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Dynamics of a Tick-borne Disease Model with
Birth Pulse and Pesticide Pulse at Different

Moments*

Shuyu Yan1 and Xue Zhang1,†

Abstract Tick-borne diseases pose a potential risk to public health, which is
influenced by the stage structure and seasonal reproduction of tick populations.
In this paper, a model that explains the transmission dynamics of pathogens
among ticks and hosts is formulated and analyzed, considering birth pulse and
pesticide pulse on tick population at different moments. Using the stroboscopic
mapping for the disease-free system, we prove a globally asymptotically stable
positive periodic solution exists when the pulsed pesticide spraying intensity is
less than a critical threshold. Applying the comparison theorem for the impul-
sive differential system, the conditions for global attraction of the disease-free
periodic solution to the investigated system are given. Moreover, we demon-
strate the persistence of the studied system and give numerical simulations to
verify it. Ultimately, we discuss the case with multiple pesticide sprays and
conclude that fewer sprays are more favorable for disease extinction.

Keywords Tick-borne disease, stage structure, double pulse, stability, per-
manence

MSC(2010) 93C27, 92D25, 34A37.

1. Introduction

Tick-borne diseases, like tick-borne encephalitis(TBE) [1], tick-borne relapsing fever
[2], Lyme disease [3], have become a major problem for woodland populations living
in many parts of Europe, the former Soviet Union and North America. This problem
has become increasingly serious over the last 20 years as people spend more time
outdoors [4]. Lyme disease is an important infectious disease in the United States,
with more than 40,000 cases reported each year, but eight to ten times as many
people are actually infected [5]. Lyme disease has a high incidence among forest
and field workers [6]. The clinical manifestations include meningitis, encephalitis,
neuritis, motor and sensory neuritis and other neurological damage [7]. During
the initial phase of the disease, chronic erythema migrans affect the skin, while in
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the intermediate stage, it leads to lesions in the nerves, heart, or joints, and the
treatment for nervous system damage has not been effective thus far.

Tick-borne diseases are spread through ticks bites, which are parasitic arthro-
pods that commonly attach themselves to various mammals, including humans.
Ticks act as carriers or vectors for several diseases affecting humans and animals [8].
The typical life cycle of ticks spans a duration of 2 to 3 years in their natural habi-
tat, during which they undergo four distinct stages of development: the egg, larva,
nymph, and adult phases [6]. Except for the egg stage, each other stage contains
three sub-stages: searching for a host, feeding blood and engorgement [9]. The lar-
vae and nymphs are normally parasitic on small rodents (like birds and mice) while
the adults mainly feed on medium and large mammals (like sheep and deer) [10].

We can control the prevalence of tick-borne diseases in several ways, such as
vaccination [11], biological control [12] and chemical control (pesticide spraying).
However, there is currently only one vaccine for TBE, which is not permanent.
People need three intramuscular vaccinations (primary series) on day 0, months 1-3
and months 5-12, with a booster shot after 3 years and every 5 years thereafter [13].
Irregular vaccination schedules will result in slightly less effective vaccines [14].
Since most countries do not include tick-borne vaccines in health insurance, the
vaccine coverage is low. For biological control, it is impractical to introduce a large
number of natural enemies to prey on ticks because of the small number of species
of ticks, and it is easy to destroy the original biological chain. Therefore, chemical
control i.e., spraying pesticides on animals, grasses and forests to kill ticks, is the
most important means of tick control.

At present, a number of modeling efforts have been conducted by many scholars
to research tick population dynamics and the spread of tick-borne diseases. Tosato
et al. [15] modeled disease transmission in ticks and rodents, and studied the effects
of two means of control: insect repellents and acaricides. Analysis suggests that
host control with chemical insecticides in areas with rapidly growing tick popula-
tions may prolong the duration of the disease and even allow the disease to spread
in disease-free areas. Rosà and Pugliese [4] discussed the influence of host popu-
lation density and structure on the spread of tick-borne diseases, concluding that
low host population densities do not sustain cycles of infection, while high host
population densities may dilute pathogen transmission. Egyed et al. [16] analyzed
the effect of season on Ixodes ricinus activity and the prevalence of infection with
major tick-borne disease pathogens in Hungary. Lou and Wu [17] gave basic regen-
eration numbers of complex disease systems for twelve developmental stages of tick
populations.

Recently, a number of researchers have developed epidemiological and popula-
tion dynamics models with impulsive differential equations [18,19]. Pulsed differen-
tial equations exist in almost every field of modern science and have been applied
in numerous studies. Wang et al. [20] introduced the impulse control approach to
pest biological control by considering the global nature of epidemiological models
and bifurcating models with periodic impulse effects. Li et al. [21] constructed a
generalized predator-prey system containing a nonlinear pulse to study the effects
of pulse-released predators on prey population outbreaks. Tang and Chen [22] pre-
sented a stage-structured population system with different fertility function pulses,
comparing the dynamic behavior of Ricker functional and Beverton-Holt functional
fertility pulses. Sisodiya et al. [23] proposed a model of mosquito-borne disease
that considers three means of impulse control at the same moment, namely vac-
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cination, pesticides, and adulticides. However, tick-borne diseases have not been
seen in articles with pulse situations. Considering the effects of tick birth and pes-
ticide spraying are controlled both in pulsatile manners, it is necessary to propose
a double-pulse tick-borne disease model.

The paper is structured as follows: In section 2, a model is introduced and the
meaning of each parameter is given. In section 3, definitions and lemmas are given
to provide the basis for later proofs. In section 4, a positive periodic solution exists
and conditions for its global asymptotic stability are given, using the stroboscopic
mapping of the disease-free subsystem. In section 5, conditions for the global at-
traction of the investigated model are given, based on the comparison theorem of
the impulse differential equation. In section 6, the persistence of the investigated
model is presented. Finally, we give numerical simulations to conclude and direct
for future work.

2. The model formulation

A model is developed, which explains the transmission dynamics of pathogens
among ticks and hosts, considering birth pulse and pesticide pulse on tick pop-
ulation at different moments.

(Lt)
′
= −βLHtLt − µTLt,

(NS
t )

′ = ηLβL[HS
t + (1− pN )HI

t ]Lt − βNHtN
S
t − µTNS

t ,

(N I
t )

′ = ηLβLpNHI
t Lt − βNHtN

I
t − µTN I

t ,

(HS
t )

′ = Λ− βNpHN I
t H

S
t − µHHS

t ,

(HI
t )

′ = βNpHN I
t H

S
t − µHHI

t − αHHI
t ,


t ̸= (n+ l)T,

t ̸= (n+ 1)T,

Lt+ = (1− q)Lt,

NS
t+ = (1− q)NS

t ,

N I
t+ = (1− q)N I

t ,

 t = (n+ l)T, n = 1, 2 · · · ,

Lt+ = Lt +
rηNβNHtNt

1 + wηNβNHtNt
,

NS
t+ = NS

t ,

N I
t+ = N I

t ,

 t = (n+ 1)T, n = 1, 2 · · · .

(2.1)
Consider Lt, Nt, Ht as variables representing the population numbers of larvae,

nymphs and hosts at time t, respectively. The nymphs Nt can be further categorized
into two groups: susceptible individuals, denoted as NS

t , and infected individuals,
denoted as N I

t . Thus,

Nt = NS
t +N I

t .

The host population Ht can be further categorized into two groups: the susceptible
hosts HS

t and the infected hosts HI
t . Thus,

Ht = HS
t +HI

t .

T is the period of birth pulse and pesticide pulse. 0 < q < 1 denotes the death

rate due to pesticide in ticks at t = (n+ l)T , 0 < l < 1. rηNβNHtNt

1+wηNβNHtNt
denotes the

pulse recruitment effect of larvae at t = (n + 1)T , where r is the number of eggs
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per adult female tick surviving to reach larval stage, and ηN is the conversion rate
from nymphs to adults. Define Ft+ = lim

x→t+
Fx .

All parameters in model (2.1) are positive constants. Detailed explanations and
specific ranges of parameters are listed in Table 1.

Table 1. Model parameters description

Parameter Description Value range Source

βL Biting rate of larvae [0.025, 0.105] [24]

βN Biting rate of nymphs [0.025, 0.105] [24]

ηL Conversion rate from larvae to nymphs [0.35, 0.5] [25]

ηN Conversion rate from nymphs to adults [0.35, 0.5] [25]

µT Natural mortality rate of ticks [0.007, 0.087] [25]

µH Natural mortality rate of hosts [0, 1] Assumed

Λ Recruitment rate due to birth in hosts [0.5, 0.7] [26]

αH Mortality rate due to disease in
infected hosts

[0.0083, 0.33] [27]

q Mortality rate due to pesticide in ticks [0, 1] Assumed

r
Number of eggs per adult female tick
surviving to reach larval stage

200 [28]

w Density dependent rate of adults [0, 200] Assumed

pN
Infection probability from infectious
hosts to suscpectible nymphs

[0, 0.9] [25]

pH
Infection probability from infectious
nymphs to suscpectible hosts

[0, 0.9] [25]

3. Preliminaries

Some definitions and lemmas are introduced for convenience.
From system (2.1), we obtain

(Ht)
′
= Λ− µHHt − αHHI

t ,

then

Λ− (µH + αH)Ht ≤ (Ht)
′
≤ Λ− µHHt.

We derive that

H ≜
Λ

µH + αH
≤ lim

t→∞
Inf Ht ≤ lim

t→∞
Sup Ht ≤

Λ

µH
≜ H. (3.1)

Lemma 3.1. When t is large enough, there exists a constant M = r

w·(1−e−µT ηLT )
+

ζ, such that Lt ≤ M
ηL , NS

t ≤ M and N I
t ≤ M , where ζ > 0 is sufficiently small.
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Proof. By defining Rt = ηLLt +NS
t +N I

t , we get

(Rt)
′
= −ηLµTLt − (βNHt + µT )Nt

≤ −ηLµTLt − µTNt

≤ −ηLµTRt.

It can be seen that when t = (n+ l)T ,

Rt+ = (1− q)Rt ≤ Rt.

When t = (n+ 1)T ,

Rt+ = Rt +
rηNβNNtHt

1 + wηNβNNtHt

= Rt +
r

w

(
1− 1

1 + wηNβNNtHt

)
≤ Rt +

r

w
.

For the comparison system (X1t)
′
= −µT ηLX1t , t ̸= nT,

X1t+
= X1t +

r

w
, t = nT,

there exists a global asymptotically stable periodic solution

X̃1t =
r

w
· e−ηLηL

(t−nT )

1− e−µT ηLT
, nT < t ≤ (n+ 1)T.

For sufficiently small ζ > 0 and large enough t, it holds that

Rt ≤ X1t < X̃1t + ζ <
r

w
· 1

1− e−µT ηLT
+ ζ ≜ M.

Based on the definition of Rt, we derive

Lt ≤
M

ηL
, NS

t ≤ M, N I
t ≤ M,

when t is large enough.

4. Disease-free subsystem

If N I
t = HI

t = 0, the disease-free subsystem of system (2.1) is defined as:

(Lt)
′
= −βLHS

t Lt − µTLt,

(NS
t )

′ = ηLβLHS
t Lt − βNHS

t N
S
t − µTNS

t ,

(HS
t )

′ = Λ− µHHS
t ,

 t ̸= (n+ l)T,

t ̸= (n+ 1)T,

Lt+ = (1− q)Lt,

NS
t+ = (1− q)NS

t ,

 t = (n+ l)T,

Lt+ = Lt +
rηNβNHS

t N
S
t

1 + wηNβNHS
t N

S
t

,

NS
t+ = NS

t ,

 t = (n+ 1)T.

(4.1)
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Since (HS
t )

′ = Λ− µHHS
t , then

HS
t =

Λ

µH
+ (HS

0+ − Λ

µH
)e−µHt → Λ

µH
, as t → ∞.

In terms of NS
t = Nt and HS

t = Ht, system (4.1) and the following system are
equivalent when we consider their dynamical properties.

(Lt)
′
= −aLt,

(Nt)
′
= bLt − cNt,

}
t ̸= (n+ l)T, t ̸= (n+ 1)T,

Lt+ = (1− q)Lt,

Nt+ = (1− q)Nt,

}
t = (n+ l)T,

Lt+ = Lt +
rNt

1 + wNt
,

Nt+ = Nt,

 t = (n+ 1)T,

(4.2)

where a = βLH + µT , b = ηLβLH, c = βNH + µT , r = rηNβNH, and
w = wηNβNH.

System (4.2) has the following analytic solution between pluses:

Lt =

{
e−a(t−nT )LnT+ , nT < t ≤ (n+ l)T,

e−a(t−(n+l)T )L(n+l)T+ , (n+ l)T < t ≤ (n+ 1)T.

Nt =



b

c− a

(
e−a(t−nT ) − e−c(t−nT )

)
LnT+ + e−c(t−nT )NnT+ ,

nT < t ≤ (n+ l)T,

b

c− a

(
e−a(t−(n+l)T ) − e−c(t−(n+l)T )

)
L(n+l)T+ + e−c(t−(n+l)T )N(n+l)T+ ,

(n+ l)T < t ≤ (n+ 1)T.

The stroboscopic map of system(4.2) is as follows:L(n+1)T+ = CLnT+ +
r(ALnT+ +BNnT+)

1 + w(ALnT+ +BNnT+)
,

N(n+1)T+ = ALnT+ +BNnT+ ,

(4.3)

where ξ = e−aT−e−cT

c−a > 0, A = (1 − q)b e
−aT−e−cT

c−a = (1 − q)bξ, B = (1 − q)e−cT ,

and C = (1− q)e−aT .

Make a notation as

q∗ =
1

2
e(a+c)T

[
−(e−aT + e−cT + rbξ − 2e−(a+c)T )

+
√
(e−aT + e−cT + rbξ)2 − 4e−(a+c)T

]
.

It is clear to see the following equivalent relation

q < q∗ ⇐⇒ rA− (1−B)(1− C) > 0,
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which indicates that the two fixed points of stroboscopic map (4.3) are obtained as
Q1(0, 0) and Q2(L

∗, N∗), where

L∗ =

(
r

1− C
− 1−B

A

)
1

w
,

N∗ =

(
rA

(1−B)(1− C)
− 1

)
1

w
,

 q < q∗. (4.4)

Theorem 4.1. (i) If q > q∗, Q1(0, 0) is globally asymptotically stable;
(ii) If q < q∗, Q2(L

∗, N∗) is globally asymptotically stable.

Proof. We represent the linear form of (4.3) as follows: L(n+1)T+

N(n+1)T+

 = G

 LnT+

NnT+

 . (4.5)

Linear system(4.5) determines the dynamical properties ofQ1(0, 0) andQ2(L
∗, N∗).

The stabilities of Q1(0, 0) and Q2(L
∗, N∗) depend on the relationship between the

magnitude of G eigenvalues and 1. If G meets the Jury criterion [29] , then the
eigenvalues of G are less than 1.
(i) If q > q∗, namely (1−B)(1−C)−Ar > 0, system(4.3) has a unique fixed point
Q1(0, 0),

G =

C +Ar Br

A B

 ,

and

1− trG+ detG = 1− (C +Ar +B) + (BC +ABr −ABr)

= (1−B)(1− C)−Ar > 0.

Thus, Q1(0, 0) is locally stable. Since (4.2) is a linear differential system, Q1(0, 0)
is globally asymptotically stable.
(ii) If q < q∗, namely Ar − (1 − B)(1 − C) > 0, then Q1(0, 0) is unstable. For
Ar′ − (1−B)(1− C) > 0, Q2(L

∗, N∗) exists, and

G =

C +
Ar

[1 + w(AL∗ +BN∗)]2
Br

[1 + w(AL∗ +BN∗)]2

A B

 ,

1− trG+ detG

=1− [C +
Ar

[1 + w(AL∗ +BN∗)]2
+B] +BC

+
ABr

[1 + w(AL∗ +BN∗)]2
− ABr

[1 + w(AL∗ +BN∗)]2

=(1−B − C +BC)− Ar

[1 + w(AL∗ +BN∗)]2
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=(1−B)(1− C)− Ar

[1 + ( r
1−C − 1−B

A )A+ ( rA
(1−B)(1−C) − 1)B]2

=
(1−B)(1− C) [Ar − (1−B)(1− C)]

Ar
> 0.

Similarly, Q2(L
∗, N∗) is locally stable. Since (4.2) is a linear differential system,

Q2(L
∗, N∗) is globally asymptotically stable.

Theorem 4.2. (i) If q > q∗, there exists a globally asymptotically stable trivial
periodic solution (0, 0) for system (4.2);
(ii) If q < q∗, there exists a globally asymptotically stable nontrivial periodic solution

( L̃t, Ñt) for system (4.2), where

L̃t =

{
e−a(t−nT )L∗ , nT < t ≤ (n+ l)T,

(1− q)e−a(t−nT )L∗, (n+ l)T < t ≤ (n+ 1)T,

Ñt =



b

a− c

(
e−c(t−nT ) − e−a(t−nT )

)
L∗ + e−c(t−nT )N∗,

nT < t ≤ (n+ l)T,

(1− q)

[
b

a− c

(
e−c(t−nT ) − e−a(t−nT )

)
L∗ + e−c(t−nT )N∗

]
,

(n+ l)T < t ≤ (n+ 1)T,

(4.6)

where L∗ and N∗ are determined as in (4.4).

We apply numerical simulation to examine the global asymptotic stability of
the periodic solution of system (4.2). We fix the following parameters: T = 1, l =
0.5, r = 200, w = 100, βL = 0.045, uT = 0.2, ηL = 0.35, Λ = 0.5, uH =
0.1, βN = 0.04, ηN = 0.4, then q = 0.5 > q∗ = 0.4822, the larvae and nymphs go
to extinction. Its dynamical behaviors are depicted in Figure 1(a) and Figure 1(b).
If q = 0.3(< q∗), the population of ticks is permanent. Its dynamics behaviours are
depicted in Figure 1(c) and Figure 1(d).

5. Global attractivity of disease-free periodic solu-
tion

It is clear from the above discussion that system (2.1) has a disease-free periodic

solution ( L̃t, Ñt, 0, H, 0). Next, we will present that ( L̃t, Ñt, 0, H, 0) is
globally attractive.

Theorem 5.1. There exists a globally attractive periodic solution (L̃t, Ñt, 0, H, 0)
of system (2.1), if q < q∗ and

max

{
ηLβLpN (

r

w
· 1

1− e−(βLH+µT )T
+ ε0), βNpHH

}
<min

{
µT + βNH, µH + αH

}
,

where ε0 > 0 is sufficiently small.
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Proof. It holds from system (2.1) that
(Lt)

′ ≤ −(βLH + µT )Lt, t ̸= (n+ l)T, t ̸= (n+ 1)T,

Lt+ ≤ Lt, t = (n+ l)T,

Lt+ ≤ Lt +
r

w
, t = (n+ 1)T.
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Figure 1. The phase portrait(a) and time-series diagram(b) of trivial periodic solution (0, 0) of system

(4.2) with initial conditions L0 = 1, NS
0 = 0.1 and q = 0.5; the phase portrait(c) and time-series

diagram(d) of nontrivial periodic solution (L∗, N∗) of system (4.2) with q = 0.3.

The comparison system is given by: (X2t)
′
= −(βLH + µT )X2t , t ̸= nT,

X2t+
= X2t +

r

w
, t = nT.

(5.1)

We get the periodic solution to (5.1)

X̃2t =
r

w
· e

−(βLH+µT )(t−nT )

1− e−(βLH+µT )T
, nT < T ≤ (n+ 1)T,
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which is globally asymptotically stable, with an initial value

X̃20+
=

r

w
· 1

1− e−(βLH+µT )T
.

Hence for ε0 > 0 sufficiently small, we get

Lt ≤ X2t < X̃2t + ε0.

Thus, we derive

Lt < X̃2t + ε0 ≤ r

w
· 1

1− e−(βLH+µT )T
+ ε0 ≜ ML,

for all t large enough.

Now considering Vt = N I
t +HI

t , it holds that

(Vt)
′
= (N I

t )
′
+ (HI

t )
′

= [ηLβLpNHI
t Lt − (µT + βNHt)N

I
t ] + [βNpHN I

t H
S
t − (µH + αH)HI

t ]

≤ ηLβLpNMLHI
t − (µT + βNH)N I

t + βNpHHN I
t − (µH + αH)HI

t

≤ (θ − φ)Vt,

where

θ = max
{
ηLβLpNML, βNpHH

}
, φ = min

{
µT + βNH, µH + αH

}
.

When t = (n+ l)T ,

Vt+ = N I
t+ +HI

t+ = (1− q)N I
t +HI

t ≤ Vt.

Therefore, we derive
(Vt)

′
≤ (θ − φ)Vt, (5.2)

for t sufficiently large.
Integrating (5.2) on (nT, (n+ 1)T ] yields

V(n+1)T ≤ VnT+e(θ−φ)T .

We obtain VnT ≤ V0+e
(θ−φ)nT , hence VnT → 0 as t → ∞. From (5.2), we can derive

that 0 < Vt ≤ VnT e(θ−φ)(t−nT ) for nT < t ≤ (n+ 1)T , thus Vt → 0 as t → ∞.
Considering the positivity of N I

t and HI
t , we obtain

lim
t→∞

Vt = 0 ,

which is equivalent to

lim
t→∞

N I
t = 0, lim

t→∞
HI

t = 0 .

Therefore, when t is large enough, for sufficiently small ζ1, ζ2 > 0 , it holds that
0 < N I

t < ζ1, and 0 < HI
t < ζ2.
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From system (2.1), we get

(HS
t )

′ ≥ Λ− (βNpHζ1 + µH)HS
t . (5.3)

Considering its comparison system

(X3t)
′
= Λ− (βNpHζ1 + µH)X3t ,

we derive

X3t =

(
X30+

− Λ

βNpHζ1 + µH

)
e−(βNpHζ1+µH)t +

Λ

βNpHζ1 + µH
,

then X3t → Λ
βNpHζ1+µH as t → ∞. Thus, for sufficiently small ε1 > 0, it holds that

HS
t ≥ Λ

βNpHζ1 + µH
− ε1. (5.4)

According to (2.1), we obtain

HS
t ≤ Λ− µHHS

t .

Similar to (5.3), for sufficiently small ε2 > 0, we derive

HS
t ≤ Λ

µH
+ ε2. (5.5)

Combining (5.4) and (5.5), it holds that

Λ

βNpHζ1 + µH
− ε1 ≤ HS

t ≤ Λ

µH
+ ε2

when t is large enough. Let ζ1, ε1, ε2 → 0. We get HS
t → Λ

µH as t → ∞.

From system (2.1), we obtain

(Lt)
′
≥ −(βLH + µT )Lt,

(NS
t )

′ ≥ ηLβL(
Λ

βNpHζ1 + µH
− ε1)Lt − (βNH + µT )NS

t ,

 t ̸= (n+ l)T,

t ̸= (n+ 1)T,

Lt+ = (1− q)Lt,

NS
t+ = (1− q)NS

t ,

 t = (n+ l)T,

Lt+ ≥ Lt +

rηNβN (
Λ

βNpHζ1 + µH
− ε1)N

S
t

1 + wηNβNH(NS
t + ζ1)

,

NS
t+ = NS

t .

 t = (n+ 1)T.

Comparison impulsive differential system is given by:

(L1t)
′
= −a1L1t ,

(N1t)
′
= b1L1t − c1N1t ,

 t ̸= (n+ l)T,

t ̸= (n+ 1)T,

L1t+
= (1− q)L1t ,

N1t+
= (1− q)N1t ,

 t = (n+ l)T,

L1t+
= L1t +

r1N1t

1 + w1(N1t + ζ1)
,

N1t+
= N1t ,

 t = (n+ 1)T,

(5.6)
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where a1 = βLH + µT , b1 = ηLβL( Λ
βNpHζ1+µH − ε1), c1 = βNH + µT , r1 =

rηNβN ( Λ
βNpHζ1+µH − ε1), and w1 = wηNβNH.

Similar to (4.2), we obtain the periodic solution to (5.6) as follows:

L̃1t =

{
e−a1(t−nT )L∗

1 , nT < t ≤ (n+ l)T,

(1− q)e−a1(t−nT )L∗
1, (n+ l)T < t ≤ (n+ 1)T,

Ñ1t =



b1
a1 − c1

(
e−c1(t−nT ) − e−a1(t−nT )

)
L∗
1 + e−c1(t−nT )N∗

1 ,

nT < t ≤ (n+ l)T,

(1− q)

[
b1

a1 − c1

(
e−c1(t−nT ) − e−a1(t−nT )

)
L∗
1 + e−c1(t−nT )N∗

1

]
,

(n+ l)T < t ≤ (n+ 1)T,

where

L∗
1 =

1

w1

(
r1

1− C1
− 1−B1

A1

)
− ζ1,

N∗
1 =

1

w1

(
r1A1

(1−B1)(1− C1)
− 1

)
− 1−B1

A1
ζ1,

 q < q∗1 ,

and

ξ1 =
e−a1T − e−c1T

c1 − a1
> 0, A1 = (1−q)b1ξ1, B1 = (1−q)e−c1T , C1 = (1−q)e−a1T ,

q∗1 =
1

2
e(a1+c1)T

[
−(e−a1T + e−c1T + r1b1ξ1 − 2e−(a1+c1)T )

+
√
(e−a1T + e−c1T + r1b1ξ1)2 − 4e−(a1+c1)T

]
.

Therefore, for ε3, ε4 > 0 sufficiently small, we have L̃1t − ε3 < L1t ≤ Lt,

Ñ1t − ε4 < N1t ≤ NS
t ,

(5.7)

when t is large enough.

From system (2.1), it holds that

(Lt)
′
≤ −[βL(

Λ

βNpHζ1 + µH
− ε1) + µT ]Lt,

(NS
t )

′ ≤ ηLβLHLt − [βN (
Λ

βNpHζ1 + µH
− ε1) + µT ]NS

t ,


t ̸= (n+ l)T,

t ̸= (n+ 1)T,

Lt+ = (1− q)Lt,

NS
t+ = (1− q)NS

t ,

}
t = (n+ l)T,

Lt+ ≤ Lt +
rηNβNH(NS

t + ζ1)

1 + wηNβN ( Λ
βNpHζ1+µH − ε1)NS

t

,

NS
t+ = NS

t .

 t = (n+ 1)T.

(5.8)
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The comparison system is given by:



(L2t)
′
= −a2L2t ,

(N2t)
′
= b2L2t − c2N2t ,

 t ̸= (n+ l)T, t ̸= (n+ 1)T,

L2t+
= (1− q)L2t ,

N2t+
= (1− q)N2t ,

 t = (n+ l)T,

L2t+
= L2t +

r2(N2t + ζ1)

1 + w2N2t

,

N2t+
= N2t ,

 t = (n+ 1)T,

(5.9)

where a2 = βL( Λ
βNpHζ1+µH −ε1)+µT , b2 = ηLβLH, c2 = βN ( Λ

βNpHζ1+µH −ε1)+µT ,

r2 = rηNβNH, and w2 = wηNβN ( Λ
βNpHζ1+µH − ε1).

System (5.9) has the following stroboscopic map:

L2(n+1)T+ = C2L2nT+ +
r2[A2L2nT+ +B2N2nT+ + ζ1]

1 + w2[A2L2nT+ +B2N2nT+ ]
,

N2(n+1)T+ = A2L2nT+ +B2N2nT+ ,

(5.10)

where
ξ2 = e−a2T−e−c2T

c2−a2
> 0, A2 = (1− q)b2ξ2, B2 = (1− q)e−c2T , C2 = (1− q)e−a2T .

The positive fixed point of (5.10) is as follows:

L∗
2 =

1

2

[
1

w2

(
r2A2

(1−B2)(1− C2)
− 1

)
+
√
∆

]
,

N∗
2 =

1

2

[
1

w2

(
r2

1− C2
− 1−B2

A2

)
+

1−B2

A2

√
∆

]
,


q < q∗2 ,

where

∆ =

[
1

w2

(
r2A2

(1−B2)(1− C2)
− 1

)]2
+

4r2Aζ1
w2(1−B)(1− C)

> 0,

and

q∗2 =
1

2
e(a2+c2)T [−(e−a2T + e−c2T + r2b2ξ2 − 2e−(a2+c2)T )

+
√
(e−a2T + e−c2T + r2b2ξ2)2 − 4e−(a2+c2)T ].
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System (5.9) has the following periodic solution:

L̃2t =

{
e−a2(t−nT )L∗

2 , nT < t ≤ (n+ l)T,

(1− q)e−a2(t−nT )L∗
2, (n+ l)T < t ≤ (n+ 1)T,

Ñ2t =



b2
a2 − c2

(
e−c2(t−nT ) − e−a2(t−nT )

)
L∗
2 + e−c2(t−nT )N∗

2 ,

nT < t ≤ (n+ l)T,

(1− q)

[
b2

a2 − c2

(
e−c2(t−nT ) − e−a2(t−nT )

)
L∗
2 + e−c2(t−nT )N∗

2

]
,

(n+ l)T < t ≤ (n+ 1)T.

Therefore, for ε5, ε6 > 0 sufficiently small, we have Lt ≤ L2t < L̃2t + ε5,

NS
t ≤ N2t < Ñ2t + ε6,

(5.11)

for t large enough.
Combining (5.7) and (5.11), we obtain L̃1t − ε3 < Lt < L̃2t + ε5,

Ñ1t − ε4 < NS
t < Ñ2t + ε6,

(5.12)

when t is sufficiently large.
Let ζ1, ε3, ε4, ε5, ε6 → 0. We get lim

t→∞
L̃1t = L̃t, lim

t→∞
L̃2t = L̃t and lim

t→∞
Ñ1t =

Ñt, lim
t→∞

Ñ2t = Ñt. Hence lim
t→∞

Lt = L̃t and lim
t→∞

Nt = Ñt. Due to q∗1 , q∗2 → q∗ as

ζ1 → 0, we can find that sufficiently small ζ1 makes q < min{q∗, q∗1, q∗2}. Therefore,
system (2.1) has a globally attractive disease-free periodic solution ( L̃t, Ñt, 0, H, 0).

We use numerical simulations to verify the global attractiveness of the disease-
free periodic solution ( L̃t, Ñt, 0, H, 0) of system (2.1). We choose T = 1, l = 0.5,
r = 200, w = 50, βL = 0.045, ηL = 0.4, ηN = 0.5, βN = 0.05, pN = 0.4,
µT = 0.05, Λ = 0.55, pH = 0.6, µH = 0.1, and αH = 0.1, then we can compute
q = 0.32 < q∗ = 0.6967 and θ = 0.1806 < φ = 0.1875. Hence, the disease-free
periodic solution ( L̃t, Ñt, 0, H, 0) is globally attractive. Its dynamical behaviors
are depicted in Figure 2.

6. Permanence

We will demonstrate in this section that system (2.1) is uniformly persistent. Based
on the above discussion, we can find a constant M such that, for all solutions
(Lt, N

S
t , N

I
t , H

S
t , H

I
t ) of system (2.1), M is an upper bound when t is sufficiently

large. Therefore, we just need to find a positive constant m that is a lower bound
for every solution (Lt, NS

t , N I
t , HS

t , HI
t ) of system (2.1) when t is sufficiently

large.
From system (2.1) and Lemma 1, we get

(HS
t )

′ ≥ Λ− (βNpHM + µH)HS
t
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Figure 2. The time-series diagram of globally attractive disease-free periodic solution ( L̃t, Ñt, 0, H, 0)
to system (2.1) with initial conditions (1, 1, 1, 1, 1) and the following parameter values T = 1, l =

0.5, q = 0.32, r = 200, w = 50, βL = 0.045, ηL = 0.4, ηN = 0.5, βN = 0.05, pN = 0.4, µT =
0.05, Λ = 0.55, pH = 0.6, µH = 0.1, αH = 0.1.

when t is sufficiently large.

The comparison system is as follows:

(X4t)
′
= Λ− (βNpHM + µH)X4t .

We can easily obtain X4t → Λ
βNpHM+µH as t → ∞. Thus, for ε7 > 0 sufficiently

small, we get

HS
t >

Λ

βNpHM + µH
− ε7 ≜ mH .

It holds from system (2.1) that



(Lt)
′
≥ −(βLH + µT )Lt,

(NS
t )

′ ≥ ηLβL(
Λ

βNpHM + µH
− ε7)Lt − (βNH + µT )NS

t ,

 t ̸= (n+ l)T,

t ̸= (n+ 1)T,

Lt+ = (1− q)Lt,

NS
t+ = (1− q)NS

t ,

 t = (n+ l)T,

Lt+ ≥ Lt +
rηNβNHNS

t

1 + wηNβNH(NS
t +M)

,

NS
t+ = NS

t .

 t = (n+ 1)T.



126 S. Yan & X. Zhang

Consider the following comparison system

(L3t)
′
= −a3L3t ,

(N3t)
′
= b3L3t − c3N3t ,

 t ̸= (n+ l)T,

t ̸= (n+ 1)T,

L3t+
= (1− q)L3t ,

N3t+
= (1− q)N3t ,

 t = (n+ l)T,

L3t+
= L3t +

r3N3t

1 + w3(N3t +M)
,

N3t+
= N3t ,

 t = (n+ 1)T,

(6.1)

where a3 = βLH+µT , b3 = ηLβL( Λ
βNpHM+µH −ε7), c3 = βNH+µT , r3 = rηNβNH,

and w3 = wηNβNH.
Similar to (5.6), system (6.1) has a positive periodic solution

L̃3t =

{
e−a3(t−nT )L∗

3 , nT < t ≤ (n+ l)T,

(1− q)e−a3(t−nT )L∗
3, (n+ l)T < t ≤ (n+ 1)T,

Ñ3t =



b3
a3 − c3

(
e−c3(t−nT ) − e−a3(t−nT )

)
L∗
3 + e−c3(t−nT )N∗

3 ,

nT < t ≤ (n+ l)T,

(1− q)

[
b3

a3 − c3

(
e−c3(t−nT ) − e−a3(t−nT )

)
L∗
3 + e−c3(t−nT )N∗

3

]
,

(n+ l)T < t ≤ (n+ 1)T,

where

L∗
3 =

(
r3

1− C3
− 1−B3

A3

)
1

w3
−M,

N∗
3 =

(
r3A3

(1−B3)(1− C3)
− 1

)
1

w3
− 1−B3

A3
M,

 q < q∗3 ,

and

ξ3 =
e−a3T − e−c3T

c3 − a3
> 0, A3 = (1 − q)b3ξ3 > 0, B3 = (1 − q)e−c3T , C3 = (1 −

q)e−a3T ,

q∗3 =
1

2
e(a3+c3)T

[
−(e−a3T + e−c3T + r3b3ξ3 − 2e−(a3+c3)T )

+
√
(e−a3T + e−c3T + r3b3ξ3)2 − 4e−(a3+c3)T

]
.

Therefore, for sufficiently small ε8, ε9 > 0, it holds that L̃3t − ε8 ≤ L3t < Lt,

Ñ3t − ε9 ≤ N3t < NS
t ,

(6.2)

when t is large enough. Thus,

Lt > (1− q)L∗
3e

−a3T − ε8 ≜ mL,

NS
t > (1− q)

[
b3

c3 − a3
(e(c3−a3)T − 1)L∗

3 +N∗
3

]
e−c3T − ε9 ≜ mN .

(6.3)
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In summary, we have shown that HS
t > mH > 0, Lt > mL > 0, NS

t > mN > 0
when t is sufficiently large. Next, we will show that there exists a ρ > 0 satisfying
N I

t +HI
t ≥ ρ when t is sufficiently large.

Theorem 6.1. There exists a ρ > 0, such that when t is large enough, each solution
(Lt, NS

t , N I
t , HS

t , HI
t ) of system (2.1) meets N I

t +HI
t ≥ ρ. This holds true under

the conditions that q > q∗4 and (1− q)e(σ−τ)T > 1, where

σ = min{ηLβLpNδ1, βNpHδ2}, τ = max{µT + βNH, µH + αH}.

Proof. We will prove it in two steps.
Step I :
We claim that N I

t +HI
t < ρ cannot be true for all t ≥ 0. Otherwise,

N I
t < ρ,HI

t < ρ, t ≥ 0. (6.4)

Therefore, from system (2.1), we derive

(HS
t )

′ ≥ Λ− (βNpHρ+ µH)HS
t .

Similar to (5.3), for ε10 > 0 sufficiently small, we obtain

HS
t >

Λ

βNpHρ+ µH
− ε10 ≜ δ2, (6.5)

when t is large enough.

From (6.4) and system (2.1), we get

(Lt)
′
≥ −(βLH + µT )Lt,

(NS
t )

′ ≥ ηLβLδ2Lt − (βNH + µT )NS
t ,

}
t ̸= (n+ l)T,

t ̸= (n+ 1)T,

Lt+ = (1− q)Lt,

NS
t+ = (1− q)NS

t ,

}
t = (n+ l)T,

Lt+ ≥ Lt +
rηNβNδ2N

S
t

1 + wηNβNH(NS
t + ρ)

,

NS
t+ = NS

t .

 t = (n+ 1)T.

Consider the following comparison system

(L4t)
′
= −a4L4t ,

(N4t)
′
= b4L4t − c4N4t ,

 t ̸= (n+ l)T,

t ̸= (n+ 1)T,

L4t+
= (1− q)L4t ,

N4t+
= (1− q)N4t ,

 t = (n+ l)T,

L4t+
= L4t +

r4N4t

1 + w4(N4t + ρ)
,

N4t+
= N4t ,

 t = (n+ 1)T,

(6.6)
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where a4 = βLH + µT , b4 = ηLβLδ2, c4 = βNH + µT , r4 = rηNβNδ2, and
w4 = wηNβNH.

The fixed points of (6.6) are

L∗
4 =

1

w4

(
r4

1− C4
− 1−B4

A4

)
− ρ,

N∗
4 =

1

w4

(
r4A4

(1−B4)(1− C4)
− 1

)
− (1−B4)ρ

A4
,

 q < q∗4 ,

where ξ4 = e−a4T−e−c4T

c4−a4
> 0, A4 = b4(1−q)ξ4, B4 = (1−q)e−c4T , C4 = (1−q)e−a4T ,

and

q∗4 =
1

2
e(a4+c4)T

[
−(e−a4T + e−c4T + r4b4ξ4 − 2e−(a4+c4)T )

+
√
(e−a4T + e−c4T + r4b4ξ4)2 − 4e−(a4+c4)T

]
.

Smiliar to (6.3), for ε11 > 0 sufficiently small, we have

Lt > (1− q)L∗
4e

−a4T − ε11 ≜ δ1, (6.7)

for t large enough.

Combining (6.5) and (6.7), we obtain

(Vt)
′
= (N I

t )
′
+ (HI

t )
′

= [ηLβLpNLtH
I
t − (µT + βNHt)N

I
t ] + [βNpHHS

t N
I
t − (µH + αH)HI

t ]

≥ ηLβLpNδ1H
I
t − (µT + βNH)N I

t + βNpHδ2N
I
t − (µH + αH)HI

t ,

≥ (σ − τ)Vt,

where

σ = min{ηLβLpNδ1, βNpHδ2}, τ = max{µT + βNH, µH + αH}.

When t = (n+ l)T ,

Vt+ = (1− q)N I
t +HI

t ≥ (1− q)Vt.

Thus, we obtain Vt ≥ (σ − τ)Vt, t ̸= (n+ l)T,

Vt+ ≥ (1− q)Vt, t = (n+ l)T.
(6.8)

Integrating (6.8) on ((n+ l − 1)T, (n+ l)T ], we obtain

V(n+l)T+ ≥ V(n+l−1)T+(1− q)e(σ−τ)T ,

thus

V(n+l+k)T+ ≥ V(n+l)T+ [(1− q)e(σ−τ)T ]k, k ∈ N+.

When (1 − q)e(σ−τ)T > 1, we can derive lim
k→+∞

V((n+l+k)T+) = +∞, which contra-

dicts the boundedness of Vt. Hence we can find a t1 > 0 satisfying Vt1 = N I
t1+HI

t1 ≥
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ρ.

Step II :
If Vt ≥ ρ for all t ≥ t1, then we have achieved our goal. Otherwise Vt < ρ for some
t ≥ t1. Defining t̂1 = inft≥t1{Vt < ρ}, t̂1 has two cases as follows.
Case i: If t̂1 = (k1 + l− 1)T , k1 ∈ N+, then Vt ≥ ρ for t ∈ [t1, t̂1) and Vt̂1

= ρ, and

Vt̂+1
= (1− q)N I

t̂1
+HI

t̂1
≤ V I

t̂1
= ρ. Let T ′ = k2T + k3T and select k2, k3 ∈ N , such

that

(k2 − 1)T > −
ln( ε′

E1
)

βLH + µT
,

(1− q)k2+k3e(σ−τ)k3T e−τk2T > 1 .

We declare that there must be a t2 ∈ [t̂1, t̂1+T ′] satisfying Vt2 > ρ. Otherwise,
V (t) ≤ ρ holds for all t ∈ [t̂1, t̂1 + T ′]. Considering (5.1) with X2k1T+ = Lk1T+ , we

have

X2t = X̃2t + e−(βLH+µT )(t−k1T )[X2k1T+ − X̃20+
], (n− 1)T < t ≤ nT, (6.9)

where k1 + 1 ≤ n ≤ k1 + k2 + k3. Then

|X2t − X̃2t | ≤ E1e
−(βLH+µT )(t−k1T ) < ε′ ,

where E1 = |X2k1T+− X̃20+
| and Lt ≤ X2t ≤ X̃2t+ε′ for (k1+k2−1)T ≤ t ≤ t̂1+T ′.

Integrating system (6.8) on [t̂1 + k2T, t̂1 + T ′], we derive

V(t̂1+T ′) ≥ V(t̂1+k2T )(1− q)k3e(σ−τ)k3T . (6.10)

It holds from system (2.1) thatVt ≥ −τVt, t ̸= (n+ l)T,

Vt+ ≥ (1− q)Vt, t = (n+ l)T.
(6.11)

Integrating (6.11) on [t̂1, t̂1 + k2T ] yields

V(t̂1+k2T ) ≥ ρ(1− q)k2e−τk2T . (6.12)

Combining (6.10) and (6.12), we derive

V(t̂1+T ′) ≥ ρ(1− q)k2+k3e−τk2T e(σ−τ)k3T > ρ,

which contradicts that Vt ≤ ρ for all t ∈ [t̂1, t̂1+T ′]. So we can find a t2 ∈ [t̂1, t̂1+T ′]
satisfying Vt2 > ρ.

Let t̂2 = inft≥t̂1
{Vt > ρ}, then Vt ≤ ρ for t ∈ (t̂1, t̂2), and Vt̂2

= ρ. Suppose

that t ∈ (t̂1+(g1−1)T, t̂1+KT ] ⊂ (t̂1, t̂2], g1 is a positive integer and g1 ≤ k2+k3.
According to system (6.11), we obtain

Vt ≥ V(t̂1+(g1−1)T )e
−τ(t−t̂1−(g1−1)T )

≥ Vt̂+1
e−τ(g1−1)T (1− q)g1−1e−τT
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≥ (1− q)g1ρe−τg1T

≥ (1− q)g1ρe−τ(k2+k3)T ≜ ρ1,

for t > t̂2. Due to Vt̂2
≥ ρ, the same conclusions can be drawn. Thus Vt ≥ ρ1 holds

for all t ≥ t1.
Case ii: If t̂1 ̸= (n+ l− 1)T , then Vt ≥ ρ for t ∈ [t1, t̂1) and Vt̂1

= ρ. Assume that

t̂1 ∈ ((k4 + l − 1)T, (k4 + l)T ). There are two subcases for t ∈ (t̂1, (k4 + l)T ).
Case a: Vt ≤ ρ for all t ∈ (t̂1, (k4 + l)T ). Similar to Case i, we demonstrate that
there exists a t3 ∈ [(k4 + l)T, (k4 + l)T + T ′] satisfying Vt3 > ρ. Here we omit it.

Let t̂3 = inft>t̂1
{Vt > ρ}. Then Vt ≤ ρ for t ∈ (t̂1, t̂3) and Vt̂3

= ρ. Choosing

t ∈ ((k4 + l − 1)T + (g2 − 1)T, (k4 + l − 1)T + g2T ] ⊂ (t̂1, t̂3), g2 ∈ N+ and
g2 < 1 + k2 + k3, it holds that

Vt ≥ V((k4+l−1)T+(g2−1)T )e
−τ [t−((k4+l−1)T+(g2−1)T )],

≥ (1− q)g2−1Vt̂1
e−τ(t−t̂1),

≥ (1− q)k2+k3ρe−τ(k2+k3+1)T ≜ ρ2,

hence Vt ≥ ρ2 for t ∈ (t̂1, t̂3). When t ≥ t̂3, the same conclusions can be drawn
due to Vt̂3

≥ ρ.

Case b: If there exists a t3 ∈ (t̂1, (k4+l)T ) satisfying Vt3 ≥ ρ. Let t̂4 = inft>t̂1
{Vt >

ρ}. Then Vt ≤ ρ for t ∈ (t̂1, t̂4) and Vt̂4
= ρ. Thus (6.11) holds for t ∈ (t̂1, t̂4).

Integrating (6.11) on (t̂1, t̂4), we derive

Vt ≥ Vt̂1
e−τ(t−t̂1) ≥ ρe−τT ≜ ρ3.

Since Vt̂4
≥ ρ for t ≥ t̂4, the same conclusions can be drawn. Therefore, Vt ≥ ρ for

t ≥ t1.
We use numerical simulations to check the persistence of system (2.1). Fix

T = 1, l = 0.5, r = 200, w = 50, βL = 0.045, ηL = 0.8, ηN = 0.7, βN =
0.04, pN = 0.6, µT = 0.05, Λ = 0.55, pH = 0.8, µH = 0.05, αH = 0.05. Then
we obtain q = 0.02 < q∗4 = 0.2231, σ = 0.5331 > τ = 0.49 and (1 − q)e(σ−τ)T > 1.
Therefore, system (2.1) is permanent. Its dynamical behaviors are demonstrated in
Figure 3.

7. Discussions

Considering that tick eggs, laid by adult females after blood feeding in the fall, will
hatch into larvae in spring, we developed a novel tick-borne disease transmission
model with double pulses, including a birth pulse of larval ticks and an insecticide
pulse. We give conditions for the global asymptotic stability of the periodic solution
to the disease-free subsystem. We also demonstrate the global attractiveness of
disease-free periodic solutions and the persistence of the studied system.

In theoretical analysis, we showed the dynamics of the tick-borne pathogen
model with one pesticide pulse. However, in the natural world, the CDC may
spray pesticides several times in wild forests and woods each year. We further ex-
plore and compare the effects between multiple pesticide pulses and single pulse
numerically. We investigate the relationship between the minimum intensity of the
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Figure 3. The time-series diagram of disease persistent periodic solution to system (2.1) with initial
conditions (1, 1, 1, 1, 1) and the following parameter values T = 1, l = 0.5, q = 0.02, r = 200, w =

50, βL = 0.045, ηL = 0.8, ηN = 0.7, βN = 0.04, pN = 0.6, µT = 0.05, Λ = 0.55, pH = 0.8, µH =
0.05, αH = 0.05.
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Figure 4. The minimum intensity of the sprayed pesticide that makes the disease disappear with respect

to different parameters: (a) nymphal biting rate βN and (b) adult density-dependent rate w.
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sprayed pesticide that makes the disease disappear and nymphal biting rate βN

(density dependent rate of adult ticks w). Figure 4(a) (Figure 4(b)) shows the min-
imum intensity of the sprayed pesticide is increasing (decreasing) with respect to
βN (w): if pesticide is sprayed once, i.e., at the moment t = (n + 0.5)T , the blue
curve depicts the minimum intensity; if pesticides are applied twice (l = 0.5, 0.8)
and three times (l = 0.5, 0.65, 0.8), the corresponding curves are in red and green,
respectively. From Figure 4(a) and Figure 4(b), we can observe that the total in-
tensity of pesticide in one year: total intensity q for spraying once < total intensity
q for spraying twice < total intensity q for spraying three times. Therefore, when
the total intensity of pesticide is fixed, the effect of spraying once is better than
multiple sprays. The reason is that ticks can develop rapidly during pulse intervals
of pesticide spray, which leads to an increase in total pesticide intensity.

Currently, there are relatively few studies on tick-borne disease transmission
with pulses and stage structures. However, there are still many theoretical issues
that deserve to be studied and solved. Beyond temporal pesticide spray, state
impulsive control is also a commonly used strategy by forestry administration, i.e.
pesticides are sprayed when the population of ticks grows to a certain threshold. In
addition, it is well-known that co-feeding transmission is a significant spread mode
of tick-borne pathogens even though pathogens have not been established within
reservoir hosts. The state impulsive control of tick-born diseases with co-feeding
transmission will be our future work.
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