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Exact Solutions of a (4+1)-Dimensional
Boiti-Leon-Manna-Pempinelli (BLMP) Equation
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Abstract This paper focuses on constructing the exact solutions of a (4+1)-
dimensional BLMP equation via the two variables (G′/G, 1/G)-expansion met-
hod and extended generalized Riccati equation mapping method. Firstly, the
main ideas of the methods are described. Then, the methods are applied to
the equation to derive the exact solutions including singular, kink (or anti-
kink) and periodic solutions. Finally, the 3D plots of some exact solutions
are observed graphically and intuitively by assigning the values of unknown
parameters. The results prove that the methods are powerful, enriching the
diversity of forms of exact solutions.
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1. Introduction

Nonlinear evolution equations (NLEEs) are frequently adopted to explicate compli-
cated physical phenomena in numerous fields such as mathematical physics, chaos,
quantum field theory, plasma physics, oceanography, etc. The completely integrable
systems are claimed to be exactly solvable models among NLEEs. High-dimensional
NLEEs are closer to actual natural phenomena and have more complex behavior.
In order to study in depth the dynamic processes described by high-dimensional
models, it is growing increasingly compelling to establish exact solutions that imply
many physical properties of high-dimensional NLEEs. With the progress of tech-
nology and the efforts of researchers, extensive well-validated methods for solving
fascinating nonlinear models are successively adapted, for instance, Darboux trans-
formation [1], mETF method [2,3], bifurcation analysis [4,5], extended generalized
Riccati equation mapping method [6–9], Hirota bilinear method [10], two variables
(G′/G, 1/G)-expansion method [11–13], linear superposition method [14, 15], Lie
symmetry method [16–18], etc. [19–21].

A (4+1)-dimensional BLMP equation [22] proposed by Xu and Wazwaz shall be
studied, which reads

ωt (ωy + ωz + ωs) + σ(ωy + ωz + ωs)xxx

+µ (ωx (ωy + ωz + ωs) + ωxx (ωy + ωz + ωs)) = 0,
(1.1)
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where σ, µ are non-zero parameters and ω = ω(x, y, z, s, t). Here, x, y, z, s
represent spatial variables while t means time. Eq. (1.1) can be regarded as being
evolved from the KdV equation in (4+1)-dimensions.

In recent years, breakthroughs have been gained in the research of Eq. (1.1).
Among them, Painlevé properties held for Eq. (1.1) and Lax pair, bilinear Bäcklund
transformation and infinite conservation laws were first considered by Xu andWazw-
az [22]. Hao [23] revealed block solitons, block kinks, periodic block solutions
through the heuristic function method. Resonant multi-solitons and rational so-
lutions were constructed by Kuo [24] and Hoessini et al. [25] via the linear super-
position method, respectively. Raheel et al. [26] explored new solutions including
periodic cross-kink wave solutions as well as interaction between kink solitary and
rogue wave and secured these solutions. Moreover, the generalized exponential ra-
tional function method was utilized to derive explicit solitary wave solutions by
Rasool et al. [27]. Motivated by them, we aim to explore exact solutions of Eq.
(1.1) via the two variables (G′/G, 1/G)-expansion method and extended general-
ized Riccati equation mapping method in this paper.

It is worth pointing out that Eq. (1.1) can be converted into the following (2+1)
and (3+1)-dimensional BLMP equations which catch people’s eyes.

(i) When σ = µ = −1 and ω = ω(x, y, t), Eq. (1.1) is reduced to a (2+1)-
dimensional BLMP equation presented by Boiti et al. [28] as follows

ωyt − ωxxxy − ωxxωy − ωxωxy = 0, (1.2)

which is widely accepted to study incompressible liquids.
(ii) When σ = 1, µ = −3 and ω = ω(x, y, t), another form provided by Gilson et

al. [29] is
ωyt + ωxxxy − 3ωxxωy − 3ωxωxy = 0, (1.3)

whose integrability properties were verified by Luo [30] and various types of solutions
were offered in [29–31].

(iii) When σ = 1, µ = −3 and ω = ω(x, y, z, t), a (3+1)-dimensional BLMP
equation is formed as follows

ωyt + ωzt + ωxxxy + ωxxxz − 3 (wx (wxy + wxz) + wxx (wy + wz)) = 0, (1.4)

which describes the propagation of fluid. Numerous methods have been applied
to construct lump-kink, multi-soliton, breather wave solutions, Painlevé analysis,
Hirotas bilinear representation and so on [32–36].

The remaining plots are programmed as follows. Section 2 concisely provides the
central thoughts of the two variables (G′/G, 1/G)-expansion method and extended
generalized Riccati equation mapping method. The two methods are successively
applied to Eq. (1.1) to summarize exact solutions including singular, kink (or
anti-kink) and periodic solutions in Section 3. Section 4 performs some solutions
graphically by using suitable parametric selections. Section 5 provides the discussion
and comparisons. A summary is placed in Section 6.

2. Description of the methods

This section gives the brief steps of the methods considered. Discuss a NLPDE
which is shown as

Υ
(
ω, ωt, ωxi , ωxixj , ωxixjxµ , · · ·

)
= 0, (2.1)
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where t and xi (i = 1, 2, · · · ) represent independent variables, and Υ is a polynomial
about ω and its partial derivatives. Through wave transformation

ω(x, y, z, s, t) = ω(ζ), ζ = kx+my + nz + ls− vt, (2.2)

where k,m, n, l, v are constants, and Eq. (2.1) becomes

Υ (ω, ω′, ω′′, · · ·) = 0. (2.3)

2.1. The two variables (G′/G, 1/G)-expansion method

Such a solution of Eq. (2.3) is supposed as

ω(ζ) =

K∑
p=0

αpϖ
p(ζ) +

K∑
q=1

βqπ
q(ζ), (2.4)

where αp, βq (p = 0, 1, · · · ,K; q = 1, 2, · · · ,K) are unsettled coefficients and αK ̸=
0, βK ̸= 0. ϖ and π are defined as

ϖ(ζ) =
G

′
(ζ)

G(ζ)
, π(ζ) =

1

G(ζ)
. (2.5)

Additionally, G(ζ) meets

G
′′
= −ρG+ τ. (2.6)

Along with Eq. (2.5) and Eq. (2.6), we get

ϖ′ = −ϖ2 + τπ − ρ,

π′ = −ϖπ.
(2.7)

The solutions of Eq. (2.6) are divided into three cases:
(i) When ρ < 0, Eq. (2.6) generates a hyperbolic function solution

G(ζ) = Q1 sinh(
√
−ρζ) +Q2 cosh(

√
−ρζ) +

τ

ρ
, (2.8)

and we obtain

π2 =
−ρ

ρ2ϱ+ τ2
(
ϖ2 − 2τπ + ρ

)
, (2.9)

where ϱ = Q2
1 −Q2

2.
(ii) When ρ > 0, the trigonometric function solution of Eq. (2.6) is generated

as
G(ζ) = Q1 sin(

√
ρζ) +Q2 cos(

√
ρζ) +

τ

ρ
, (2.10)

so we have
π2 =

ρ

ρ2ϱ− τ2
(
ϖ2 − 2τπ + ρ

)
, (2.11)

where ϱ = Q2
2 +Q1

2.
(iii) When ρ = 0, the rational function solution of Eq. (2.6) is yielded as

G(ζ) =
τ

2
ζ2 +Q1ζ +Q2, (2.12)



Solutions of a (4+1)-Dimensional BLMP Equation 987

and we find

π2 =
1

Q1
2 − 2τQ2

(
ϖ2 − 2τπ

)
, (2.13)

where Q1 and Q2 are arbitrary constants.
According to the homogeneous balance principle, the value of K can be deter-

mined.
When ρ < 0, taking (2.4) into Eq. (2.3) along with (2.7) and (2.9), we get

a polynomial about ϖ and π whose degree is not larger than one on the left of
Eq. (2.3). Assume that the coefficient of each term is equal to zero, which yields
a set of algebraic equations that derive the values of αp, βq (p = 0, 1, · · · ,K; q =
1, 2, · · · ,K), k, m, n, l and v. Similarly, when ρ > 0 and ρ = 0, the values of αp,
βq (p = 0, 1, · · · ,K; q = 1, 2, · · · ,K), k, m, n, l and v can also be found.

2.2. The extended generalized Riccati equation mapping met-
hod

We suppose that Eq. (2.3) has the solution

ω (ζ) =

K∑
p=0

ϑp

(
G′

G

)p

, (2.14)

where ϑp (p = 1, 2, · · · ,K) can be determined later with ϑK ̸= 0 and G = G(ζ)
satisfies

G′ = κ+ εG+ δG2, (2.15)

where κ, ε, δ are arbitrary constants and δ ̸= 0.
Based on the homogeneous balance, we calculate the value of K.
Inserting (2.14) along with (2.15) into Eq. (2.3), we collect all coefficients of

Gj , G−j (j = 0, 1, 2, · · · ) to be zero on the left of Eq. (2.3), which yields algebraic
equations that determine the values of κ, ε, δ, ϑp (p = 0, 1, · · · ,K), k, m, n, l and
v.

Additionally, for Eq. (2.15), it has twenty-seven solutions which are not listed
here, but detailed in [6, 7, 9].

3. Application of the methods

Consider wave transformation (2.2), which converts Eq. (1.1) into an ODE that
reads

(l +m+ n)
(
k3αg(4) + 2βk2 (g′) (g′′)− vg′′

)
= 0. (3.1)

Integrate once with the integral constant is equal to zero, which leads to

(l +m+ n)
(
k3αg(3) + βk2(g′)

2 − vg′
)
= 0. (3.2)

Subsequently, balancing g(3) and (g′)
2
, we obtain

K + 3 = 2(K + 1) ⇒ K = 1.
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3.1. Application of the two variables (G′/G, 1/G)-expansion m-
ethod

Firstly, Eq. (1.1) shall be explored by executing the two variables (G′/G, 1/G)-
expansion method. Since (2.4), we reach easily

ω (ζ) = α0 + α1ϖ + β1π, α1, β1 ̸= 0, (3.3)

where α0, α1 and β1 are constants to be confirmed later.
Case I: When ρ < 0, determining equations are enumerated through taking

(3.3) along with (2.7), (2.9) into Eq. (3.2), which leads to the following results:

α0 = α0, α1 =
3σk

µ
, β1 =

3kσ
√

−ρ (ρ2ϱ+ τ2)

ρµ
,

k = k, m = m, n = n, l = l, v = −σk3ρ.

Substituting the values of the above parameters into Eq. (3.3), we have the
solution of Eq. (1.1)

ω1 (ζ) =
3σk

√
−ρ (Q1 cosh (

√
−ρζ) +Q2 sinh (

√
−ρζ))

µ
(
Q1 sinh (

√
−ρζ) +Q2 cosh (

√
−ρζ) + τ

ρ

)
+

3kσ
√
−ρ (ρ2ϱ+ τ2)

ρµ
(
Q1 sinh (

√
−ρζ) +Q2 cosh (

√
−ρζ) + τ

ρ

) + α0. (3.4)

Alternatively, if τ = 0 and Q1 = 0, Q2 ̸= 0 or Q2 = 0, Q1 ̸= 0 are chosen,
solution (3.4) respectively becomes

ω2 (ζ) =
3σk

√
−ρ

µ
tanh

(√
−ρζ

)
−

3kσ
√
ρϱ

µQ2
sech

(√
−ρζ

)
+ α0, (3.5)

and

ω3 (ζ) =
3σk

√
−ρ

µ
coth

(√
−ρζ

)
− 3kσ

√
−ρϱ

µQ1
csch

(√
−ρζ

)
+ α0, (3.6)

where ζ = kx+my + nz + ls− σρk3t and ϱ = Q2
1 −Q2

2.
Case II: When ρ > 0, we work out the following results:

α0 = α0, α1 =
3σk

µ
, β1 =

3kσ
√
ρ (ρ2ϱ− τ2)

ρµ
,

k = k, m = m, n = n, l = l, v = −σk3ρ.

Therefore, the periodic solution of Eq. (1.1) is derived as

ω4 (ζ) =
3σk

√
ρ
(
Q1 cos

(√
ρζ

)
−Q2 sin

(√
ρζ

))
µ
(
Q1 sin

(√
ρζ

)
+Q2 cos

(√
ρζ

)
+ τ

ρ

)
+

3kσ
√
ρ (ρ2ϱ− τ2)

ρµ
(
Q1 sin

(√
ρζ

)
+Q2 cos

(√
ρζ

)
+ τ

ρ

) + α0, (3.7)

where ζ = kx+my + nz + ls− σρk3t and ϱ = Q2
1 +Q2

2.
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When we sign τ = 0 and Q1 = 0, Q2 ̸= 0 or Q2 = 0, Q1 ̸= 0 in (3.7), we receive

ω5 (ζ) = −
3σk

√
ρ

µ
tan (

√
ρζ) +

3kσ
√
ρϱ

µQ2
sec (

√
ρζ) + α0, (3.8)

and

ω6 (ζ) =
3σk

√
ρ

µ
cot (

√
ρζ) +

3kσ
√
ρϱ

µQ1
csc (

√
ρζ) + α0, (3.9)

where ζ = kx+my + nz + ls− σρk3t and ϱ = Q2
1 +Q2

2.

3.2. Application of the extended generalized Riccati equation
mapping method

Due to (2.14), we judge

ω (ζ) = ϑ0 + ϑ1

(
G′

G

)
, ϑ1 ̸= 0, (3.10)

where ϑ1 and ϑ0 are parameters to be fixed.
Take (3.10) along with (2.15) into Eq. (3.2) and gather coefficients of Gj , G−j (j

= 0, 1, 2, 3, 4) to be zero, which generates algebraic equations about κ, ε, δ, ϑ1, ϑ0,
k, m, n, l and v. Solving them, we receive

ϑ0 = ϑ0, ϑ1 = −6kσ

µ
, κ = 0, ε =

√
kσv

k2σ
,

k = k, m = m, n = n, l = l, v = v.

Thus, it demonstrates that Eq. (1.1) contains periodic, kink, singular and soliton
solutions as follows:

When ε2 − 4δκ > 0 and εδ ̸= 0, Eq. (1.1) has solutions

ω1̃ = ϑ0 −
3v

µk2cosh2
(√

v
4k3σ ζ

) (√
kσv
k2σ +

√
v

k3σ tanh
(√

v
4k3σ ζ

)) ,
ω2̃ = ϑ0 +

3v

µk2
(
cosh2

(√
v

4k3σ ζ
)
− 1

) (√
kσv
k2σ +

√
v

k3σ coth
(√

v
4k3σ ζ

)) ,
ω3̃ = ϑ0 ±

6v
(
i sinh

(√
v

k3σ ζ
)
∓ 1

)
k2µ

√
v

k3σ cosh
2
(√

v
k3σ ζ

) (
1 +

(
tanh

(√
v

k3σ ζ
)
± isech

(√
v

k3σ ζ
))) ,

ω4̃ =
±6v

k2µ
(
cosh

(√
v

k3σ ζ
)
∓ 1

) (√
kσv
k2σ +

√
v

k3σ

(
coth

(√
v

k3σ ζ
)
± csch

(√
v

k3σ ζ
)))

+ ϑ0,

ω5̃ =ϑ0 +
3v

2k2µcosh2
(
1
4

√
v

k3σ ζ
) (

cosh2
(
1
4

√
v

k3σ ζ
)
− 1

)
· 1(

2
√
kσv

k2σ +
√

v
k3σ

(
1
4 tanh

(√
v

k3σ ζ
)
+ coth

(
1
4

√
v

k3σ ζ
))) ,
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ω6̃ =
6kσA

(
Bv
k3σ sinh

(√
v

k3σ ζ
)
+ v

√
A2+B2

k3σ cosh
(√

v
k3σ ζ

)
− Av

k3σ

)
µ
(
A sinh

(√
v

k3σ ζ
)
+B

)2 −
√
kσv
k2σ +

√
v(A2+B2)

k3σ
−A

√
v

k3σ
cosh

(√
v

k3σ
ζ
)

A sinh
(√

v
k3σ

ζ
)
+B


+ ϑ0,

ω7̃ =
6kσA

(
− Bv

k3σ cosh
(√

v
k3σ ζ

)
+ v

√
B2−A2

k3σ sinh
(√

v
k3σ ζ

)
− Av

k3σ

)
µ
(
A cosh

(√
v

k3σ ζ
)
+B

)2 −
√
kσv
k2σ −

√
v(B2−A2)

k3σ
+A

√
v

k3σ
sinh

(√
v

k3σ
ζ
)

A cosh
(√

v
k3σ

ζ
)
+B


+ ϑ0,

where A and B satisfy B2 −A2 > 0 and are non-zero real constants.

ω8̃ =
3v

k2µ

(√
v

k3σ sinh
(
1
2

√
v

k3σ ζ
)
−

√
kσv
k2σ cosh

(
1

2

√
v

k3σ ζ

))
cosh

(
1
2

√
v

k3σ ζ
)

+ ϑ0,

ω9̃ =
3v

(
−
√

v
k3σ cosh

(
1
2

√
v

k3σ ζ
)
+

√
kσv
k2σ sinh

(
1
2

√
v

k3σ ζ
))

k2µ
(√

v
k3σ cosh

(
1
2

√
v

k3σ ζ
)
−

√
kσv
k2σ sinh

(
1
2

√
v

k3σ ζ
))2

sinh
(
1
2

√
v

k3σ ζ
)

+ ϑ0,

ω1̃0 = ϑ0 ±
6v

(
i sinh

(√
v

k3σ ζ
)
± 1

)
k2µ

√
v

k3σ

(
sinh

(√
v

k3σ ζ
)
− cosh

(√
v

k3σ ζ
)
± i

)
cosh

(√
v

k3σ ζ
) ,

ω1̃1 = ϑ0 ±
−6v

(
cosh

(√
v

k3σ ζ
)
± 1

)
k2µ

√
v

k3σ

(
cosh

(√
v

k3σ ζ
)
− sinh

(√
v

k3σ ζ
)
± 1

)
sinh

(√
v

k3σ ζ
) ,

ω1̃2 =−
6
√

vσ
k

(
cosh2

(
1
4

√
v

k3σ ζ
)
− sinh

(
1
4

√
v

k3σ ζ
)
cosh

(
1
4

√
v

k3σ ζ
))

µ
(
cosh

(
1
4

√
v

k3σ ζ
)
− sinh

(
1
4

√
v

k3σ ζ
))2

sinh
(
1
4

√
v

k3σ ζ
)
cosh

(
1
4

√
v

k3σ ζ
)

+ ϑ0,

where ζ = kx+my + nz + ls− vt.
When κ = 0 and εδ ̸= 0, Eq. (1.1) has solutions

ω1̃3 = ϑ0 −
6
√
σv

(
cosh

(√
v

k3σ ζ
)
− sinh

(√
v

k3σ ζ
))

√
kµ

(
C1 + cosh

(√
v

k3σ ζ
)
− sinh

(√
v

k3σ ζ
)) ,

ω1̃4 = ϑ0 −
6C1

√
σv√

kµ
(
C1 + cosh

(√
v

k3σ ζ
)
+ sinh

(√
v

k3σ ζ
)) ,

where C1 is an arbitrary constant and ζ = kx+my + nz + ls− vt.
When κ = ε = 0 and δ ̸= 0, Eq. (1.1) has a solution

ω1̃5 = ϑ0 +
6kσδ

µ (δζ +D1)
,

where D1 is an arbitrary constant and ζ = kx+my + nz + ls− vt.
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4. Graphical representations

This section concentrates on illustrating some exact solutions graphically. By choos-
ing appropriate values of parameters, we point out 3D plots and classify the solu-
tions.

4.1. Periodic solutions

As presented in Figure. 1, exact solutions ω2 and ω3̃ of Eq. (1.1) are revealed
graphically for the range of −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.

(a) solution ω2 with Q1 =
2, Q2 = 1, σ = −1, µ =
3, k = 1, l = 1, m =
−2, n = 0.1, τ = 2, α0 =
10, ρ = 1, y = z = s = 0.

(b) solution ω3̃ with k =
5, v = l = 1, σ =
10, µ = −3, m = −2, n =
−0.1, ϑ0 = 1, y = z = s =
0.

Figure 1. Periodic solutions of Eq. (1.1).

4.2. Kink (or anti-kink) solutions

Figure. 2 indicates the 3D plots of the solutions ω1, ω1̃, ω4̃, ω6̃, ω7̃, ω8̃, ω1̃0 and
ω1̃4 by choosing suitable parameters, which shows that they are kink (or anti-kink)
solutions. Among them, ω1, ω1̃, ω6̃, ω7̃, and ω1̃4 are anti-kink solutions while ω4̃,
ω8̃ and ω1̃0 are kink solutions.

4.3. Singular solutions

As shown in Figure. 3, we graphically present the singular solutions ω2̃, ω5̃, ω9̃,
ω1̃1, ω1̃2, ω1̃3 and ω1̃5 for the range of −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10 by selecting
the appropriate values of parameters.
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(a) solution ω1 with Q1 =
1, Q2 = −2, σ = −1, µ =
−3, k = −2, l = 1, m =
−2, n = 0.1, τ = 2, α0 =
10, ρ = −0.4, y = z = s =
0.

(b) solution ω1̃ with k =
0.5, v = 0.5, l = 1, m =
−2, n = 0.1, σ = 1, µ =
−3, ϑ0 = 1, y = z = s = 0.

(c) solution ω4̃ with k =
−0.5, v = −l, σ = l =
1, µ = 3, m = −2, n =
0.1, ϑ0 = 1, y = z = s = 0.

(d) solution ω6̃ with k =
0.1, v = 0.l, σ = l = 1, µ =
−3, m = −2, n = 0.1, ϑ0 =
1, y = z = s = 0, A =
1, B = 2.

(e) solution ω7̃ with k =
0.1, v = 0.l, σ = l = 1, µ =
−3, m = −2, n = 0.1, ϑ0 =
1, y = z = s = 0, A =
1, B = 2.

(f) solution ω8̃ with k =
0.1, v = 0.l, σ = l = 1, µ =
−3, m = −2, n = 0.1, ϑ0 =
1, y = z = s = 0.

(g) solution ω1̃0 with k =
−1.5, v = −l, σ = l =
1, µ = −3, m = −2, n =
0.1, ϑ0 = 1, y = z = s = 0.

(h) solution ω1̃4 with k =
−0.5, v = −0.5, σ = l =
1, µ = −3, m = −2, n =
0.1, ϑ0 = 1, y = z = s =
0, C1 = 2.

Figure 2. Kink (or anti-kink) solutions of Eq. (1.1).
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(a) solution ω2̃ with k =
5, v = l = 1, m = −2, n =
−0.1, σ = 10, µ = −3, ϑ0 =
1, y = z = s = 0.

(b) solution ω5̃ with k =
0.5, v = 0.1, σ = l = 1, m =
−2, n = 0.1, µ = −3, ϑ0 =
1, y = z = s = 0.

(c) solution ω9̃ with k =
−0.8, v = −0.4, m = −2, n =
0.1, σ = l = 1, µ = 3, ϑ0 =
1, s = 1, y = z = 0.

(d) solution ω1̃1 with k =
1.5, σ = v = l = 1, µ =
−3, m = −2, n = 0.1, ϑ0 =
1, y = z = s = 0.

(e) solution ω1̃2 with k =
2, v = 0.2, σ = l = 1, µ =
−3, m = −2, n = 0.1, ϑ0 =
1, y = z = s = 0.

(f) solution ω1̃3 with k =
5, v = 1, C1 = −1, l =
1, m = −2, n = 0.1, σ =
1, µ = −3, ϑ0 = 1, s =
1, y = z = 0.

(g) solution ω1̃5 with v =
3, k = σ = l = 1, µ =
−3, m = −2, n = 0.1, ϑ0 =
1, y = z = 0, s = 2, D1 =
−1, δ = 1.

Figure 3. Singular solutions of Eq. (1.1).

5. Discussion and comparisons

The two methods chosen are skilled at constructing more types of new solutions
with different physical structures, including soliton solutions, periodic solutions
and singular solutions. The newly obtained solutions are described in the forms
of hyperbolic, trigonometric, rational functions, etc. Since they are both based on
the homogeneous balance principe, we can roughly know the forms of the solutions
in advance. And the methods are simple, effective and reliable. However, the two
methods are limited by the auxiliary equations to extract the above solutions and
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are only applicable to solving the equations that contain the highest-order derivative
term and nonlinear terms. And sometimes fewer types of solitons are constructed.

By comparing our results with those in other literature, our methods can obtain
solutions in more diverse forms, including trigonometric, hyperbolic, rational and
complex function solutions, but are limited by the auxiliary equations, whereas the
generalized exponential rational function method applied by Rasool et al. [27] didn’t
rely on the auxiliary equation and constructed more general solutions and novel
multiple soliton solutions. The Hirota bilinear method and the extended (G′/G)-
expansion method used by Raheel et al. [26] established interaction solutions and
obtained more solutions than ours, while we get multi-types of exact solutions by two
simpler methods, which proves that our methods have restrictions on constructing
multiple soliton solutions.

6. Conclusion

This paper focuses on establishing some exact solutions of a (4+1)-dimensional
BLMP equation. By using the two variables (G′/G, 1/G)-expansion method and
extended generalized Riccati equation mapping method, the parametric expressions
of exact solutions that contain singular, kink (or anti-kink) and periodic solutions
are provided, enriching the diversity of exact solutions. For some solutions obtained,
we have illustrated the 3D plots of exact solutions graphically by fixing the values
of parameters. We compare our results with other studies and prove the validity of
our methods.
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