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Abstract The geometrical singular perturbation theory has been success-
fully applied in studying a large range of mathematical biological models with 

different time scales. In this paper, we use the geometrical singular perturba-
tion theory to investigate a slow-fast Leslie-Gower prey-predator model with 

Monod-Haldane function response and get some interesting dynamical phe-
nomena s uch as singular Hopf bifurcation, canard explosion phenomenon,r e
laxation oscillation cycle, heteroclinic and homoclinic orbits and the coexis-t e
nce of canard cycle and relaxation oscillation cycle.

orbit
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1. Introduction

Predator-prey model is a typical theme in mathematical biology because of its wide
application such as biological invasion of foreign species. In this paper, we mainly
investigate the modified Leslie-Gower prey-predator model with Monod-Haldane
function response [12,21,26] as follows

du

dt
= u(a1 − b1u)−

c1uv

u2 + k1
,

dv

dt
= v

(
a2 −

c2v

u2 + k2

)
,

(1.1)

where u and v separately represent the amount of prey and predators and all pa-
rameters are positive and have the following biological meanings: a1 and a2 are
the natural growth rate of prey and predator which satisfy the assumption that
the natural growth rate of prey a1 is much larger than that of predators a2; b1 is
the intraspecific competition rate of prey; c1 measures the reduction of prey due
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to predation; c2 measures the reduction of predator because of the low density of
prey; k1 and k2 represent the protection provided by the environment of prey and
predators. Note that our assumption is reasonable because the lifespan of predators
is very long and they may undergo many different generations of prey, such as hares
and lynx, squirrels and coyotes.

For simplicity, using the rescaling transformation

t̄ = a1t, ū =
b1u

a1
, v̄ =

c1b
2
1v

a31
,

ϵ =
a2
a1

, c̄ =
c2a1
c1a2

, k̄1 =
k1b

2
1

a21
, k̄2 =

k2b
2
1

a21

and dropping the bar notation, we rewrite system (1.1) as the following non-
dimensional system

du

dt
= u

[
1− u− v

u2 + k1

]
,

dv

dt
= ϵv

(
1− cv

u2 + k2

)
.

(1.2)

Furthermore, with transformations

t̃ =

∫ t

0

1

(u2 + k1)(u2 + k2)
ds

and t = t̃, system (1.2) can be rewritten as the following topological equivalent form

du

dt
= u(u2 + k2)

[
(1− u)(u2 + k1)− v

]
= f(u, v, η),

dv

dt
= ϵv(u2 + k1)(u

2 + k2 − cv) = ϵg(u, v, η),

(1.3)

where η = (c, k1, k2) and 0 < ϵ ≪ 1 under our assumption a2 ≪ a1
It is clear that system (1.3) is a slow-fast system with one slow state variable

v and one fast state variable u. Using the change of time scale τ = ϵt, the system
(1.3) can be transformed as

ϵ
du

dτ
= u(u2 + k2)

[
(1− u)(u2 + k1)− v

]
= f(u, v, η),

dv

dτ
= v(u2 + k1)(u

2 + k2 − cv) = g(u, v, η).

(1.4)

Compared with t, the time scale τ is the slow time scale. Hence, systems (1.3) and
(1.4) are separately called the fast system and the slow system and their dynamics
are equivalent if 0 < ϵ ≪ 1.

Letting ϵ → 0 in systems (1.3) and (1.4), we get the degenerate system

0 = f(u, v, η),

dv

dτ
= g(u, v, η),
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which is defined on the critical manifold M0 = {(u, v) | f(u, v, η) = 0}, and the layer
system

du

dt
= f(u, v, η),

dv

dt
= 0.

Note that the degenerate system and the layer system are two different approxima-
tion of the full system (1.3). Thus, for the dynamics of system (1.3), we need to
combine the dynamics of the degenerate system and the layer system in a suitable
way. This is the basic idea of the geometric singular perturbation theory.

The geometric singular perturbation theory was first introduced by Fenichel [4],
which mainly uses the qualitative methods of ordinary differential equations to
study the slow-fast system. Moreover, the normally hyperbolic condition plays an
important role in it. If a sub-manifold M̃0 ⊂ M0 satisfies the normally hyper-
bolic condition, which is the real part of the eigenvalues λ of the Jacobian matrix
∂f
∂u (u, v, 0) in M̃0 are nonzero, then there is a slow manifold M̃ϵ near M̃0 and the dy-

namics of M̃ϵ are similar to that of M̃0 based on the Finichel theory [4,9]. For points
without the normal hyperbolicity, we analyse them by the blow-up method [7, 8],
the entry-exit function [16,22] and so on.

In recent years, the slow-fast biological models have been a hot point in mathe-
matical biology. Many investigators use the geometric singular perturbation theory
to study these models and obtain rich dynamics such as singular Hopf bifurcation,
canard cycle, relaxation oscillation cycle, canard explosion phenomena, mix-mode
oscillation phenomenon and so on. Especially, relaxation oscillation cycle, canard
cycle and canard explosion phenomenon are ubiquitous dynamics in the slow-fast
biological models. See Ambrosio et al. [1], Liu et al. [15], Shchepakina [18], Wang et
al. [24] and so on. Relaxation oscillation cycle is a periodic orbit consisting of slow
and fast sections and Shen et al. [20] reveal its biological meaning. Canard cycle
is the flow of a periodic orbit for system (1.3) that still moves along the repelling
critical manifold when it passes through the canard point. In [11], Li et al. used the
canard cycle to explain the reason that disease persists and breaks out in an SIS
epidemic model and the conclusions are extended to an SIRS epidemic model by
Zhang et al. [25]. Canard explosion phenomenon, which is studied by Atabaigi et
al. [2], Li et al. [10], Wang et al. [23] and so on, is a transition process from a small
limit cycle generated in the singular Hopf bifurcation to the relaxation oscillation
cycle through a family of canard cycles in an exponentially small parameter range.

In this paper, we mainly study the multi-scale dynamics of system (1.3) by
some main tools in the geometric singular perturbation theory, such as the Fenichel
theory [4, 9], the normal form [7, 8], the exchange lemma [13, 14], the entry-exit
function [16, 22] and so on. The existence of canard cycles, relaxation oscillation
cycle, heteroclinic and homoclinic orbits are analysed in detail. Especially, under
specific parameter conditions, the relaxation oscillation cycle and canard cycle of
system (1.3) coexist. We also give some numerical examples to verify our theoretical
results.

The present paper is built up as follows. The equilibriums and slow-fast normal
form of system (1.3) are presented in Section 2. We analyse multi-scale dynamics
of system (1.3) in Section 3, which include heteroclinic orbits, singular Hopf bifur-
cation, canard cycles, relaxation oscillation cycle and so on. A brief discussion and
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biological explanation are given in the last section.

2. Preliminaries

Based on the biological view point, we investigate system (1.3) in the first quadrant.
It is clear that system (1.3) has the following positive invariant set

Ω = {(u, v) | 0 ≤ u ≤ 1, v ≥ 0} .

In this section, we mainly investigate the equilibriums, critical manifolds and slow-
fast normal form of system (1.3).

2.1. Equilibriums

Clearly, system (1.3) always has the boundary equilibriums B0(0, 0), B1(1, 0) and
B2(0,

k2

c ). A straight calculation shows that B0(0, 0) is an unstable node and

B1(1, 0) is a saddle point. Moreover, B2(0,
k2

c ) is a saddle point with k2 < ck1
and a stable node with k2 > ck1. Furthermore, by analysis and straight calcula-
tions of the equations

f(u, v, η) = 0, ϵg(u, v, η) = 0,

we can get the following theorem about the positive equilibriums of system (1.3).

Theorem 2.1. For the positive equilibriums of system (1.3), the following conclu-
sions hold.

1. System (1.3) has one positive equilibrium E1(u
∗
1, v

∗
1) if η = (c, k1, k2) ∈ D1,

where

D1 = D1
1 ∪D2

1 ∪D3
1 ∪D4

1,

D1
1 =

{
(c, k1, k2) | 0 < k1 <

1

3
, 0 < c ≤ 1, k2 < ck1

}
,

D2
1 =

{
(c, k1, k2) |

1

3

(
1− 1

c

)2

< k1 <
1

3
, c > 1, k2 < ck1

}
,

D3
1 =

{
(c, k1, k2) | k1 <

1

3

(
1− 1

c

)2

, c > 1, k2 < k̃−2

}
,

D4
1 =

{
(c, k1, k2) | k1 <

1

4

(
1− 1

c

)2

, c > 1, k2 ≤ k̃+2

}
,

k̃+2 = c(1− ũ+)(ũ+ + k1)− ũ2
+, k̃−2 = c(1− ũ−)(ũ− + k1)− ũ2

−.

2. System (1.3) has two positive equilibriums E1(u
∗
1, v

∗
1) and E2(u

∗
2, v

∗
2) if η =

(c, k1, k2) ∈ D1
2 ∪D2

2 ∪D3
2, where

D1
2 =

{
(c, k1, k2) | k1 <

1

4

(
1− 1

c

)2

, c > 1, ck1 < k2 < k̃+2

}
,

D2
2 =

{
(c, k1, k2) | k1 <

1

3

(
1− 1

c

)2

, c > 1, k2 = k̃−2

}
,
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D3
2 =

{
(c, k1, k2) |

1

4

(
1− 1

c

)2

< k1 <
1

3

(
1− 1

c

)2

, c > 1, k2 = k̃+2

}
.

3. System (1.3) has three positive equilibriums E1(u
∗
1, v

∗
1), E2(u

∗
2, v

∗
2) and

E3(u
∗
3, v

∗
3) if η = (c, k1, k2) ∈ D3, where

D3 =

{
(c, k1, k2) | k1 <

1

3

(
1− 1

c

)2

, c > 1, k̃−2 < k2 < min
{
ck1, k̃

+
2

}}
.

2.2. The critical manifold

Let ϵ → 0 in systems (1.3) and (1.4). We get the degenerate system

0 = u(u2 + k2)
[
(1− u)(u2 + k1)− v

]
,

dv

dτ
= v(u2 + k1)(u

2 + k2 − cv)
(2.1)

and the layer system

du

dt
= u(u2 + k2)

[
(1− u)(u2 + k1)− v

]
,

dv

dt
= 0.

(2.2)

Hence, some analyses show that the critical manifold is

M0 = M1
0 ∪M2

0 = {(u, v) | u = 0}∪
{
(u, v) | v = h1(u) = (1− u)(u2 + k1)

}
, (2.3)

which has three non-normally hyperbolic points Q0(0, k1), Qm(um, vm) and

QM (uM , vM ) with um = 1−
√
1−3k1

3 and uM = 1+
√
1−3k1

3 . Moreover, um and uM

satisfy 0 < um < 1
3 < uM < 2

3 if k1 < 1
3 . Hence, in what follows, we are keen on

the dynamics of system (1.3) in the following parameters region

D =

{
(c, k1, k2) | 0 < k1 <

1

3
, c > 0, k2 > 0

}
.

Furthermore, the points Qm(um, vm) and QM (uM , vM ) split M2
0 into normally hy-

perbolic attracting parts

M2l
0 = {(u, v) | v = h1(u), 0 < u < um} ,

M2r
0 = {(u, v) | v = h1(u), uM < u < 1}

and normally hyperbolic repelling part

M2m
0 = {(u, v) | v = h1(u), um < u < uM} .

The point Q0(0, k1) divides M
1
0 into the normally hyperbolic stable manifold

M1s
0 = {(u, v) | u = 0, v > k1}

and the normally hyperbolic unstable manifold

M1u
0 = {(u, v) | u = 0, 0 < v < k1} .
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1( )v h u=

u

v

1k

1
M
u

m
uO

Figure 1. The normal hyperbolic parts of critical manifold M0.

See Fig.1.
Next, we study the dynamics of system (1.3) near non-normally hyperbolic

points Q0(0, k1), Qm(um, vm) and QM (uM , vM ). Clearly, for ϵ > 0, a trajectory
starting at point (u0, v0) near M

1s
0 tends quickly toward M1s

0 and never crosses it,
then drifts downwards along the v-axis at a slow speed O(ϵ). Finally, this trajec-
tory tends quickly away from M1u

0 in the neighborhood of (0, pϵ(v0)) which satisfies
lim
ϵ→0

pϵ(y0) = p0(y0). The function p0(v0) is called the entry-exit function, which is

a C∞ function of (ϵ, y0) [16, 22]. When k2 < ck1, the exit-entry function of system
(1.3) satisfies the following lemma.

Lemma 2.1. For system (1.3), if k2 < ck1 and fixed v0 ∈ (k1,+∞), there is a
unique v̂∗ ∈ (m2

b ,m1) such that∫ v̂∗

v0

f1(0, v, η)

g(0, v, η)
dv = 0, (2.4)

where f(u, v, η) = uf1(u, v, η).

Proof. Let

I(v̂) =

∫ v̂

v0

f1(0, v, η)

g(0, v, η)
dv =

k2
ck1

∫ v̂

v0

v − k1

v
(
v − k2

c

)dv. (2.5)

Clearly, we have lim
v̂→k2/c

I(v̂) = +∞ and I(k1) < 0. Indeed, we also have

I ′(v̂) =
k2
ck1

v̂ − k1

v̂
(
v̂ − k2

c

) < 0, v̂ ∈ (
k2
c
, k1).

Hence, we can conclude that there is a unique v̂∗ ∈ (k2

c , k1) such that I(v̂∗) = 0.

2.3. Slow-fast normal form

In order to analyse the dynamics near the non-normally hyperbolic points (um, vm)
and (uM , vM ), we need to obtain the slow-fast normal form of system (1.3) near
(um, vm) and (uM , vM ) based on the results in [7, 8]. In what follows, we mainly
derive the slow-fast normal form near the point (um, vm) and a similar conclusion
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is also true for the point (uM , vM ). To begin with, we transform the fold point
(um, vm) into the origin point and obtain

du

dt
= −p1v + u2

[
p2 + p3u+ p4u

2 +O
(
|u, v|3

)]
,

dv

dt
= ϵ

[
q0 + q1u+ q2u

2 + v (r0 + r1u+ r2v) +O
(
|u, v|3

)]
,

(2.6)

where

p1 = um

(
u2
m + k2

)
+O(u), p2 = um

(
u2
m + k2

)
(1− 3um) ,

p3 = u2
m (3− 10um) + k2(1− 4um), p4 = 3um − 12u2

m − k2,

r0 =
(
u2
m + k1

) (
u2
m + k2 − 2cvm

)
,

r1 = 2um

(
2u2

m + k1 + k2 − 2cvm
)
, r2 = −c

(
u2
m + k1

)
,

q0 =
(
u2
m + k1

)
vm

(
u2
m + k2 − cvm

)
, q1 = 2umvm

(
2u2

m + k1 + k2 − cvm
)
,

q2 = vm
(
6u2

m + k1 + k2 − cvm
)
.

Note that p2 > 0 and we can choose a suitable value of c such that q1 > 0 and
q0 < 0.

Hence, we set

λ = − p2q0

q
3
2
1 p

1
2
1

= −
(1− 3um)

(
u2
m + k1

)
2um

√
u2
m + k2
2vm

(
u2
m + k2 − cvm

)
(2u2

m + k1 + k2 − cvm)
3
2

(2.7)

and rewrite system (2.6) as the following normal form

du

dt
= −vh1(u, v, λ) + u2h2(u, v, λ) + ϵh3(u, v, λ),

dv

dt
= ϵ (uh4(u, v, λ)− λh5(u, v, λ) + vh6(u, v, λ)) ,

(2.8)

where

h1(u, v, λ) = 1, h2(u, v, λ) = 1 +
p3
√
p1q1

p22
u+

p4p1q1
p32

u2 +O
(
|u, v|3

)
,

h3(u, v, λ) = 0, h4(u, v, λ) = 1 +
q2
p2

√
p1
q1

u+O
(
|u, v|2

)
,

h5(u, v, λ) = 1, h6(u, v, λ) =
r0√
p1q1

+
r1
p2

u+
r2
p2

√
q1
p1

v +O
(
|u, v|2

)
.

It is clear that λ = 0 is equal to q0 = 0, which has a solution c =
(
u2
m + k2

)
v−1
m ≜

cm.
Thus, based on the conclusions of [7, 8], we have

a1 =
∂h3

∂u
(0, 0, 0) = 0, a2 =

∂h1

∂u
(0, 0, 0) = 0,

a3 =
∂h2

∂u
(0, 0, 0) =

√
2vm (u2

m + k1) (u2
m + k2)

[
u2
m(3− 10um) + k2(1− 4um)

]
um (u2

m + k2)
2
(1− 3um)

2 ,
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a4 =
∂h4

∂u
(0, 0, 0) =

(
5u2

m + k1
)

um(1− 3um)

√
vm

2 (u2
m + k2) (u2

m + k1)
,

a5 = h6(0, 0, 0) = − 1

um

√
(u2

m + k2) (u2
m + k1)

2vm

and

A = −a2 + 3a3 − 2a4 − 2a5

=
Â

um (u2
m + k2)

2
(1− 3um)

2

√
2 (u2

m + k2) (u2
m + k1)

vm
,

where

Â = (1− 3um)
(
u2
m + k2

) [
u2
m + k2 − um(u2

m + 2 + 3k2)
]

+ 3vm
[
k2(1− 4um) + (3− 10um)u2

m

]
.

Furthermore, system (2.8) has the singular Hopf bifurcation curve λ = λH(
√
ϵ) and

the maximal canard curve λ = λc(
√
ϵ) as

λH(
√
ϵ) = −a1 + a5

2
ϵ+O

(
ϵ

3
2

)
=

1

2um

√
(u2

m + k2) (u2
m + k1)

2vm
ϵ+O

(
ϵ

3
2

) (2.9)

and

λc(
√
ϵ) = −

(
a1 + a5

2
+

A

8

)
ϵ+O

(
ϵ

3
2

)
=

1

2um

√
(u2

m + k2) (u2
m + k1)

2vm

[
1− Â

2 (u2
m + k2)

2
(1− 3um)2

]
ϵ

+O
(
ϵ

3
2

)
.

(2.10)

Since

λ′(c) =
(1− 3um)

(
u2
m + k1

)
4um

√
(u2

m + k2) vm
2

2k1 − k2 + u2
m + cvm

(k1 + k2 + 2u2
m − cvm)

5
2

,

we can choose a suitable c such that λ′(c) > 0 which implies that the function λ(c)
is increasing as the value of c increases. Thus, the equations λ(c) = λH(

√
ϵ) and

λ(c) = λc(
√
ϵ) have unique solutions as

cH(
√
ϵ) =

u2
m + k2
vm

+
u2
m + k1

vm(1− 3um)
ϵ+O

(
ϵ

3
2

)
(2.11)

and

cc(
√
ϵ) =

u2
m + k2
vm

+
u2
m + k1

vm(1− 3um)

[
1− Â

2 (u2
m + k2)

2
(1− 3um)2

]
ϵ

+O
(
ϵ

3
2

)
.

(2.12)
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3. Multi-scale dynamics

In this section, we mainly study the multi-scale dynamics of system (1.3). It is clear
that the critical manifold M2

0 is S-shape with two non-normally hyperbolic points
Qm(um, vm) and QM (uM , vM ). Based on Theorem 2.1, we classify the multi-scale
dynamics of system (1.3) into three cases.

3.1. Single positive equilibrium

In this case, parameters η = (c, k1, k2) ∈ D1. Choosing different values of param-
eters η = (c, k1, k2), we will consider five different scenarios. See Fig.2. Note that
the analysis methods and results of Cases (d) and (e) are similar to that of Cases
(a) and (b). Hence, Cases (d) and (e) are ignored in this paper.

1( )v h u=

u

v

1k

1
M
u

m
uO

1E

1u
*

1( )v h u=

u

v

1k

1
M
u

m
uO

1E

1( )v h u=

u

v

1k

1
M
u

m
uO

1E

1u
*

(a) (b) (c)

1( )v h u=

u

v

1k

1
M
u

m
uO

1E

1( )v h u=

u

v

1k

1
M
u

m
uO

1E

1u
*

(d) (e)

Figure 2. The different cases for the positive equilibrium’s location, where (a) 0 < u∗
1 < um, (b)

u∗
1 = um, (c) um < u∗

1 < uM , (d) u∗
1 = uM and (e) uM < u∗

1 < 1.

3.1.1. Case (a): 0 < u∗
1 < um

It is easy to see that the dynamics of degenerate system (2.1) and layer system
(2.2) are shown in Fig.3(a). Hence, according to the Fenichel theorem, we have the
following theorem about the equilibrium E1(u

∗
1, v

∗
1).

Theorem 3.1. If parameters η = (c, k1, k2) ∈ D1 and system (1.3) has a unique
stable positive equilibrium E1(u

∗
1, v

∗
1) ∈ M2l

0 . See Fig.5(a).

3.1.2. Case (b): u∗
1 = um

In this case, the point (um, vm) is a canard point and the dynamics of degenerate
system (2.1) and layer system (2.2) are given in Fig.3(b). It is clear that the tra-
jectories of degenerate system (2.1) starting on the normally hyperbolic attracting
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1
k

M
u

m
u u1O

v

1
E

*

1
u

c

k
2

1
k

M
u

m
u u1O

v

1
E

c

k
2

1
k

M
u

m
u u1O

v

1
E

*

1
u

c

k
2

(a) (b) (c)

Figure 3. The dynamics of degenerate system (2.1) and layer system (2.2) when system (1.3) has one
positive equilibrium satisfying (a) 0 < u∗

1 < um, (b) u∗
1 = um and (c) um < u∗

1 < uM .

critical manifold M2l
0 will pass through the canard point (um, vm) and reach the

normally hyperbolic repelling critical manifold M2m
0 . These trajectories may be

perturbed to canard trajectories when 0 < ϵ ≪ 1.
Before giving the main theorem about the canard cycles and relaxation oscilla-

tion cycle, we define a family of singular slow-fast cycles Γ0(s) for s ∈ [0, s0] where
s0 = vM − vm. Let ul(s), um(s) and ur(s) be three positive roots of equation
h1(u) = vm + s, which satisfy ul(s) < um(s) < ur(s).

1. Γ0(0) is the canard point (um, vm) and Γ0(s0) is the singular slow-fast cycle
corresponding to the relaxation oscillation cycle. See Fig.4(c).

2. For s ∈ (0, k1 − vm], Γ0(s) is the singular slow-fast cycle corresponding to the
canard cycle without head. See Fig.4(a), which has the following representa-
tion

Γ0(s) =
{
(u, v) | v = h1(u), ul(s) < u < um(s)

}
∪
{
(u, v) | v = s, ul(s) ≤ u ≤ um(s)

}
, s ∈ (0, k1 − vm].

3. For s ∈ (k1 − vm, s0), Γ0(s) is the singular slow-fast cycle corresponding to
the canard cycle with head. See Fig.4(b), whose representation is

Γ0(s) = {(u, v) | v = s, 0 ≤ u ≤ um(s)} ∪ {(u, v) | u = 0, v̂∗ ≤ v ≤ s}
∪ {(u, v) | v = v̂∗, 0 < u < û∗}
∪ {(u, v) | v = h1(u), û∗ < u < um(s)} , s ∈ (k1 − vm, s0),

where v̂∗ is determined by Lemma 2.1 and û∗ is the smallest solution of equa-
tion h1(u) = v̂∗.

The following theorem gives the existence of canard explosion phenomenon of
system (1.3).

Theorem 3.2. Suppose η = (c, k1, k2) ∈ D1, the extreme point (um, vm) is the
canard point of system (1.3) and parameters c and λ satisfy the relationship (2.7),
then the following results of system (1.3) hold.

1. There exists c0 such that for
∣∣∣c− u2

m+k2

vm

∣∣∣ < c0, system (1.3) has precisely

one positive equilibrium E1(u
∗
1, v

∗
1) in the neighborhood of (um, vm), which

converges to (um, vm) as (c, ϵ) → (
u2
m+k2

vm
, 0), and it is stable with c < cH(

√
ϵ)
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Figure 4. The singular slow-fast cycles, which correspond to the canard cycles and relaxation oscillation
cycle.

given by (2.11) and unstable with c > cH(
√
ϵ). Hence, there is a singular

Hopf bifurcation when c passes through curve cH(
√
ϵ). Furthermore, the Hopf

bifurcation is supercritical if Â < 0 and subcritical if Â > 0.

2. For s ∈ [0, s0], there exists a family of canard cycles parameterized by s 7→
(c(s,

√
ϵ),Γϵ(s)), which is bifurcated from the singular slow-fast cycle Γ0(s),

and Γϵ(s) → Γ0(s) as ϵ → 0. Moreover, the canard explosion occurs if s ∈
[ϵν , 2s0 − ϵν ], ν ∈ (0, 1), and there is a curve c = cc(

√
ϵ) given by (2.12) such

that ∣∣c(s,√ϵ)− cc(
√
ϵ)
∣∣ ≤ exp(−1/ϵν), s ∈ [ϵν , 2s0 − ϵν ] .

3. Let v0 = vM in (2.5), if I(vm) < 0, then, when the canard cycle of system (1.3)
occurs, the relaxation oscillation cycle and the canard cycle co-exist. More-
over, the relaxation oscillation cycle is stable and converges to the singular
slow-fast cycle Γ(s0) in Hausdorff distance when ϵ → 0.

Proof. Set that η0 is the value parameters η = (c, k1, k2) satisfying vm =
u2
m+k2

c .
A simple calculation shows that

f(um, vm, η0) = 0,
∂f

∂u
(um, vm, η0) = 0, g(um, vm, η0) = 0

∂2f

∂u2
(um, vm, η0) = 2um(1− 3um)

(
u2
m + k2

)
> 0,

∂f

∂v
(um, vm, η0) = −um

(
u2
m + k2

)
< 0,

∂g

∂u
(um, vm, η0) = 2vmum

(
u2
m + k1

)
> 0,

∂g

∂c
(um, vm, η0) = −umvm

(
u2
m + k1

)
< 0,

which imply that the extreme point (um, vm) is a non-degenerate canard point.
Since system (2.8) is the slow-fast normal form of system (1.3) in the neighborhood
of canard point (um, vm), then system (2.8) has the non-degenerate canard point
(0, 0).

According to Theorem 3.1 in [8], there exist ϵ0 and λ0 such that the system has
an equilibrium pe near (0, 0) and pe 7→ (0, 0) as (ϵ, λ) → (0, 0). Furthermore, the
singular Hopf bifurcation curve is λ = λH(

√
ϵ) given by (2.9) such that pe is stable

for λ < λH(
√
ϵ) and unstable for λ > λH(

√
ϵ). Moreover, the Hopf bifurcation is
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supercritical if Â < 0 and subcritical if Â > 0. Since λ′(c) > 0 and λ(c) = λH(
√
ϵ)

has a unique solution c = cH(
√
ϵ), then λ < λH(

√
ϵ) is equal to c < cH(

√
ϵ). Hence,

statement 1 is true.
For statement 2, according to Theorems 3.3 and 3.5 in [8] about the canard

explosion, the similar analysis shows that it holds for system (1.3).
For statement 3, to begin with, we show that p0(vM ) < vm, which means the

trajectories starting near (uM , vM ) cannot arrive at the neighborhood of normally
hyperbolic critical manifold M2l

0 . Clearly, we have I(p0(vM )) = 0 and I(v̂) is a
decreasing function because of Lemma 2.1. Since I(vm) < 0 which implies p0(vM ) <
vm, we can construct the singular slow-fast cycle Γ0(s0). See Fig.4(c).

In what follows, we will give the existence and stability of the relaxation oscil-
lation cycle and the idea is inspried by Theorem 3.2 in [24]. Firstly, we set two
vertical sections, see Fig.4(c), as

Σ1 = {(u, v) | u = u0, v ∈ I1} and Σ2 = {(u, v) | u = u0, v ∈ I2} ,

where 0 < u0 < um, I1 and I2 are small closed segments whose centers are vM and
p0(vM ). Note that Σi, i = 1, 2 are transversal to the singular slow-fast cycle Γ0(s0).
Furthermore, we define the transition map Π : Σ1 → Σ1 along the flow of (1.3),
which consists of two parts

Π1 : Σ1 → Σ2 and Π2 : Σ2 → Σ1.

Next, we will analyse the properties of transition maps Πi, i = 1, 2.
For Π1 : Σ1 → Σ2, based on Lemma 2.1, the trajectory of system (1.3) starting

at a point (u0, v0) ∈ Σ1 must cross the vertical section at point (u0, pϵ(v0)) ∈ Σ2,
where lim

ϵ→0
pϵ(v0) = p0(v0). So we have Π1(u0, v0) = (u0, pϵ(v0)).

For Π2 : Σ2 → Σ1, since (uM , vM ) is a generic fold point of system (1.3), then
Π2 : Σ2 → Σ1 is also a contract map with the exponential rate O(e−1/ϵ) because of
Theorem 2.1 in [7].

Thus, the transition map Π = Π2 ◦ Π1 is a contract map with the exponential
rate O(e−1/ϵ). According to the Contraction Mapping Theorem, there is a unique
fixed point in Σ1, which corresponds to the unique relaxation oscillation cycle Γϵ(s0).
Furthermore, this relaxation oscillation cycle is a stable limiting cycle and converges
to the singular slow-fast cycle Γ0(s0) in the Hausdorff distance when ϵ → 0.

Example 3.1. Set ϵ = 0.001, k1 = 0.2 and k2 = 0.15. It is clear that cc(
√
ϵ) =

0.8669 and Fig.5(b)-(e) show the canard explosion phenomenon, where (a) c =
0.875, (b) c = 0.87, (c) c = 0.86 and (d) c = 0.85. From Fig.5(b)-(e), we can see
that the canard cycle is surrounded by the relaxation oscillation cycle.

3.1.3. Case (c): um < u∗
1 < uM

The single positive equilibrium E1(u
∗
1, v

∗
1) is on the normally hyperbolic repelling

critical manifold M2m
0 and the dynamics of degenerate system (2.1) and layer sys-

tem (2.2) are given in Fig.3(c). Clearly, E1(u
∗
1, v

∗
1) is an unstable node of system

(1.3) and (um, vm) and (uM , vM ) are generic fold points. According to the Finichel’s
theorem and Theorem 2.1 in [7], the slow manifoldM2r

ϵ nearM2r
0 jumps to the vicin-

ity of another attracting critical manifold M1s
0 when it reaches the neighbourhood
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Figure 5. The phase portraits of system (1.3) with different values of parameters in the parameter
region D.
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of (uM , vM ). Furthermore, using the entry-exit function theory, the similar result
holds for the slow manifold M1s

ϵ when it crosses the point (0, k1). Hence, using
the similar analysis method of statement 3 in Theorem 3.2, we have the following
theorem.

Theorem 3.3. Suppose that parameters η = (k1, k2, c) ∈ D1 and the single positive
equilibrium E1(u

∗
1, v

∗
1) ∈ M2m

0 . Then for 0 < ϵ ≪ 1, there is a unique stable relax-
ation oscillation cycle Γϵ(s0), which converges to Γ0(s0) in the Hausdorff distance
with ϵ → 0.

Example 3.2. Set ϵ = 0.001, k1 = 0.2, k2 = 0.15 and c = 1.5 in (1.3). It is clear
that there is a positive equilibrium E1(0.42158, 0.21849). Clearly, system (1.3) has
a relaxation oscillation cycle. See Fig.5(f).

3.2. Two positive equilibriums

In this case, we have η = (c, k1, k2) ∈ D1
2 ∪ D2

2 ∪ D3
2. Furthermore, system (1.3)

has two positive equilibriums E1(u
∗
1, v

∗
1) and E2(u

∗
2, v

∗
2) whose locations have five

different scenarios. See Fig.6.
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Figure 6. The different cases for the two positive equilibriums’ location, where (a) um < u∗
1 < uM <

u∗
2 ; (b) um < u∗

1 < uM = u∗
2 ; (c) um < u∗

1 < u∗
2 < uM ; (d) u∗

1 < um < u∗
2 = ũ+ < uM ; (e)

um < u∗
1 = ũ− < uM < u∗

2 .

3.2.1. Case (a): um < u∗
1 < uM < u∗

2

Now the positive equilibriums E1(u
∗
1, v

∗
1) and E2(u

∗
2, v

∗
2) respectively lie in the nor-

mally hyperbolic repelling critical submanifold M2m
0 and normally hyperbolic at-

tracting critical submanifold M2r
0 and the dynamics of degenerate system (2.1) and

layer system (2.2) are shown in Fig.7(a). Hence, according to the Finichel theorem,
it is obvious that the equilibrium E1(u

∗
1, v

∗
1) is a saddle point and the equilibrium

E2(u
∗
2, v

∗
2) is a stable node for 0 < ϵ ≪ 1.
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Figure 7. The dynamics of degenerate system (2.1) and layer system (2.2) when system (1.3) has two
positive equilibriums satisfying (a) um < u∗

1 < uM < u∗
2 , (b) um < u∗

1 < uM = u∗
2 , (c) um < u∗

1 <
u∗
2 < uM and (d) u∗

1 < um < u∗
2 = ũ+ < uM .

Theorem 3.4. Suppose η = (c, k1, k2) ∈ D1
2 and um < u∗

1 < uM < u∗
2. Then

system (1.3) has a heteroclinic orbit from E1(u
∗
1, v

∗
1) to E2(u

∗
2, v

∗
2) and a heteroclinic

orbit from E1(u
∗
1, v

∗
1) to B2(0,

k2

c ).

Proof. Since E2(u
∗
2, v

∗
2) is a stable equilibrium of the degenerate system (2.1) and

Wu
0 (E1) ∩ W s

0 (M
2r
0 ) ̸= ⊘, then there is a singular orbit connecting equilibriums

E1(u
∗
1, v

∗
1) and E2(u

∗
2, v

∗
2). Moreover, Wu

0 (E1) ∩W s
0 (M

2r
0 ) is transverse by dimen-

sion counting. Since Wu
0 (E1) perturbs to the unstable manifold Wu

ϵ (E1) of saddle
E1(u

∗
1, v

∗
1) andW s(M2r

0 ) perturbs to the two dimensional stable manifoldW s
ϵ (E2) of

equilibrium E2(u
∗
2, v

∗
2) based on the Finichel theorem, then Wu

0 (E1)∩W s
ϵ (E2) ̸= ⊘

because of the transversality of Wu
0 (E1) ∩W s

0 (M
2r
0 ), which implies there is a hete-

roclinic orbit from E1(u
∗
1, v

∗
1) to E2(u

∗
2, v

∗
2).

With the similar analysis, we can prove there is a heteroclinic from E1(u
∗
1, v

∗
1)

to B2(0,
k2

c ). Hence, the proof is complete.

Example 3.3. Set ϵ = 0.01, k1 = 0.15, k2 = 1.25 and c = 8 in (1.3), it is clear that
there are two positive equilibriums E1(0.29524, 0.16715) and E2(0.61422, 0.20341)
and the boundary equilibrium B2(0, 0.15625). Clearly, system (1.3) has two hete-
roclinic orbits. See Fig.8 (a).

3.2.2. Case (b): um < u∗
1 < uM = u∗

2

In this case, the extreme point (uM , vM ) is a canard point of system (1.3) and the
dynamics of degenerate system (2.1) and layer system (2.2) are shown in Fig.7(b).
Similarly, the equilibrium E1(u

∗
1, v

∗
1) is a saddle point and the following theorem

holds.
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Theorem 3.5. Suppose that η = (c, k1, k2) ∈ D1
2, um < u∗

1 < uM = u∗
2 and the

extreme point (uM , vM ) is a canard point. Then the following conclusions hold.

1. For s ∈ (0, vM − v∗1), system (1.3) has a family of canard cycles without head
parameterized by s 7→ (c(s,

√
ϵ),Γϵ(s)), which emerge from the singular slow-

fast cycles Γ0(s), and Γϵ(s) → Γ0(s) as ϵ → 0;

2. System (1.3) has a unique homoclinic orbit of the saddle E1(u
∗
1, v

∗
1) if and

only if c = c̃c(
√
ϵ), which is obtained by using (uM , vM ) instead of (um, vm)

in (2.12).

Proof. The proof conclusion 1 is omitted because it is similar to that of Theorem
3.2. Next, we give the proof conclusion 2. According to the Finichel theorem and
the structure of E1(u

∗
1, v

∗
1), the stable manifold of E1(u

∗
1, v

∗
1) must be one of the

slow manifolds, which is denoted as M2m
ϵ,E1

. See Fig.9. Furthermore, the unstable

manifold of E1(u
∗
1, v

∗
1) must be attracted to the O(ϵ) neighborhood of M2r

0 and
move positively along M2r

0 . Finally, it will become a slow manifold emerged from
M2r

0 , which is denoted as M2r
ϵ,E1

. See Fig.9. In what follows, we will analyse the

connecting condition of M2m
ϵ,E1

and M2r
ϵ,E1

.
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Figure 9. The homoclinic orbit of system (1.3) in equilibrium E1(u
∗
1 , v

∗
1 ).

Set Σi =
{
(u, vM − ρ2) | u ∈ Ii

}
, i = m, r, see Fig.9, where ρ is a small parame-

ter and Ii, i = m, r are suitable regions. Furthermore, qi,ϵ, i = m, r are the intersect-
ing points between Ii and M2i

ϵ,E1
. We define the transition map π : Σr → Σm. Based

on the Theorem 3.2 in [7], it is clear that π(qr,ϵ) = qm,ϵ is equal to the existence
of a continuous function c = c̃c(

√
ϵ) which is obtained by using (uM , vM ) instead

of (um, vm) in (2.12). This implies that the stable manifold and unstable manifold
of E1(u

∗
1, v

∗
1) intersect, which is the homoclinic orbit of system (1.3) in E1(u

∗
1, v

∗
1).

Moreover, the equilibrium E2(u
∗
2, v

∗
2) is located in the region surrounded by this

homoclinic orbit.

Example 3.4. Set ϵ = 0.005, k1 = 0.2, k2 = 3.5 in (1.3). It is clear that there
are two positive equilibriums E1(0.43283, 0.21969) and E2(0.54382, 0.22615) and the
value of maximal canard curve c̃c(

√
ϵ) = 16.7844. Form Fig.8 (b), system (1.3) has

a homoclinic orbit of equilibrium E1.

3.2.3. Case (c): um < u∗
1 < u∗

2 < uM

In this case, the dynamics of degenerate system (2.1) and layer system (2.2) are
shown in Fig.7(c). Clearly, E1(u

∗
1, v

∗
1) is a saddle and E2(u

∗
2, v

∗
2) is an unstable node.

Furthermore, the following theorem holds with the similar analysis of Theorem 3.4.
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Theorem 3.6. Suppose η = (c, k1, k2) ∈ D1
2 and um < u∗

1 < u∗
2 < uM . Then

system (1.3) has two heteroclinic orbits from E1(u
∗
1, v

∗
1) to B2(0,

k2

c ) and infinite

heteroclinic orbits from E2(u
∗
2, v

∗
2) to B2(0,

k2

c ).

Example 3.5. Set ϵ = 0.01, k1 = 0.15, k2 = 0.95 and c = 6 in (1.3). It is clear
that there are two positive equilibriums E1(0.37749, 0.18208) and E2(0.5, 0.2) and
a boundary equilibrium B2(0, 0.15833). Form Fig.8(c), there are two heteroclinic
orbits connecting equilibriums E1 and B2 and infinite heteroclinic orbits connecting
equilibriums E2 and B2.

3.2.4. Case (d): u∗
1 < um < u∗

2 = ũ+ < uM

In this case, the dynamics of degenerated system (2.1) and layer system (2.2) are
shown in Fig.7(d). Clearly, E1(u

∗
1, v

∗
1) is a stable node and E2(u

∗
2, v

∗
2) is a saddle-

node. According to the Theorem 5.6 in [23], the following theorem holds.

Theorem 3.7. Suppose η = (c, k1, k2) ∈ D3
2 and u∗

1 < um < u∗
2 < uM . Then the

equilibrium E1(u
∗
1, v

∗
1) is an attractor in the first quadrant and the flows tend to

E1(u
∗
1, v

∗
1) except the stable manifold of E2(u

∗
2, v

∗
2).

Remark 3.1. The analysis of case (e) is omitted because its conclusion and method
are similar to those of case (d).

3.3. Three positive equilibriums

In this case, we have η = (c, k1, k2) ∈ D1
3 and system (1.3) has three equilibri-

ums E1(u
∗
1, v

∗
1), E2(u

∗
2, v

∗
2) and E3(u

∗
3, v

∗
3) whose locations have eight scenarios, see

Fig.10. Note that the analysis of cases (f)−(h) is omitted because their conclusions
and methods are similar to those of cases (b), (c) and (e).

3.3.1. Case (a): u∗
1 < um < u∗

2 < uM < u∗
3

The dynamics of degenerate system (2.1) and layer system (2.2) are shown in
Fig.11(a). Furthermore, using the Finichel theorem, E1(u

∗
1, v

∗
1) and E3(u

∗
3, v

∗
3) are

stable nodes and E2(u
∗
2, v

∗
2) is a saddle point. We have the following theorem by

the similar analysis of Theorem 3.4.

Theorem 3.8. Suppose η = (c, k1, k2) ∈ D1
3 and u∗

1 < um < u∗
2 < uM < u∗

3. Then
system (1.3) has a heteroclinic orbit from E2(u

∗
2, v

∗
2) to E1(u

∗
1, v

∗
1) and a heteroclinic

orbit from E2(u
∗
2, v

∗
2) to E3(u

∗
3, v

∗
3).

Example 3.6. Set ϵ = 0.01, k1 = 0.2, k2 = 1.9 and c = 10 in (1.3). It is clear that
there are three positive equilibriums E1(0.01016, 0.1905), E2(0.23973, 0.19575) and
E3(0.258951, 0.22475) and two heteroclinic orbits. See Fig.12 (a).

3.3.2. Case (b): u∗
1 = um < u∗

2 < uM < u∗
3

In this case, the dynamics of degenerate system (2.1) and layer system (2.2) are
shown in Fig.11(b). Clearly, (um, vm) is a canard point, E3(u

∗
3, v

∗
3) is a stable node

and E2(u
∗
2, v

∗
2) is a saddle point. Furthermore, we have the following theorem with

the similar analysis in Theorems 3.4 and 3.5.
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Figure 10. Eight different cases when system (1.3) has three positive equilibriums.

1
k

M
u

m
u u1O

v

1
E

∗

1
u

c

k
2

2
E

3
E

∗

2
u

∗

3
u

1
k

M
u

m
u u1O

v

1
E

c

k
2

2
E

3
E

∗

2
u

∗

3
u

1
k

M
u

m
u u1O

v

1
E

*

1
u

c

k
2

2
E

3
E

*

2
u

*

3
u

(a) (b) (c)

1
k

M
u

m
u u1O

v

1
E

*

1
u

c

k
2

2
E

3
E

*

2
u

*

3
u

1
k

M
u

m
u u1O

v

1
E

c

k
2

2
E

3
E

*

2
u

*

3
u

(d) (e)

Figure 11. The dynamics of degenerate system (2.1) and layer system (2.2) when system (1.3) has
three positive equilibriums satisfying (a) u∗

1 < um < u∗
2 < uM < u∗

3 ; (b) u∗
1 = um < u∗

2 < uM < u∗
3 ;

(c) u∗
1 < um < u∗
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3 < uM ; (d) um < u∗

1 < u∗
2 < uM < u∗

3 ; (e)u
∗
1 = um < u∗
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Figure 12. The phase portraits of system (1.3) when it has three positive equilibriums satisfying (a)
u∗
1 < um < u∗

2 < uM < u∗
3 ; (b) u∗

1 = um < u∗
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2 < uM < u∗
3 ; (e) u∗
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Theorem 3.9. Suppose η = (c, k1, k2) ∈ D1
3, u

∗
1 = um < u∗

2 < uM < u∗
3 and the

extreme point (um, vm) is a canard point. Then the following conclusions hold.

1. For s ∈ (0, v∗2 − vm), system (1.3) has a family of canard cycles without head
parameterized by s 7→ (c(s,

√
ϵ),Γϵ(s)), which emerge from the singular slow-

fast cycle Γ0(s), and Γϵ(s) → Γ0(s) as ϵ → 0;

2. System (1.3) has a unique homoclinic orbit in the saddle E2(u
∗
2, v

∗
2) if and

only if c = cc(
√
ϵ);

3. System (1.3) has a heteroclinic orbit from E2(u
∗
2, v

∗
2) to E3(u

∗
3, v

∗
3).

Example 3.7. Set ϵ = 0.005, k1 = 0.2, k2 = 1.4943 in (1.3). It is clear that
there are three positive equilibriums E1(0.12328, 0.18867), E2(0.19161, 0.19136) and
E3(0.56012, 0.22598) and the value of canard explosion curve cc(

√
ϵ) = 8.0008.

Hence, from Fig.12(b), we can see that there is a homoclinic orbit in E2 and a
heteroclinic orbit connecting equilibriums E2 and E3.

3.3.3. Case (c): u∗
1 < um < u∗

2 < u∗
3 < uM

In this case, the dynamics of the degenerate system (2.1) and the layer system
(2.2) are shown in Fig.11(c). Clearly, E1(u

∗
1, v

∗
1) is a stable node, E3(u

∗
3, v

∗
3) is an

unstable node and E2(u
∗
2, v

∗
2) is a saddle point. Furthermore, we have the following

theorem with the similar analysis of Theorem 3.4.

Theorem 3.10. Suppose η = (c, k1, k2) ∈ D1
3 and um < u∗

1 < u∗
2 < uM < u∗

3.
Then system (1.3) has two heteroclinic orbits from E2(u

∗
2, v

∗
2) to E1(u

∗
1, v

∗
1) and

infinite heteroclinic orbits from E3(u
∗
3, v

∗
3) to E1(u

∗
1, v

∗
1).

Example 3.8. Set ϵ = 0.01, k1 = 0.2, k2 = 1.23 and c = 7 in (1.3). It is clear that
there are three positive equilibriums E1(0.068505, 0.19067), E2(0.29678, 0.20258)
and E3(0.49185, 0.22456). From Fig.12(c), system (1.3) has two heteroclinic or-
bits connecting equilibriums E2 and E1 and infinite heteroclinic orbits connecting
equilibriums E3 and E1.

3.3.4. Case (d): um < u∗
1 < u∗

2 < u∗
3 < uM

In this case, the dynamics of degenerate system (2.1) and layer system (2.2) are
shown in Fig.11(d). Clearly, E1(u

∗
1, v

∗
1) and E3(u

∗
3, v

∗
3) are unstable nodes and

E2(u
∗
2, v

∗
2) is a saddle point. Furthermore, it is easy to get the following theorem

by using the similar method of Theorem 3.3.

Theorem 3.11. Suppose η = (c, k1, k2) ∈ D1
3 and um < u∗

1 < u∗
2 < u∗

3 < uM .
Then there is a relaxation oscillation cycle of system (1.3) around three positive
equilibriums.

Example 3.9. Set ϵ = 0.01, k1 = 0.2, k2 = 0.8235 and c = 4.5 in (1.3). It is clear
that there are three positive equilibriums E1(0.21886, 0.19364), E2(0.25892, 0.1979)
and E3(0.3, 0.203) and a relaxation oscillation cycle. See Fig.12(d).

3.3.5. Case (e): u∗
1 = um < u∗

2 < u∗
3 < uM

In this case, the dynamics of degenerate system (2.1) and layer system (2.2) are
shown in Fig.11(e). Clearly, (um, vm) is a canard point, E3(u

∗
3, v

∗
3) is an unstable
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stable node and E2(u
∗
2, v

∗
2) is a saddle point. Furthermore, the following theorem

holds with the similar analysis of Theorem 3.5.

Theorem 3.12. Suppose η = (c, k1, k2) ∈ D1
3, u

∗
1 = um < u∗

2 < u∗
3 < uM and the

extreme point (uM , vM ) is a canard point. Then the following conclusions hold.

1. For s ∈ (0, v∗2 − vm), system (1.3) has a family of canard cycles without head
parameterized by s 7→ (c(s,

√
ϵ),Γϵ(s)), which emerge from the singular slow-

fast cycle Γ0(s), and Γϵ(s) → Γ0(s) as ϵ → 0;

2. There is a homoclinic orbit of system (1.3) in equilibrium E1(u
∗
1, v

∗
1) if and

only if c = cc(
√
ϵ).

Example 3.10. Set ϵ = 0.005, k1 = 0.2, k2 = 1.117 in (1.3). It is clear that
there are three positive equilibriums E1(0.12313, 0.18867), E2(0.23869, 0.19564) and
E3(0.47154, 0.22319) and the value of canard explosion curve cc(

√
ϵ) = 6.0008.

Hence, from Fig.12(e), we can see that there is a homoclinic orbit of equilibrium
E2.

4. Discussion

In this paper, under the assumption that the growth rate of preys is much larger than
that of predators, we introduce a small positive parameter into a Leslie-Gower prey-
predator model with Monod-Haldane function response and yield a slow-fast system
(1.3). We analyse the number and locations of positive equilibriums in system (1.3)
and obtain rich dynamics such as canard phenomenon, relaxation oscillation cycle,
heteroclinic and homoclinic orbits and so on. Especially, the relaxation oscillation
cycle and canard cycle co-exist when system (1.3) only has one positive equilibrium
E1(u

∗
1, v

∗
1) with 0 < u∗

1 = um < uM . All these dynamics have practical biological
significance and, as an example, we illustrate biological phenomenon of the canard
cycle without head in Section 3.1.2. See Fig.5(b) and (c).

For Fig.5(b) and (c), the slow manifold stands for the density of predators and
preys change very slowly while the fast orbits stand for the density of preys change
dramatically. Therefore, the canard cycle suggests that the density of predators
grow slow when the density of preys can support the reproduction of predators.
However, once the density of predators is over the tolerance of preys, the density of
preys decrease dramatically. This leads to a slow decrease in the density of predators
because of the low density of preys and the density of preys recovers slowly until a
new cycle starts.
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