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Some New Discrete Hermite-Hadamard
Inequalities and Their Generalizations

Xiaoyue Han! and Run Xu?f

Abstract This article mainly studies some new discrete Hermite-Hadamard
inequalities for integer order and fractional order. For this purpose, the defi-
nitions of h-convexity and preinvexity for a real-valued function f defined on
a set of integers Z are introduced. Under these two new definitions, some new
discrete Hermite-Hadamard inequalities for integer order related to the end-
points and the midpoint “TH’ based on the substitution rules are proposed, and
they are generalized to fractional order forms. In addition, for the h-convex
function on the time scale Z, two new discrete Hermite-Hadamard inequalities
for integer order by dividing the time scale differently are obtained.
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1. Introduction

Convex theory has always been an important component of mathematical theory,
which is often used to solve many problems in economics, optimization, engineering,
and other fields [12,24,25]. Scholars obtained many classical inequalities by utilizing
the different convexities of functions, such as Schur inequalities, Hermite-Hadamard
(H-H) inequalities, and Ostrowski type inequalities [8,28,31].

Currently, many scholars are committed to studying the H-H inequality. In
1893, Hermite and Hadamard [14] proved the classical H-H inequality first, which
gave estimates of the upper and lower bounds of the integral mean of any convex
function, as follows:

If f: I CR— Risa convex function in I and u,v € I, where u < v, then

f(“*”) < [ s < L0, (11)

2 V—u 2

In 2015, Noor et al. [22] obtained a new H-H integral inequality for h-convex
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functions by inserting a segmentation point “2ﬁ on interval [u, v]:

e () = () 0 ()| =5 [ oo
< [f(u);-f(v) +f<u;v>:| /Olh(t)dt

<{ir+ s [n (3)]} [ o

It is an important method to generalize H-H inequality by dividing intervals
differently. More researches on this aspect can be found in references [10, 30, 32].

Due to the importance of fractional operators in pure mathematics and applied
mathematics, scholars defined various fractional integral operators from different
directions. It has become one of the hot research topics to establish and study H-H
inequalities based on generalized fractional order integrals.

In 2013, Sarikaya et al. [26] extended inequality (1.1) using Riemann-Liouville
(R-L) fractional order integrals as follows:

P50 = g e o+ g ) < L0,

In 2014, Sarikaya et al. [27] established a midpoint type H-H inequality for R-L
fractional order integrals based on the midpoint of the interval [u, v]:

f(u) + f(v)
TR

wtv) 2, .
1(157) < B Ve 10+ gy (0]

In 2017, Agarwal et al. [3] established some H-H inequalities via generalized
k-fractional integrals. In 2020, Mehreen et al. [21] established H-H inequalities for
p-convex functions via conformable fractional integrals. In 2023, Tariq et al. [33]
presented a new version of the H-H inequalities for preinvex functions via non-
conformable fractional integrals. For more research on fractional order H-H integral
inequalities, please refer to references [7,16, 18,29, 36].

The theory of dynamic equations on time scales is a new field in mathematical
science. In the past few years, some integral inequalities used for dynamic equations
on time scales have attracted the attention of many scholars. Discrete calculus is
a calculus theory on time scales, which is of great significance for describing the
discontinuity of certain time variables. In recent years, with the development of
discrete calculus, research on H-H inequalities for integer order and fractional order
has gradually increased.

In 2016, Atic1 and Yaldiz [2] defined the convexity of real functions on any time
scale, and established discrete H-H inequalities for integer order and fractional order
via convex functions on Z. The main results are as follows:

(M5 = 5o | [ @86+ [ rgwe] < LI,

and

f(u) + f(v)
5 ,

/ (u ; U) = QA?U(E—) u) (A flu—e) + i VEf(v)] <
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where € > 0 and

A= ((v—u)f-l—e—l)sjﬁf.

Tlu, ]

In 2022, Wang and Xu [37] established the discrete H-H inequality for integer
order of the midpoint type via convex function on Z:

u+v

(%) s wa V

Their result was equally extended to the discrete H-H inequality for fractional
order:

FOAL+ /7 f(£)V§1 < M

where € > 0 and

e—1

<02“§+1) Ac¢.

o

In 2017, Yaldiz and Agarwal [38] gave the discrete H-H inequalities for integer
order and fractional order via s-convex functions on Z. For more research on H-H
inequalities on time scales, please refer to [4,11,19,20].

So far, there are no discrete H-H inequalities for integer order and fractional
order via h-convex functions and preinvex functions on Z. Based on our new def-
initions of h-convex functions and preinvex functions on Z, we establish discrete
H-H inequalities for integer order and fractional order. Two new discrete H-H in-
equalities for h-convex functions on Z are also established by dividing the time
scale.

The work of this paper is as follows. In Section 2, we review some basic defini-
tions, theorems and give the concepts of h-convex functions and preinvex functions
on Z. In Section 3, we establish discrete H-H inequalities for integer order and frac-
tional order about h-convex functions on Z related to the interval endpoints and
the interval midpoint, respectively. We also obtain two new discrete H-H inequali-
ties for integer order via h-convex functions on Z through dividing the time scales
differently. In addition, we also establish the above two kinds of inequalities for
preinvex functions on Z related to the interval endpoints and the interval midpoint,
respectively. In Section 4, we provide a summary and point out relevant issues that
can be further studied in the future.
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2. Preliminaries

Let Z be the set of integers and a,b € Z with a < b, [a, bz = [a,b]NZ. We define

_ ot for te€la,blz

b

b—a
AN A T
MVEAN Sy
Tjq, e) :{“'“:4g—_;) for tea. ga:b]z};
T[]{“'“W for te [“Ib,aigbh};
T[#,b] :{u|u: 4§)b__at) for te {az%,b}z}.

It is easy to see that these sets are all subsets of [0,1]. In addition, N, j, and 5 ,N
are special time scales: Ny j, = {a,a + h,a +2h,---}, , N={--- ;b —2h,b— h, b},
where h > 0 is the step size of the time scale. Specifically, when h = 1, N, ; and
»,nN are represented as N, and N, respectively.

Next, we review several definitions which will be further used in this article.

Forallt€Z,o(t)=t+1,p(t) =t—1,u(t)=0c(t) —t=10() =t —p(t) =1,
which are known as the forward jump, the backward jump, the forward graininess
and the backward graininess operators, respectively. For a function f : Z — R, the
nabla and delta differences of f are given by

Y@ = f(t+1) = f(t) and f2(t) = f(t) — f(t - 1)

The nabla and delta sums of f are given by

b b b b—1
/ f(s)Vs = Z f(k) and / f(s)As = Z f(k),
a a k=a

k=a-+1

where a,b € Z.
And the nabla and delta sums of f on the time scale T, ; are respectively
represented by the following symbols:

/T[a)b] f(s)Vs and /

Tia,p)
where fﬂ,[ ) 1Vs = fT[ ) 1As = 1.
Assume that t, e are arbitrary real numbers, and the rising and falling factorial
functions are defined as follows [13]:

f(s)As,

. T(t+e) _
f=— ¢ t+eeR\NT,
0 +e \
Tt+1) _
=37 411 t+1—-c€R\N
Ft+1—e)’ tlLi+l-ceR\NT,

where I'(t) = [[° 6" te~2d0.
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Remark 2.1. From the above definitions, we have (k + a — o(t))(* 1) = (k —

().
Definition 2.1. ( [1]) Let the real function f and o > 0 be given. Then

(i) the delta left and right fractional sums are defined by:

A0 = s S o) ), (€N (20)
b
AR = —— 3 () = Vf(s), te N (22)

B F(O{) s=t+a

(ii) the nabla left and right fractional sums are defined by:

T = 3 (=) TG, 1€ N (23)
s=a+1
= -
V, f(t) = (@) (0(s) =t)*"1f(s), t €1 N (2.4)

Remark 2.2. There is an equality between the delta right fractional sum and the
nabla right fractional sum:

AY fla—a) =V, f(a).
Definition 2.2. ( [23]) The function f: I C R — R is said to be convex, if
fixti+ (L=x)t2) < xf(t) + (L= x)f(t2),V t1, b2 € T and x € [0,1].  (2.5)

Definition 2.3. ( [15]) Let s be given in (0,1]. The function f : I C Rt — R is
said to be s-convex in the second sense, if

fxti+ (1 =x)t2) < X°f(t) + (1= x)°f(t2),V t1,t2 € I and x € [0,1].  (2.6)

Definition 2.4. ( [34]) Let h : (0,1) — R be a nonnegative function, h # 0. The
nonnegative function f: I C R — R is said to be h-convex, if

fxti + (1= x)t2) < h(x)f(t1) + h(1 = x) f(t2),V t1,t2 € [ and x € [0,1]. (2.7)

Remark 2.3. If the inequality signs in inequalities (2.5)-(2.7) are reversed, then f
becomes the concave function, s-concave function in the second sense, and h-concave
function, respectively.

Definition 2.5. ( [6]) Y C R" is invex with respect to (-, -), if
t1 4+ x¥(tz,t1) €Y, Vi, ta €Y and x € [0,1].

Definition 2.6. ( [35]) Let Y # @ C R be an invex set with respect to ¢ : Y XY #
& — R. Then, the function f:Y — R is said to be preinvex with respect to v, if

fltr+x(te, t1)) < xf(t2) + (1 = x)f(t1),¥ t1,t2 € Y and x € [0,1].
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Proposition 2.1. ( [17]) Let Y C R™ be an open invex with respect top : Y XY #
&g — R. For any t1,t2 €Y and x € [0,1],
Y(t,t + x(te, t1)) = —xib(tz, t1)
and
U(t2, b1+ x(t2, t1)) = (1 = x)(t2, t).
According to the above equations, for any t1,ts € Y and x1, x2 € [0, 1], we have
Yt + xe¥(ta, t1) t1 + xa9(t2,t1)) = (x2 — x1)¥(t2,t1).
Definition 2.7. ( [2]) The function f:Z C R — R is said to be convex on Z, if
)

fixti + (1= x)ta) < xf(ta) + (1= x)f(t2),V t1,t2 € Z, and x € Ty, 4, (2.8)
Definition 2.8. ( [38]) Let s be given in (0,1]. The function f: I C Z* — R is
said to be s-convex in the second sense on Z, if

fOxt+ (1= x)t2) < X°f(t) + (1= x)°f(E2),V tr,t2 € I, and x € Ty, 15)- (2.9)

Now, we introduce two new types of convex function defined on Z.

Definition 2.9. Let h : (0,1) — R be a non-negative function, h # 0. The
nonnegative function f: I C Z — R is said to be h-convex on Z, if
FOxti+ (1 =x)t2) < h(x)f(t) +h(1=x)f(t2),V t1,t2 € I, and x € Ty, 1,). (2.10)
If the inequality is reversed, then f is an h-concave function on Z.

Definition 2.10. Let Y # @ C Z be an invex set with respect to ¢ : Y X Y #
& — Z. Then, the function f : Y — R is said to be preinvex with respect to ¢ on
Z, if

flt+xt(te, t1)) < xf(ta) + (1 = x)f(t1),V t1,t2 €Y, and x € Ty, 4,

To prove our conclusions, we also need the following substitution rules on time
scale T.

Theorem 2.1. ( [5]) Assume thatw : T — R is strictly increasing and differentiable
with rd-continuous derivative, T := w(T) is a time scale. If ¢ : T — R is an rd-
continuous derivative, then for u,v € T, we have

/ t:)wowl)(&)&&): [ oo ©ac (211)
or o) R )

[, @eseve = [ ooeTove (212)
Theorem 2.2. ([9]) Assume thatw : T — R is strictly decreasing and differentiable
with rd-continuous derivative, T := w(T) is a time scale. If ¢ : T — R is an rd-

continuous derivative, then for u,v € T, we have

w(u) _ v
/ RS ONCE / H(0)(~w) (O AC (2.13)

or

w(u) _ v
/ e OAE = / (O (~w¥)OVC. (2.14)
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3. Main results
3.1. Discrete Hermite-Hadamard inequalities for h-convex fun-
ctions and its generalization

First, we provide the discrete H-H inequalities for integer order via h-convex
functions on Z related to the endpoints.

Theorem 3.1. Suppose that [ : [a,b]lz — R is an h-convex function with a < b,
a,b, “T'H’ €Z, and h (%) # 0. Then we have

h(lg)f<a;b> = bia [/(lbf(T)VT—i—/abf(T)AT

where M = fT[n,,b] [h(t) + h(1 — t)] At.

< M[f(a)+ )], (3.1)

Proof. Fixing t € Ty, \ {0, 1}, we define
x=ta+ (1—t)b,y=(1—1t)a+th.

It is easy to see that x,y € [a,b]z and %er = “T“’ € 7Z. Since f is an h-convex
function on [z,y]z (or [y, z]z), we have

; <x-;-y> “h (;) () + ).

This implies that

f (a;b) <h (;) [f(ta+ (1= 1)b) + f((1 —t)a + tb)]

<h (;) [A(t)f(a) + A1 — ) F(b) + h(1 — 1) f(a) + h() £ (b)]

—h @) [h(t) + h(1 — )] [£(a) + F()]-

Integrating the above inequalities with respect to ¢ over T, p), we have

/T[a’b] f (a;rb> At <h @) /TM [f(ta+ (1 —t)b) + f((1 — t)a + th)] At

1 (3.2)
< () Ml + 10,
where M = [ - [h(t) + (1 - t)] At.
Define
- /TM Flta+ (1— Ob)AL 1 = /T[a,b] F((1 = t)a + th)At.

Calculate [y and Iy separately below.
First, we assert that [ = 2 ff f(r)VT.
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Let ki(t) : [a,b]z — Tqp) be defined by ky(t) = ﬁ with ¢ € [a,b|z. Then k(1)
is decreasing, k7 *(t) = ta + (1 — t)b and (=&Y )(t) =
According to Theorem 2.2, we obtain

b a’

1=k1(a) _ b
- / (f o k) ()AL = / FE) KT ) (1) VT

k1 (b)

S ETRL

Next, we prove that I = 7 fa f(r)AT

Let ko (t) : [a,b]z — Tpq 4 be defined by k(t) = =% with t € [a,b]z. Then ko(t)
is increasing, ky *(t) = (1 — t)a + tb and k5*(t) = =

Using Theorem 2.1, we get

1=k2(b)
lg—/ (fok2 At—/f k2
0= kz

_a/f

Inserting /; and I3 into (3.2), we find that

f<a—2i-b) h(3) [/f v7+/f ] (;>M[f(a)+f(b)]. (3.3)

Therefore, the inequalities (3.1) hold. O

b—a-

Corollary 3.1. Suppose that f : [a,blz — R is an h-concave function with a < b,
a, b, ‘H'b €z, andh( )7&0 Then we have

1 a+b 1 b b
o/ (5 = l | v | f(T)AT] > M[f(0) +/0)], (34)

2

where M is given in Theorem 3.1.

Similar to the proof of Theorem 3.1, changing direction with every inequality
sign, this result is obtained.

Remark 3.1. If the special functions are taken in Theorem 3.1, the corresponding
discrete H-H inequalities for integer order related to the endpoints can be obtained:

(1) If h(z) = z®°, then (3.1) becomes an inequality for s-convex functions in the

second sense on Z:
/ f(OVT + / f(r ]

w(7) =5

(3.5)
<|f(a) + f(b) +(1—1)°]At.
| 1 frea-o
(2) If h(z) = z, then (3.1) becomes an inequality for convex functions on Z:
f<a—2|—b> Vf Vr+/f ()—;f() (3.6)
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(3) If h(z) = 1, then (3.1) becomes an inequality for P-functions on Z:

(50 < l/:f(r)vw/:f(r)m

(4) If f is an h-concave function on Z, the three discrete H-H inequalities for integer
order in the above special cases of (1)-(3) can be obtained from Corollary 3.1,
where we just reverse the inequality signs in (3.5)-(3.7).

<2[f(a)+ f(b)]. (3.7

Next, we prove the discrete H-H inequalities for integer order via h-convex func-
tions on Z relating to the midpoint.

Theorem 3.2. Suppose that f : [a,b]z — R is an h-convex function with a < b,
a,b, “'H’ €z, andh( )7&0 Then we have

1 a+b afe
h(%)f( 5 ) [/ f(r VT+/ f(T)AT] (3.8)
<N[f(a) + f(B)],
where N = [, [h (L) +h(1-1)] At.

(=521

Proof. Fixingt € ’H‘[m 0] \ {0, 1}, we define
e

b 2ot 2t
xr= —-qQa —_— =
2 2 YT Ty

then z,y € [a,blz and % = “7“’ € Z. Since f is an h-convex function on [z, y]z

(or [y, z]z), we have
/ (x§y> <h (;) [F@)+ F ).
This implies that

(557 (B (soe 250 1 (50 )
h (;) fla)+h (22_t) f(b)

_ (;) h <;) h (2;)} [F(a) + 1 0)].

Integrating the above inequalities with respect to t over T[ agb bl then we have
2

[0
) D5

5

a + tb,

IN

;ta + ;bﬂ At (3.9)

IN

n(3) Nlr@ -+ )
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where N = fT[ " [h (L) +h(1-1)] At.
a2 b
Define
r1:/ f(ta—&—Q_tb)ﬁt,rg:/ f(2_ta+tb)ﬁt,
Tapra N e NPT

a+b

then r; = % f% f(OVr, e = b% I, % f(T)AT (see [37]).

a

Inserting m and 5 into (3.9), we find that

(5) < S [ rree [

Therefore, the inequality (3.8) hold. O

+b

f(T)AT] <h (;) N[f(a) + F(B)].

Corollary 3.2. Suppose that f : [a,blz — R is an h-concave function with a < b,
a,b, ‘”b €z, andh( )7&0 Then we have
b

' ()2 U Hovr / f(r)ar

> N[f(a) + f(D)],

where N is given in Theorem 3.2.

(3.10)

Similar to the proof of Theorem 3.2, changing direction with every inequality
sign, this result is obtained.

Remark 3.2. If the special functions are taken in Theorem 3.2, the corresponding
discrete H-H inequalities for integer order related to the midpoint can be obtained:

(1) If h(z) = z°, then (3.8) becomes an inequality for s-convex functions in the
second sense on Z:

w1 () =

a+b

/ f(r VT+/ f(r)AT

. Do (3.11)
<[f(a)+ £ ()] /Tw,b] [(;) + (22t> }At.
(2) Tt h(x) = , then (3.8) becomes an inequality for convex functions on Z:
/ (“‘2”)) < [/i f(r)v7+/an;b f(T)AT] ERIURS IUNERE)

(3) If h(z) =1, then (3.8) becomes an inequality for P-functions on Z:

f(“;b) [/ fr v7+/a+bf(T)AT

(4) If f is an h-concave function on Z, the three discrete H-H inequalities for integer
order in the above special cases of (1)-(3) can be obtained from Corollary 3.2,
where we just reverse the inequality signs in (3.11)-(3.13).

2[f(a) + f(b)]. (3.13)
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Because [a,b] = [a, “7“)] U [“T'H’,b], we can also obtain the following discrete

H-H inequalities for integer order.

Theorem 3.3. Suppose that [ : [a,blz — R is an h-convex function with a < b,

a, b, ‘%H’, 3“2'17, %?’b €Z, and h (3) # 0. Then we have

1 a+b
e (3)! (2) S

< Qy (3.14)

where

Qp = [f(a); (b)+f(”;b)]/ol [h(t) + h(1 — )] At.

Proof. Fixing t € Ty, \ {0, 1}, we define
x=ta+ (1—1t)by=(1—1t)a+td.

zty _
5 =

It is easy to see that x,y € [a,b]z and QTH’ € Z. Since f is an h-convex

function on [z, y]z (or [y,x]z), we have

! (x;y) <h (;) [£(z) + f(»)]-

For [a, “T'H’]Z7 fixing t € ']I‘[ apt] \ {0, 1}, we define

a, 3

b b
x:at—&—%(l—t),y:a(l—t)—ka;

t,

then we can get

3a+b
(*5)

d
h(;) [f <ta+(1t)a;rb> +f((1t)a+ta;rb>]
n (;) [h(t)f(a) +h1=1)f (a;b>

+h(1 —1)f(a) +h(t)f (a ; b)}

_ (;) [f(a)+f (“;rbﬂ [h(t) + h(1 —B)].

ta+(1—t)“;rl7+(1—t)a+t“2“’>
2

IN

IN
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Integrating the above inequalities with respect to t over ']I‘[a agb), then we have
L)

/T[aym]f <3a2—i—b> At
<h (;) /r[am]f(taﬂl_t)a;b) At

T2

f((l—t)a—kta;_b) At

<h (;) {f( )JFJ”(%L{)H/T . [A(t) + h(1 —t)] At.

o 2421

(3.15)

Define

f(ta+(1t)a;rb> At,

f ((1 —t)a + t;rb> At.

Calculate p; and po separately below

First, we assert that p; = = f En f(r)Vr

Let ¢1(t) = ‘”bb =2t € [a, a—“’] Then ql( ) is decreasing, ¢; *(t) = ta + (1 —
£)%5% and (—q7)(t) = 5%,

According to Theorem 2.2, we obtain

1=q1(a) _ ath
b1 Z/qulw)<foqll)(t)At=/a FO) (=) )(r)VT

Il
o
| o
IS
—
=
\‘
S~—
<
\}

Next, we prove that py = fa

Let ¢o(t) = Q(b_ a) [ a,
t4Eb and ¢4 (t) = ﬁ

Using Theorem 2.1, we get

]Z Then go( ) is increasing, ¢, *(t) = (1 — t)a +

1=ea(37) RN Ea A
Py = /O_%(a) (foar")(t)At = / () (1) A

- bfa/a F(r)AT,
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Inserting p; and pe into (3.15), we find that

f (3a:b) SQbh_(%a) V+ f(T)vT+/a2+b f(T)AT]

a

<h (;) {f(a)ﬂc (a;b)} /T[ " [A(t) + h(1 —t)] At.

Similarly, for [%%,b],, fixing t € T(age 4 \ {0,1}, we define

(3.16)

a+b a+b

z=t 5 +A-t)by=(1-1%) 5

+ th,

then we can get

f<a—z3b> _;

19 (1= )b+ (1 —t)2d +tb>
2
) :f (ta;b+(1—t)b> —l—f((l—t)a;b+tbﬂ
) [por (“52) +na - 050
07 (%57) +no)so)
—h (;) :f (“;b) +f(b)} [h(t) + h(1 — ).

Integrating the above inequalities with respect to t over T[ atb bl then we have
2,

+
=
i

I

+(1- t)b) At

a+b
(4

+/TF f((l—t)a;b+tb)5t

(3.17)

Define
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Calculate ps and py separately below.

First, we assert that ps =

= ﬁ Jin f()VT
Let g3(t) = 200 ¢ ¢ [t 3]
and (—¢3)(t) bfa

According to Theorem 2.2, we obtain

4~ Then g3(t) is decreasing, g5 '(t) =t

+(1—t)b

1 (22)
p3 = / (fogs")(t)At = / flr (T)Vr
0=qs(b)
/ fir
—a
Next, we prove that py = = f
Let qq(t) = 275(7‘1‘“’ [ ]Z. Then q4(t) is increasing, ¢; *(t) = (1 —
2t 1+ and g2 = 2

b—a
Using Theorem 2.1, we get

p4=/i_qz(bj)<foq4 At—/ (r

Inserting p3 and py4 into (3.17), we find that
f<a+43b> _Qbh %a V flr vT+/ i
<(3) ' (5) *f(b)M oA

25 2]

Adding (3.16) and (3.18), we get
f<3a2—b> +f<a+3b)
TN
<h <;) [ <a—;b)] /wr[a@b] [h(t) + h(1 —t)] At
+h<;) [ (“b) +f(b)}/T [h(t) + h(1 — t)] At
<i(3) st

<
b

25 2]

)+ 2f (a : b) 4 f(b)} /01 [h(t) + h(1 — t)] At,
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o ZQhI(é) {f <3a2—b) Ly (a—z?)b)]

<5 l/abfv)vw/abf(r)m]

g% [f(a) +of (“ ;F b) + f(b)} /01 [h(t) + h(1 — t)] At

namely,

2h21(§)f (a;b)

1 13a+b la—i—Sb
2 4 2 4

<z "(2)7 () () (57)]

b b
/ f(r)Vr + f(n)Ar

a

< [M +h <) (f(a) + f(b))} /01 [h(t) + h(1 —t)] At

_ B h @)] [f(a) + £ (8)] /01 [h(t) + h(1 — )] At,

which completes the proof. O

Corollary 3.3. Suppose that f : [a,blz — R is an h-concave function with a < b,
a,b, “T'H’, 3QT+I’, %31’ €7Z, and h (%) # 0. Then we have

1 a+b
ey (7)o

b b
bia V f(T)VT+/ f(T)Afl > (3.19)

1 ~
> 30 (3)] v@= o) [ e +na - o)
where Q1,9 are given in Theorem 3.3.

Similar to the proof of Theorem 3.3, changing direction with every inequality
sign, this result is obtained.

Remark 3.3. If the special functions are taken in Theorem 3.3, the corresponding
discrete H-H inequalities for integer order can be obtained:
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(1) If h(x) = «®, then (3.14) becomes an inequality for s-convex functions in the
second sense on Z:

A e ) )]
< Vabf(T)VT+ /abf(T)AT

; {f( >+2f<a+b>+f(b)} /01 1 (1— 1)) At

1

<[5+ ] b@+so) [ e+ a-]a

(2) If h(z) = z, then (3.14) becomes an inequality for convex functions on Z:
a Jr b 3a+b a+ 3b
2f f +f
4 4
1 b b
[ t@ves [smar

f+ 21 (5) 410 < 560+ 10

(3.20)

| /\

IN

IA

(3.21)

<

4) becomes an inequality for P-functions on Z:
1 3a + b bt a—+3b
2 4
1
[ / f(OVT + / f(r

<fla) +2f (“ - b) L+ Ab) < 3[f(a) + 1).

(3) If h(z) = 1, then (3.1

Qf(a+b)

IN

I /\

(3.22)

(4) If f is an h-concave function on Z, the three discrete H-H inequalities for integer
order in the above special cases of (1)-(3) can be obtained from Corollary 3.3,
where we just reverse the inequality signs in (3.20)-(3.22).

Based on the above theorem, new interval piecewise points t = B“T'H’ andt = %%
are given, and we obtain a new estimate of the discrete H-H inequalities for integer
order.

Theorem 3.4. Suppose that [ : [a,blz — R is an h-convex function with a < b,
a,b, “'H’ , Satb “131’, Tatb a+7b €Z, and h ( ) # 0. Then we have

1 8
§
4

@L@”}f(“?b)

3 <

b
<y < {

_|_

oves [oa]
§¢

[()

1
4



Discrete Hermite-Hadamard Inequalities

151

xA[Mﬂ+hO—MAL

where
93:4h1(;) [f (7@8—&-b) 2f<a+b)+f<a—;7b)}’
Sh:[ﬂ@zf@ f(%+€> j(a+%>]A[Mﬂ+M1—m&t

Proof. Fixing t € T(, 3 \ {0, 1}, we define

z=ta+ (1—1t)by=(1—1t)a+td.

It is easy to see that z,y € [a,b]z and
function on [z, y]z (or [y, z]z), we have

/"

1

)

2

r+y
2

zty _
5L =

‘%b € 7Z. Since f is an h-convex

) [F() + (9]

For I:a, Sajb]Z’ ﬁXil’lg te T[a,%] \ {07 1}-7 we define
$:w+ﬂ—ﬂwjﬂ — (1ot ottt
then we can get
Ta+b ta+ (1 — )34 4 (1 —t)a + 340
() = :
Sh(;);fca+ﬂtfmjb>+f(utm+thb>}
[ 3a+b
<i(3) [pos@ +na -0 (*52)

Th(L ) f(a) + bt (

)|

1

h (

2

f()+f<

3a+b

3a+b

)

)] ey + 1 -,

Integrating the above inequalities with respect to t over ']I‘[ a, 3£t then we have
T 4

Ta+b
8

! )

o (2) M{ IR{CRI

3a

“

o242

) @ (

f(ﬂ—ﬂa+t

3a+b
4

+b
4

3a+b
4

)zt

)zt

(3.24)

ﬂ /T[ . [1(t) + h(1 —1)] At.
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Define

3a+b\ %
ulz/qr[a)w]f(ta—i—(l—t) 1 )At,

3a+b\ %
ugz/jr[a)w]f((l—t)a—&-t : )At.

Calculate u; and g separately below.

RGN

3“"”’}%. Then w (t) is decreasing, w; *(t) = ta +

First, we assert that u; =

Let wy(t) = 344t ¢ ¢

=
(1—t)3%E and (—wy)(t) = bi
According to Theorem 2.2, we obtain

1=w1(a) _ 3a4+b
w= [ (Four)t= [ f(-u])r)vr

Ozwl(saTer) a
3a+b

4 Seis

i /a f(r)Vr.
3u+b
Next, we prove that uy = 32 [ 7

Let wa(t) = 4( ) [
t3ath 4

} Then wy(t) is increasing, w; *(t) = (1—t)a+
and wQA(t) = 1=
Using Theorem 2. 1 we get

1= (252) R
s = / o UourOB= / f(rywd (1) Ar

_ 1 / F(r)AT.

b—a J,

Inserting u; and ug into (3.24), we find that

3a+b

f<7a+b> _4h(3) V+ f(T)vT+/ " foar

8 “b—a |/, a

<h (;) [f( )+f<3a+b>} /T[ . [h(t) + h(1 — t)] At.

Similarly, for [24Fb a£3b] fixing t € Tjsess aran) \ {0, 1}, we define

)

(3.25)

3a+b a+ 3b 3a+b a+3b
Pt (=) = (- )P
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then we can get

2 2
) :f <t3a:b+(1—t)az3b> +f((1—t)3a:b+taz3b)]

> :h(t)f (3az—b) R b)f (a—z3b>

Fh(1—1)f (?“L:b) +h)f (“Z%)]

—h (;) :f<3“4+b> +f (“z?’bﬂ [h(t) + h(1 —1)].

Integrating the above inequalities with respect to ¢ over ']I‘[ Satb atsv], then we
4 4

f(a+b> _s (t?’“ijr(lt)“tf'bJr(lt)%“’ +t“+fb>

have

a+b\ ~
fro ot (572
[BeFe, ed2t]
1 3a+b a+3b\ ~
Sh(Q){/T[WM]fG 1 +(1—1) 1 >At

+/1r f((l—t)3a+b+ta+3b> At (3.26)
g, 252
NUIMEE e

4 4
X /T[W,Mb] [h(t) + h(1 —t)] At.

Define

ugz/ f<t3a4+b+(1—t)a+3b> At,
RS

4
ta /
T

Calculate us and w4 separately below.

a+3b
First, we assert that uz = ;2= [,.5, f(T)VT.
4

f <(1 ft)?’a:b +taz?’b> At.

[2oz2. 25

Let ws(t) = a;é:‘;ﬂ t € [3atb at3b] . Then ws(t) is decreasing, wy'(t) =

P (1 1) =52 and (—uf)(0) = 5.
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According to Theorem 2.2, we obtain

1— w3(3a+b) N %:w
s = / (f 0wy ) (t)AL = / F)—wd) (7)Y

a+3b
92 5
- et f(r)Vr.

a+3b

Next, we prove that ug = 32 [5.5, f(T)AT
e
Let wy(t) = 4t2_(§7?f$b)7 t e [3ath “'f’b]z. Then wy(t) is increasing, w; ' (t) =

(1—t)3ath 4 ¢at3b and wi(t) = ;2.
Using Theorem 2.1, we get

1w (52) e
w=[ IRCEERCS / Frywp (r)Ar
2 o f(r)AT.

T b—a [zars
1

Inserting uz and uy into (3.26), we find that

a+3b a+3b

f(a—;b) §2h (%a) V“’ f(T)vT+/3a;b f(r)Ar

(3) P ) () 6

[h(t) + h(1 —t)] At.

—

[ 4
Similarly, for [2£3, b]Z, fixing t € T[%{’,b b] \ {0, 1}, we define

a+ 3b a+ 3b

x=t 1 +(1=-tbhy=01-1) 1

+ tb,

then we can get

a+Tb
1(57) =

(1—t)b+ (1 —t)atdt +tb>
2

) { (“?’b (1t)b>+f((1t)a+43b+tb>}

1
2
;) [ (“23") T h(1 - 0)f()

w07 (52 o]
< (3) [£(52) + 0] o) + 1 -0,

IN

h

[
g
(

IN
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Integrating the above inequalities with respect to ¢t over T[ L then we have
P

/T[at%,b}f <a4;7b> e
<h <;) /Tmm] f <taz?’b +(1— t)b) At
+/T[”f{°‘b»b]

<h (;) [f (“ Z‘%) n f(b)} /T [h(t) + h(1 — t)] AL,

[

(3.28)
a+3b

f <(1 —t) +tb> At

Define

_ a4+ 3b - ~
Us = ‘/H‘[(H—sbwb] f <t 4 + (1 t)b) At,

u6:/
T

Calculate us and ug separately below.

First, we assert that us = ﬁ f@ f(r)VT.
4

a—+3b

f <(1 —t) + tb) At.

5]

Let ws(t) = 4§)b_7at), t e [%%,b}z. Then ws(t) is decreasing, wgl(t) = t%?’b +
(1—t)band (—wy)(t) = 2.
According to Theorem 2.2, we obtain

—— g
s — / (Fows WAL= [ f(r)(~ud)(r)Vr
0

3b
=ws(b) adob

b
= bfa/yi% f(r)Vr.

Next, we prove that ug = ;- f& f(r)AT.
4

Let wg(t) = W’ t e [%Sb,b]z. Then wg(t) is increasing, wg'(t) =
(1—¢)%t2 4 tb and wg(t) = 2.

Using Theorem 2.1, we get

g — / (Fouwg YAt = [ f(rywd(r)Ar
0

SED =
4 b
- b_a/’ @A,
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Inserting us and ug into (3.28), we find that

(50 < A V fv+l r)Ar
A2l boem-os

Letting (3.25) + 2 x (3.27) + (3.29), w

e hav

Ta+0b a+b a+7b
() () o (5 )
b b

<h (;) [f:a) +f (‘(m:b)} /T [A(t) + h(1 —t)] At

=S

ean(3) [ (7)o ()
X / [h(t) + h(1 —t)] At
Tl 2q)

+h(;) [f( 23(’) L )]/T [h(t) + h(1 — )] At

25
<i(5) @ (B550) var (“52) + o)

></O [h(t) + h(1 — )] At,

(3.29)

[1
an (%) [ (L)
1

~ 72 () G ) e (5) ()]
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() (57) o (a) (457) o (2) (57)

1

4h? (3)
:Qg

< Mfmvw/:f(r)m]
<y

< {i v [h (i) h (iﬂ } [f(a) + F(b)] /01 [h(t) + h(1 — )] At,

which completes the proof. O

<

Corollary 3.4. Suppose that f : [a,blz — R is an h-concave function with a < b,
a, b, QTH’, 3a4+b, ang, 7“8“3, ann’ €7, and h (%) # 0. Then we have

>0 > bia [[lbf(T)vT+[lbf(T)AT]

o {130 () o oo

1 ~
X /0 [h(t) + h(1 —t)] At,

(3.30)

where Q3,4 are given in Theorem 3.4.

Similar to the proof of Theorem 3.4, changing direction with every inequality
sign, this result is obtained.

Remark 3.4. If the special functions are taken in Theorem 3.4, the corresponding
discrete H-H inequalities for integer order can be obtained:

(1) If h(z) = «®, then (3.23) becomes an inequality for s-convex functions in the
second sense on Z:

o o a+b
()

o Ta+b a+b a+7b
(57 2 (557) o (5]

b
< [ﬂa) .y (3j b) .y ( f’b) + f(b)}

(3.31)
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1
C (- 1A

></0 [t°+ (1 —t)°] At
(2) If h(z) = =, then (3.23) becomes an inequality for convex functions on Z:
<a+b>
1 Ta+0b a+b a+Tb
2[ (557) 2 (5 )*f( <)
l/ flr VT—i—/ f(r
[f(a) var (2E0) 4 ( ) 410

<f(a) + f(b).

(3) If h(x) = 1, then (3.23) becomes an inequality for P-functions on Z:
§ a+b
4
Sl [ <7a—|—b> 2f (a—|—b> y (a—|—7b>]
4 8
[/ f(r VT+/ f(r)AT

[f(a) +3f (Sa:b) +3f (azg’b) +f(b>}

IN

(3.32)

IA

<

(3.33)

(4) If f is an h-concave function on Z, the three discrete H-H inequalities for integer
order in the above special cases of (1)-(3) can be obtained from Corollary 3.4,
where we just reverse the inequality signs in (3.31)-(3.33).

The following theorem extends the discrete H-H inequalities for integer order in
Theorem 3.1 to fractional forms involving the nabla fractional sums.

Theorem 3.5. Suppose that [ : [a,blz — R is an h-convez function with a < b,
a,b, "“T'H’ €Z, and h (%) # 0. Then for a > 0, we have

iy T (557) € R L0+ V@] < [0+ 0] (530

v = / ((b—a)t+ 1)ﬁ£t,
T[a b

= [ (@=at+ )T [0 + b ) A
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Proof. Fixing t € T, \ {0, 1}, we define
x=ta+ (1—-t)b,y=(1—t)a+th.

It is easy to see that x,y € [a,b]z and %ﬂ’ = aT'H’ € Z. Since f is an h-convex
function on [z, y]z (or [y, z]z), we have

! (x;y) <h (;) [f(x) + f()].

This implies that

(%)

IN

h <;) [f(ta+ (1 —t)b) + f((1 —t)a+tb)]

< (3) 100+ L= 0] @) + 10).

Multiplying each term by ((b —a)t + 1)0‘71 and integrating with respect to ¢
over T, 3, then we have

/T[a,b] (b—a)t+1)" s (a : b) At

<h (;) Vm,m (b—a)t+1)""" f(ta+ (1 —t)b)At

+/ (b—a)t+1)"" f((1 = t)a + th) At
Tia,b)

< (3) @+ £0)] [ (@=ae+ )7 [ + 11 - 1)

la,b]

namely,
() # [ oo s

+/ ((b—a)t +1)* " F((1 = t)a + th)At
Tia,b)

<h (;) [£(@)+ F®)] -5,

where
— —a a-Tx

Y= /TM (b—a)t+1)" At

Yo = / (b—a)t+ 1)“‘1 [A(t) + h(1 —t)] At.
Tia,b)

Define

I3 = / ((b—a)t+ 1)‘Hf(ta + (1 —t)b)At,
Tia,b)

Iy = /T ((b—a)t+ 1)“‘1f((1 — t)a + th)At.
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Calculate I3 and 4 separately below.
First, we assert that [3 = 3 O;)av “f(b).

Let k3(t) : [a,b]z — Ty be defined by ks(t) = &=L with ¢ € [a, b]z. Then ks(t)
is decreasing and k3 ' (t) = ta + (1 — )b, (—ky )(t) =

!
In addition, letting g1 (t) = (b—t+1)*"1, and Fl(t)

—a”

g1(t) f(t), then we obtain
Fy(k3'(t) = g1 (k3 (8) F (k3 " (8) = (0 — a)t + 1) f(ta+ (1 — 1)b).

So,ls =z, L)AL

Maklng use of Theorem 2.2, we have

1=ks(a) _ b
ly = /0 (FLoks ') ()AL = / Fy(T)(—kY)(T)VT

=k3(b) B
I =1
b—a/a (b—T1+ 1) f(r)VT

(@) g
= ),

Next, we assert that Iy = I;(f‘a) vV, “f(a).
Let ky(t) : [a,b]z — Tiq) be defined by ky(t) = =2 with ¢ € [a, b]z. Then ky(t)
is increasing and k;'(t) = (1 — t)a + tb, kP (t) = %

In addition, letting g (t) = (t—a+1)*"1, and 1*: (t) = g2(t) f(t), then we obtain
Fa(k (1)) = g2 (5 ()£ (k7 (1) = (b= )t +1)° " £ (1 = )+ ).

So, la= [y, Falki( (t))At.
Using Theorem 2.1, we get

1=kq4(b)
l4=/ (QO]C At—/FQ k‘4
O:k4(a)

b -
- ﬁ/ﬂ (tr—a+ 1)a_1f(T)AT
_ br(_o‘;vb—a (a).

Thus, we obtain

1

a+b h(3)T(a) o u 1
e (50) < M s 4 v @) <0 (3) D@+ 0] e

which means inequality (3.34) hold. O

Corollary 3.5. Suppose that f : [a,blz — R is an h-concave function with a < b,
a,b, ‘ITH’ €Z, and h (%) # 0. Then for a > 0, we have

hv(ll) f (a;b) = br(_a; [VOf () +V, " f(a)] > [f(a) + f(B)] 72, (3.35)

2

where vy1,v2 are given in Theorem 3.5.
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Similar to the proof of Theorem 3.5, changing direction with every inequality
sign, this result is obtained.

Remark 3.5. Concerning the above discrete H-H inequalities for fractional order,
we obtain

(1) For a =1, Theorem 3.5 reduces to Theorem 3.1.

(2) According to the relationship between the delta right fractional sum and the
nabla right fractional sum: A, f(a — o) = V, * f(a), the following inequality
are equivalent to inequality (3.34):

no o fatb I'(«) o o 0 o
P () SF LT A a]

<[f(@) + f(B)] - 72,

where 71,72 are given in Theorem 3.5.

Remark 3.6. If the special functions are taken in Theorem 3.5, the corresponding
discrete H-H inequalities for fractional order related to the endpoint can be obtained:

(1) If h(z) = z°, then (3.34) becomes an inequality for s-convex functions in the
second sense on Z:

£ (U50) < L0 + 9,7 @)
<[f(a) + f(b)] (3.37)

x / ((b—a)t+ 1) [t* + (1 — 1)*] At,
Tia,b)

where y; is given in Theorem 3.5.
(2) If h(x) = z, then (3.34) becomes an inequality for convex functions on Z:

fla) + £(b)
5

f (““’) < 1) 1 gap) 1 viosa) < (3.38)

2 )7 2nb-a)

where ; is given in Theorem 3.5.

(3) If h(z) =1, then (3.34) becomes an inequality for P-functions on Z:

a+b F(Oé) —a —a
f( ! )<%(b_a) [V £(0) + Vy * f(@)] <2[f(@)+ FB)],  (3:39)

where v is given in Theorem 3.5.

(4) If f is an h-concave function on Z, the three discrete H-H inequalities for frac-
tional order in the above special cases of (1)-(3) can be obtained from Corollary
3.5, where we just reverse the inequality signs in (3.37)-(3.39).

The following theorem extends the discrete H-H inequalities for integer order in
Theorem 3.2 to fractional forms involving the nabla fractional sums.
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Theorem 3.6. Suppose that [ : [a,blz — R is an h-convez function with a < b,
a,b, ’”‘b €z, andh( )750 Then for a > 0, we have

. a+b I(«) 706 Cu fla) + f(b)
2hé) ’f< 2 > N — {%bv f(b)+VaT+bf(a)} < === 4, (3.40)

where

/ <b—a >O¢1~
Ny = t+1 At,
Tegea) b 2

7

Y= /T[a;”] (b;at+ 1)a_1 [h (;) th (1 _ ;)] At

Proof. Fixingt € T[GTM 0] \ {0,1}, we define

b 2ot 2t
TRt YT

a + tb,

then 2,y € [a,b]z and 23¥ = %2 € Z. Since f is an h-convex function on [z,y]z

(or [y, 2]z), we have
; (:c;-y> “h (;) [f@) + F )],

n(5) [ (o 25 o0 (Bt )|
< (3) [ (5) +n (55)] trewr + s

Multiplying each term by (th + 1)a_ and integrating with respect to t over
T[L-{—b b]’ then we have
2,

that is

I /\

(%)

1 b—a el 9y
o (3) [A (50e) s (Gar 5)E o

a—1
(b;at+1> f(22_ta+;b>&
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namely,

s (57) = ()|

b—a ot ot 22—t «
[a+b,b]

b—a RS B A (3.42)

where

Define

b—a ol o\ ~
1 Zb) At
(2t+> f<2a+2b)t

Then r3 = %(aa)%bv_“f(b), T4 = 25,((;)V;%ab f(a) (see [37]).
Thus, we have

SEHELE

2 b—a

{%%V’af(b) +Vih f(a)}
(3.43)

<h (;) [f(a) + f(B)] - 74,

which means inequality (3.40) holds. O

Corollary 3.6. Suppose that f : [a,blz — R is an h-concave function with a < b,
a,b, QTH’ €Z, and h (%) # 0. Then for a > 0, we have

a+b '« a b
e ~f( - )z S v o) + v f@)] 2 LTI g

where v3,v4 are given in Theorem 3.6.

Similar to the proof of Theorem 3.6, changing direction with every inequality
sign, this result is obtained.

Remark 3.7. Concerning the above discrete H-H inequalities for fractional order,
we obtain
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(1) For aw = 1, Theorem 3.6 reduces to Theorem 3.2.

(2) According to the relationship between the delta right fractional sum and the
nabla right fractional sum: A, % f(a — o) = V, * f(a), the following inequality
are equivalent to inequality (3.40):

3 a+b\ T(a) 3 -
2h (3) .f( 2 ) S {“T“V f(b)+AaT+b_1f(a—a)]
SM‘%,

(3.45)

where 3,3 are given in Theorem 3.6.

Remark 3.8. If the special functions are taken in Theorem 3.6, the correspond-
ing discrete H-H inequalities for fractional order related to the midpoint can be
obtained:

(1) If h(z) = z*, then (3.40) becomes an inequality for s-convex functions in the
second sense on Z:

s—1 . a+b
2 73f< 5 )

< [V 0) 4 VS (@)
_fla) + F(b) (3.46)

B ? a—1 s s
YR (ORI

52,
where 73 is given in Theorem 3.6.

(2) If h(x) = z, then (3.40) becomes an inequality for convex functions on Z:

DY - T [ e s o ] < S0 I
1(57) = oy [y s+ vans@)] < L0 )

where 3 is given in Theorem 3.6.
(3) If h(z) =1, then (3.40) becomes an inequality for P-functions on Z:

/ <a;b> : 732;(?)@ [

where 3 is given in Theorem 3.6.

e VTUL0) + VL fla)] < 2[f(a)+ FO)], (348)

(4) If f is an h-concave function on Z, the three discrete H-H inequalities for frac-
tional order in the above special cases of (1)-(3) can be obtained from Corollary
3.6, where we just reverse the inequality signs in (3.46)-(3.48).

3.2. Discrete Hermite-Hadamard inequalities for preinvex func-
tions and its generalization

First, we prove the discrete H-H inequalities for integer order via preinvex func-
tions on Z related to the endpoints.
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Theorem 3.7. Suppose that f : [a,a + ¥(b,a)]z — R is a preinvex function with
Y(b,a) >0, a,b, w(g,a) € 7, and satisfies Proposition 2.1. Then we have

1 1 a+(b,a) atip(ba)
f <a + 51/1(5, a)) Sm [/a f(r)vVr -l-/a f(r)AT

_f(a) + 1)

- 2

(3.49)
Proof. Fixing t € Tiy a4y (b,a) \ 10,1}, we define
T=a-+ tw(bv a),y =a+ (1 - t)w(ba a)'

Obviously, we can get x,y € [a,a + ¥(b, a)]z and % € Z. Since f is a preinvex
function on [z, y]z (or [y, x]z), we have

(ot 300)) < 3156+ ).

[\

This implies that

f (a + tp(b,a) + %1#((1 + (1 —t)(b,a),a+ t(b, a)))
<5 [Flat tb,a) + fla+ (1 ty(b, )]

<L [EF0) + (1= )7(a) + (1~ D7) + £ (@)
fl@)+ £)

<—F
- 2

According to Proposition 2.1, we have

1

f (a " %w(@ a)) < Z[fla+tp(b,a) + fla+ (1 —t)y(b,a))] <

fla) + f(b)
5 :

2

Integrating the above inequalities with respect to ¢ over T4 a4y (b,q)], then we
have

/ f <a + %¢(bv a)) At
T[a,a-f-w(’%@)]
S%A [fla+tb(b,a) + fla+ (1-)p(ba)]At  (3.50)
[a,a+4(b,a)]
fa) + f(b) ~
= /T[a,w—w(b,a)] fAt'

Define
n- | fla+ (1= p(b,a)At,
Tia,a+w(b,a)]

Iy = /T fla+ (b, a)At.

[a,a+(b,a)]
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Calculate 13 and [y separately below.

First, we assert that [; = w(b = f‘”w (0.a) f(n)Vr.

Let k1 () : [a,a +9(b,a)lz — Tla,a4¢(b,q) e defined by ky(t) = (b oy with
t € [a,a + ¥(b,a)]z. Then ki(t) is decreasing, k;'(t) = a + (1 — t)w(b, a) and
(_klv)(t) = 1/}(117,1)-

According to Theorem 2.2, we obtain

1=ki(a) ~ a+(b,a)
= okt = ) (=kY)(T)VT
zl_/o (f o k) (1) At / F) (kY)Y

=k1(a+(b,a))

1 a-}-’([)(b,(l)
= / f(r)Vr.

¥(b,a)
Next, we prove that Iy = w(; ) faa+w(b’a) f(r)AT.
Let ka(t) : [a,a 4+ (b, a)]z — Tia,a+v(b.a) De defined by ka(t) = W“) with ¢ €

[a,a + (D, a))z. Then ko(t) is increasing, ky *(t) = a + ty(b,a) and kP (t) = m.
Using Theorem 2.1, we get

1=k (a+1)(b,a)) _ a+i(b,a)
n= [ (Fok ke = F(r)k (1) A
0 a

:k2 (a)

1 a+1(b,a)
:w(b a)/ f(r)AT.

Inserting /; and ls into (3.50), we find that

f(a+ Lo, a)) : | [ / Y e+ / Y A

“2(ba) (3.51)
_f@)+ 10
- 2

Therefore, the inequality (3.49) hold. O

Remark 3.9. If we choose ¥(b,a) = b — a in Theorem 3.7, the inequality (3.49)
reduce to inequality (3.6).

Next, we prove the discrete H-H inequalities for integer order via preinvex func-
tions in Z related to the midpoint.

Theorem 3.8. Suppose that f : [a,a + ¥(b,a)]z — R is a preinver function with
Y(b,a) >0, a,b, @ € 7Z, and satisfies Proposition 2.1. Then we have

¢(b,a) 1 aty(b,a) at 200
f (CH— B ) S#}(b,a) l/ﬁ“{;“) f(T)VT'i‘/a F(r)AT o
IO

Proof. Fixingt € ’H‘[ {0,1}, we define

+1/1(b ,a) ,a+p(b a)] \

t 2—t
r=a-+ 51/)(b,a),y: a-+ Tw(b,a)7
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then z,y € [a,a + (b, a)]z and % € Z. Since f is a preinvex function on [z, y]z
(or [y, x]z), we have

(o 3000)) < 5156+ ).

[\

This implies that
(ot §o00 + 50 (a+ 5 0000k o))

<3 |7 (at 25 r000) 11 (at jo0.0)]

3 |25 0+ 1@+ 350+ 2 @)
o) + 1)

5 .

A

IN

According to Proposition 2.1, we have

f (a + 500, a)) = [f <a + 200, a)) v f (a + 0, a))]
1@+ )

- 2

Integrating the above inequalities with respect to ¢ over "JT[ , then

at+ 28D oty (b,a)]
we have

/T f <a + %d;(b, a)> At

o+ 252 atyr,0]

3l
< =
=32 ).

[a+2£52) aty(b,0)]

% /T [f(a) + F(b))At.

[o4 252 aty(b,0)]

[f (a + %w(b, a)> +f (a + %w(b, a)ﬂ At (3.53)

IA

Define

r = /11‘ f (a + %w(b, a)) ﬁt,

[a+wya+w(bﬂ)]

o = /T f <a+ %w(b, a)) At.

[a_,_w,a_;.w(b,n,)]

Calculate r1 and ry separately below.

First, we assert that 7| = ﬁ fa+f<(zf£) f(r)VT.
s at+-—3

Let s1(t) : {a + @, a+ (b, a)]Z — ’]I“[aJr VG0 44 i(5,a)] be defined by s1(t) =

2 — 3/}(21)_((11)) with ¢t € [a—&— w,a—kw(b,a)}z. Then s1(t) is decreasing, s7'(t) =

a+ ZL(b,a) and (—sy)(t) = ﬁ.
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According to Theorem 2.2, we obtain

1=s1 (a+252)) _ a+y(b,a)
”:/o (fos;l)(t)m;:/a ey TNV

=s1(at+1p(b,a))

2 a+w(b,a)
= — / f(r)Vr.

(b, a) )
50 patila
Next, we prove that ry = ;7 N f(r)AT.
Assume that ¢t = Z(Q%# with 7 € {a + @,a + (b, a)}z.
Setting 7+ = 2a + ¢(b,a) — 7 and t = %?bfaa)), we have 7 € [a, a+ L(l;,a):| and
; z
te ']I‘[a7a+ w(g,a)}. Hence

Ty :/T f (a + %w(b, a)) At

[a+ 252 aty,0)]

:/T f <a + gw(b, a)> Al

[a.0+ 2822

Let so(t) : [a, a+ W]Z — ’]1‘[ be defined by sa(t) = 2t-a) with t €

a,a+@]  Y(b,a)
[a, a+ @}Z. Then s5(t) is increasing, s ' (t) = a + Lap(b, a) and s§(t) = w(lia)'
Using Theorem 2.1, we get
1=s5(a+ 252 o at+ 22
= (Fosy)BRi= [ 7 sinstmar
0=s2(a) a
5 PICHS!
= f(T)AT.
mal o
Inserting ry and ry into (3.53), we find that
w(b.a)
’(/J(b, a) 1 /a+w(b,a) /a+
< A
1o+ 5% < | Lo 107 [ g0
@)+ 1)
- 2
Therefore, the inequality (3.52) hold. O

Remark 3.10. If we choose ¥ (b,a) = b — a in Theorem 3.8, the inequality (3.52)
reduce to inequality (3.12).

The following theorem extends the H-H inequalities for integer order in Theorem
3.7 to fractional forms involving the nabla fractional sums.
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Theorem 3.9. Suppose that f : [a,a + ¥(b,a)]z — R is a preinver function with

Y(b,a) >0, a,b, w(g,a) € Z, and satisfies Proposition 2.1. Then for a > 0, we have

7 (4 3900) S 7T Wsston + Vo Ol (350
_J(a)+ f(b)
— 2 b
where
m =/ (1(b, a)—l—l)ﬁﬁt.
Tia,at ¢ (b,a)]

Proof. Fixing t € T[4 a4y (b,q) \ {0, 1}, we define
T=a+ td}(ba a)vy =a+ (1 - t)¢(b, (1)-

Obviously, we can get that =,y € [a,a + (b, a)]z and "”TW € Z. Since f is a
preinvex function on [z, y]z (or [y, z]z), we have

(o 5000) < 556+ ).
This implies that

(0.0 + Golat (1= Duit.aha+100.0))

= % [f(a+t(b,a)) + fa+ (1 - 1)y (b,a))]
< LB + (- F(a) + (- OF0) + t(a)]
_ 1@+ £

According to Proposition 2.1, we have

7 (o4 5000) < S+ w0.0) + flat (1= it < LTI

Multiplying each term by (w(b, a)t + 1)(1_1 and integrating with respect to ¢
over T(q, g4+ (b,a)]; then we have

/ (w(b, a)t + 1)Oﬁlf (a + 1'l/)(b, a)) At
Tia,aty(b,a)] 2

g% [/ (¥ (b, a)t + 1)ﬁf(a + t(b, a)) At
Tia,atw(b,a)]

+/ (1 (b, a)t + 1)ﬁf(a + (1 —t)(b,a))] At
Tia,a+v(b,a))

f(a) + f(b) a—Tx
<o JAE Y(bya)t +1 At,
2 /T[a,aww,a)] ( )
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namely,

m-f (a + %w(b, a)> g% [/ (¥(b,a)t + 1)ﬁf(a + tap(b, a))ﬁt
Tia,a+w(b,a)]

+/ (¥(b,a)t + 1)“*1f(a + (1 —t)9(b, a))]&t
Tia,a+v(b,a)]

S i)
2
where
m :/ ((b, a)t + 1) At
Tla.at¢(b.a)]
Define

ls = / (¥(b,a)t + 1)ﬁf(a + (1= t)p(b,a)] At,
Tia,at v (b,a)]

Iy = / (¥(b,a)t + 1)‘Hf(a + t(b, a))At.
Tla,atw(b,a)]

Calculate l3 and [, separately below.

First, we assert that I3 = %av_af(t)h:aw(b’a).

Let k3(t) : [a,a + (b, a)lz = Ta,qa44p(b,q) e defined by k3(t) = 1 — ﬁ with
t € [a,a + 1(b,a)]z. Then ks(t) is decreasing, k3 '(t) = a + (1 — t)i(b,a) and
(—k3)(®) = 5ay- -

In addition, let g1 (¢) = (a+(b,a) —t+1)*~1, and Fy(t) = g1(¢)f(t). Then we
obtain

Fu(ky (1) = g1k (0) £z (8) = (t0(b,0) +1)" 7 f(a+ (1 = 1)(b, a)),

so, I3 = fT[a,aw(b,an Fi(k3t(1)At.
Making use of Theorem 2.2, we have

A ~ at+y(b,a)
e /O—k (at+(b ))(F1 ok )AL = / Fi(T)(=ky )(T)VT
1 (H)-w(b,a) -
= m / (a+Y(b,a)— 7+ 1)a—1f(7_)v7_
(o)

~ ¥(b,a)

Next, we assert that I, = %V;j‘w(b a)f(t)|t=a.
Let k4(t) : [a,a 4+ (b, a)]z — Tia,aty(b,a) be defined by ky(t) ta_ with ¢t €

aviaf(t)|t:a+w(b,a) .

~ 90a)
[a,a + (b, a)]z. Then k4(t) is increasinj k' (t) = a+ t(b,a) and kP (t) = m.
In addition, let ga(t) = (t —a+ 1)®1, and Fy(t) = g2(t) f(t). Then we obtain

Bk (0) = g2(kT 1) F(RTL() = (&(b,a)t + 1) fa+ t(b,a)),
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fT[a,a+w<b,a)] 'F2(k4_1 (t))ﬁt

Using Theorem 2.1, we get

1=k4(a+(b,a)) _ a+1p(b,a)
I = / (Fyo k) ()AL = / Fo(r)k2 (1) Ar
0=ka4(a) a

a+y(b,a)

“saal e
I«

= Sy Vb Ol

8o, Iy =

Thus, we obtain

r
mef (a4 3900.0)) < [T Olema it + VSOl
@i
2
which means inequality (3.54) hold. O

Remark 3.11. Concerning the above discrete H-H inequalities for fractional order,
we obtain
(1) For a = 1, Theorem 3.9 reduces to Theorem 3.7.

(2) According to the relationship between the delta right fractional sum and the
nabla right fractional sum: A, % f(a — o) = V, * f(a), the following inequality
are equivalent to inequality (3.54):

f (a + %w(b, a))
LT g FAT S Ohmaa] (359
727717//(17, CL) a t=a+(b,a) a+(b,a)—1 t=a—a

fa) + £
- 2

where 77 is given in Theorem 3.9.

Remark 3.12. If we choose ¥(b,a) = b — a in Theorem 3.9, the inequality (3.54)
reduce to inequality (3.38).

The following theorem extends the H-H inequalities for integer order in Theorem
3.8 to fractional forms involving the nabla fractional sums.

Theorem 3.10. Suppose that f : [a,a + (b, a)]z — R is a preinvex function with
Y(b,a) >0, a,b, (b d ¢ Z, and satisfies Proposition 2.1. Then for a > 0, we have

(o Lot

'« —a —a
S?]QLZJ((f))CI,) l:a+ w(gyu) \Y 'f(t)|t:a+d)(b,a) + Va+ w(z,a) f(t)lt:ll (356)

_f@)+70)
- 2
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where

N2 = /T (w(l;’ %) + 1>a_l At.

[a+ 252 atuv,0)]

Proof. Fixingt € TI‘[ \ {0,1}, we define

a+w,a+w(b,a)]
t 2—-1
T =a+ §¢(b7 a)vy =a+ Tw(ba a)v

then x,y € [a,a + ¥(b,a)]z and % € Z. Since f is a preinvex function on [z, y]z
(or [y, x]z), we have

! (x + §w<y7x>) < U@+ ),

&)

that is
f (a + %w(b, a) + %1/; (a 4 %@A(b, a),a+ %p(b, a)>)
<3 |7 (at 25 r000) 11 (at jo0.0)]

A

2
1 [2—75

IN

t t 2—1t
3 Tf(b) + §f(a) + §f(b) + Qf(a)]

fla) + f(b)
TR

According to Proposition 2.1, we have

f (a + 500, a)) = [f <a + 200, a)) 4+ f (a + 0, a))]

_fla)+ f(b)
- 2

a—1
Multiplying each term by (@t + 1) and integrating with respect to ¢

over ']I‘[ )]’ then we have

a+ 71/;(!;@) ,a+(ba

/T[aw”(fb;‘”,aw»(b‘a)]
|/
<z
=3 |/
v
T

SO0 | w0 41) " &

[aJrM,aer(bwa)]

f (a + %w(b, a)) <¢(l;’a)t + 1>a_1£t

(w(l;, a), . 1) " ¥ (a + ?1/}(5, a)) At (3.57)

[a+ 28D ativ,0]

<W;’a)t + 1) o f (a - %w(b, a)) At

[a-%—wyaﬁ—w(b«a)]
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namely,
ns - f (a + %w(ba a))
a1
B / v(ba), . 1) f (a + Hw(b,a)) At
2 T[ﬁM,aw(bm] ? 2
| o (3.58)
a—1
N vba), , 1) / (a + ;W’“)) A
T[ny+@,a+w<b‘a>]
SM 12,
where
a=T
e [ (Fgte)
Tt 259 o4y 6,0)]
Define
a=T
rgz/ (q/;(l;,gz)tJrl) f<a+22_t¢(b,a)> At,
T[a+@,a+w(bm]
o=t
o / (Z/}(l;,a)t i 1) f <a + %q/}(b, a)> Et.
T

[a_*_wya-ﬁp(b,a)]

Calculate r3 and ry separately below.
. ar _
First, we assert that r3 = ﬁ(ﬂr Hon V= f () lt=atv(b,a)-

b,a
Let s3(t) : {a + %, a+ (b, a)]Z — T[a+w(§*“)7a+w(b7a)} be defined by s3(t) =

2 — i(gg)) with ¢t € [a + @,a + (b, a)}Z. Then s3(t) is decreasing, s3'(t) =

a+ %Lp(b,a) and (—sy )(t) = ﬁ.
In addition, let g5(t) = (a+(b,a) —t+1)*"1, and F5(t) = g3(¢)f(t). Then we
obtain

a—1
R (0) = (o5 )15 ) = (g +1) 7 (a2 w0a),

S0, 13 = Fy(s71(1))At.
0= g PO
According to Theorem 2.2, we obtain
1=s3 (aer“;’a)) L _ a+1(b,a)
rs :/ (Fyos; )(t)At:/ Fy(r)(=sY)(1)Vr
0=s3(a+v(b,a)) a+t L®a)
2 a+ip(b,a) —
~ Y(b,a) /Wm,a) (a+9(ba) -7+ 1) T f(r)Vr
2T’ ()

w(b’ a) a+ 2,
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2T (o)
o J (&) |t=a-
P(b,a) a+%f()‘t

Assume that ¢t = W with 7 € |a + @,a + (b, a)]Z.

Next, we claim that r4 =

Setting 7 = 2a 4+ ¢(b,a) — 7 and t = %ib_:)), we have 7 € {a,a + @}Z and
f c T[ +7/«'(b a)} Hence

ry = /T (w(l;’ Dy 1) o f (a + %Zb(b, a)) At

[a+%,a+w(bﬂ)]

_ /T[ o (W;"‘)ﬂ 1) o ! (a + gw(b, a)) Al

Let s4(t) : [a, a+ M}Z — T[a7a+’”(’;’“’] be defined by s4(t) = ?l,[)(fb_;l)) with t €

[a, a+ W}Z. Then s4(t) is increasing, s; ' (t) = a + 2¢(b, a) and s5(t) = ﬁ.
In addition, let g4(t) = (t — a+ 1)®~1, and Fy(t) = g4(t) f(t). Then we obtain

Fi(s(0) = (s (001 0) = (o 1) 1 (ot o).

‘ _ 1A G
S0 T4 = fT[a a+ U)(b,a)] F4(S4 (t))At
. pl

Using Theorem 2.1, we get

1 54( +1/)(b a)) N a+w(b a)
T4 = / (F40521)(£)A£:/ F4(T)S4A(T)AT
0=s4(a) a
9 [e+te -
el e
2F(a)
= »(b a) +w<b o f()|i=a-
Thus, we have
a-+ 1w b,a)
2
I'a Y
w(é, C)L) [a+w<b o V7O f(O)]i=atp.a) + Va+@f(t)|t=a (3.59)
a
BSOS U
which means inequality (3.56) hold. 0

Remark 3.13. Concerning the above discrete H-H inequalities for fractional order,
we obtain

(1) For a = 1, Theorem 3.10 reduces to Theorem 3.8.
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(2) According to the relationship between the delta right fractional sum and the
nabla right fractional sum: A, % f(a —a) = V, *f(a), the following inequality
are equivalent to inequality (3.56):

f (a + %T/J(b, a))
r
Snﬂz((z)a) [a+W’:;“>v_af(t)|t_a+¢(b,a) + A;j‘wi
fla) + 1 (b)
2 )

f(t)|t:a7a (360)

1
<

where 75 is given in Theorem 3.10.

Remark 3.14. If we choose (b,a) = b — a in Theorem 3.10, the inequality (3.56)
reduce to inequality (3.47).

4. Conclusion

We define two new convex functions: h-convex and preinvex on the time scale
7Z. Based on these two new definitions, some new discrete Hermite-Hadamard in-
equalities for integer order and fractional order are obtained. Our results generalize
the discrete Hermite-Hadamard inequalities for P-functions, convex functions, and
s-convex functions in the second sense on the time scale Z. In addition, by dividing
the defined intervals differently, two new generalized discrete Hermite-Hadamard
inequalities for h-convex on the time scale Z are obtained, which is another im-
portant innovation of this paper. These results play an important role in studying
the qualitative properties of difference equations. Some inequalities involving other
time scales or sum operators also can be provided in the future.
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