = −1. (a). 3-D
plot; (b). The way of wave propagation along the x-axis; (c). Density plot.

(a) (b) (c)

Figure 4. Singular periodic wave solution (4.7) for α = 5, β = −1, κ = 2.5, µ = 2, a0 = 2, c1 = 2. (a).
3-D plot; (b). Contour plot; (c). Density plot.

(a) (b) (c)

Figure 5. Dark-soliton solution (4.8) for α = 2, β = −1, κ = 3, µ = 1, a0 = 2, c1 = 1. (a). 3-D plot;
(b). The way of wave propagation along the x-axis; (c). Density plot.
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(a) (b) (c)

Figure 6. Kink wave solution (4.9) for α = 2, β = −1, κ = 2.5, µ = 1, a0 = 1, c1 = −1. (a). 3-D plot;
(b). The way of wave propagation along the x-axis; (c). Density plot.

5. Application of Riccati equation method

Assume that the solution of Eq. (2.5) is as follows:

χ =

s∑
i=0

aiϕ
i, (5.1)

in which ai(i = 0, 1, · · · , s) are constants and ϕ satisfies the equation

ϕ′ = ϕ2 + γ, (5.2)

where γ is a constant. The Eq. (5.2) has solutions of the forms:

ϕ =


−
√
−γ tanh (

√
−γς) , γ < 0,

−1

ς
, γ = 0,

√
γ tan

(√
γς
)
, γ > 0,

(5.3)

where ς = kx − wt. By balancing Eq. (2.5), we get s = 2. Therefore, (5.1) can be
rewritten as

χ = a0 + a1ϕ+ a2ϕ
2. (5.4)

Substitute (5.2) along with (5.4) into (2.5) and let the coefficients be zero, which
leads a series of the algebraic equations about a0, a1, a2, k, w. The values of the
parameters can be calculated by using Maple software.

Family I.

k =

√
(4w2γ + 1)αw

4w2γ + 1
, w = w, a0 = − 2w2αγ

(4w2γ + 1)β
, a1 = 0, a2 = − 6w2α

(4w2γ + 1)β
.

(5.5)

By putting (5.3) and (5.5) into (5.4) and replacing variables, the different types
of solutions can be derived.

Case (1).
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For γ < 0,

v7 (x, t) =

2w2αγ

3 tanh

√
−γw

(
−4tw2γ +

√
(4w2γ + 1)αx− t

)
4m2γ + 1

2

− 1


(4w2γ + 1)β

.

(5.6)
Case (2).
For γ > 0,

v8 (x, t) = −

2αrw2

3 tan

√
rw
(
−4trw2 +

√
(4rw2 + 1)αx− t

)
4rw2 + 1

+ 1


(4rw2 + 1)β

,

(5.7)

in which w, α, γ are constants.

(a) (b) (c)

Figure 7. Singular periodic wave solution (5.6) for α = 5, β = 0.5, γ = 1, w = 1. (a). 3-D plot; (b).
The way of wave propagation along the x-axis; (c). Density plot.

(a) (b) (c)

Figure 8. Bright-soliton solution (5.7) for α = −1, β = 5, γ = −1, w = 1. (a). 3-D plot; (b). The way
of wave propagation along the x-axis; (c). Density plot.

6. Dynamical behavior analysis

In this part, the exact solutions obtained above are depicted graphically by math-
ematical software (maple). Through numerical simulations, the solutions of Eq.
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(1.1) including bright-solitons, dark-solitons, kink wave, and singular periodic wave
solutions are derived. Meanwhile, different values of the parameters are chosen to
yield some important physical phenomena. A simple physical explanation of the
graphs obtained is given in the following.

Fig. 1 and Fig. 8 respectively depict the physical structure of the bright-solitons
(3.4), (5.7) when choosing α = −1, β = 1, ω = 1, k = 1, b2 = 1, a0 = 1, c1 = 1,
α = 1, β = 5, γ = −1 and ω = 1. The propagation tracks of the bright-solitons the
x-axis are derived when t = 0, 1, 2, 4, respectively. The 3-D and density plots are
drawn in (a) and (c).

Solutions (4.6) and (4.8) are connected with the tanh function, and the shapes
of the dark-solitons are derived when the parameters are taken as α = 2, β = −1,
κ = 2.5, µ = 1, a0 = 1, c1 = −1. α = 2, β = −1, κ = 3, µ = 1, a0 = 2, and c1 = 1,
respectively, which correspond to the 3-D plots for the range of −10 ≤ x ≤ 10 and
−10 ≤ t ≤ 10 in Fig. 3 and Fig. 5. When t = 0, (b) reveals the propagation along
the x-axis and (c) reflects the density plot of solitons.

Fig. 4 depicts the physical structure of the singular periodic wave solution (4.7)
when the parameters are selected as α = 5, β = −1, κ = 2.5, µ = 2, a0 = 2, c1 = 2.
Fig. 4(a) shows the 3-D plot of the periodic singular solution (4.7) for the range of
−6 ≤ x ≤ 6 and −6 ≤ t ≤ 6. Fig. 4(b) and (c) display the corresponding contour
and density plots.

The solution (4.9) depicts the structure of the kink wave solution with the form
of tan function. When the parameters are taken as α = 2, β = −1, κ = 2.5, µ = 1,
a0 = 1, c1 = −1, the 3-D structure and density plot are provided for the range of
−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10 in Fig. 6(a) and (c). The above wave propagation
is from right to left. (b) represents the wave propagation path on the x-axis when
t = 0.

The 3-D structure of the singular periodic wave solution corresponding to solu-
tions (3.5) and (5.6) are obtained in Fig. 2 and Fig. 7 with the parameters α = −1,
β = −1, ω = 1, k = −1, b2 = 1, a1 = 2, c1 = −0.5, α = 5, β = 0.5, γ = 1 and
ω = 1, respectively. (b) and (c) correspond to the motion trace and density plot of
the singular periodic wave solution, respectively.

7. Remark and comparisons

The three methods we use are all based on the homogeneous balance principle,
and we can know the forms of the solutions in advance. Many types of solutions
(hyperbolic function solutions, trigonometric function solutions, rational function
solutions, periodic function solutions, etc) can be constructed. These methods are
less arithmetic, simple, direct and reliable, and are efficient methods for constructing
soliton solutions. However, these methods may not be suitable for solving arbitrary
nonlinear partial differential equations (e.g., equations that do not have the highest
order derivative term and nonlinear terms), and need to reply on the auxiliary
equation to achieve.

By comparing with other achievements of the model, the (1/G′)-expansion
method applied by Duran [32] only constructed three solutions which were in the
forms of hyperbolic function solutions while the methods we use obtain more so-
lutions including hyperbolic function solutions, trigonometric function solutions
and rational function solutions. Comparing with the sine-Gordon method adapted
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in [33], the methods selected derive more types of the solutions which contain dark-
solitons, bright-solitons, kink, an periodic-singular wave solutions. But the three
methods need to achieve with the help of the auxiliary equation.

In addition, researchers all extracted the kink, dark-soliton, bright-soliton, with
periodic solutions in Refs. [34, 35] which are the same results as ours, but the so-
lutions they obtained are more than ours. Sivasundaram et al. [36] provided seven
sets of solutions including logarithmic, hyperbolic, complex function solutions by
the sine-Gordon expansion method and the rational sine-Gordon expansion method
which don’t reply on the auxiliary equations while our results contain dark-solitons,
bright-solitons, kink, periodic-singular wave solutions, enriching the diversity of the
exact solutions of the equation.

8. Conclusions

In summary, exact solutions of the Lonngren-wave equation are efficiently yielded by
applying the extended simple equation method, the Exp(−φ(ς)) expansion method
and the Riccati equation method. Solitons, singular periodic wave and kink wave
solutions are established. Then, the solutions obtained are graphically presented
by setting the appropriate parameters. The construction of these solutions helps
us understand the physical interpretation and phenomena of the equation. The
results prove that the above three methods are very simple and effective in solving
NLPDEs.
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