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Role of Cooperative Hunting among Predators
and Predator-Dependent Prey Refuge Behavior in

a Predator-Prey Model∗

Miqin Chen1 and Wensheng Yang1,2,†

Abstract The investigation of predator cooperative hunting and prey refuge
is crucial for understanding ecological dynamics. In recent years, the role
of cooperative hunting or prey refuge in predator-prey systems has received
much attention from researchers. However, the study on the combined effects
of predator cooperation and predator-dependent prey refuge in the predation
system has not yet been investigated. Therefore, in this paper, we propose a
prey-predator model with both the factors of predator-dependent prey refuge
and cooperative hunting. The positivity and boundedness of the system’s
solutions are investigated, followed by the existence and local stability of the
equilibrium points. Sufficient conditions for the existence of Hopf bifurcation
of the system are obtained. The direction of Hopf bifurcation in the system is
investigated by using the center manifold theorem and normal form method.
From the analysis of the model, we find that the dependence coefficient m of
the prey refuge ratio on the number of predators may be responsible for the
stability of the system. The results also indicate that suitable competition
coefficients s and cooperative hunting coefficients α between predators may
enable the species to coexist in the long run. Furthermore, we observe two limit
cycles of the system when the parameters satisfy certain conditions. Finally,
the dynamical behavior of the model is performed through intriguing numerical
simulations.
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prey refuge, Hopf bifurcation
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1. Introduction

The predator-prey model is an important mathematical model in population dynam-
ics and an important study branch in the field of biomathematics. Understanding
the regulating mechanism in the process of predation and then accurately predicting
and estimating the population size of predator and prey is enhanced by studying the
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various features of predator-prey models. When investigating various predator-prey
models in recent years, many scholars have taken the cooperative hunting behavior
of predator populations into consideration [1–5].

Cooperative hunting means that predator groups work together to improve the
efficacy of foraging. For example, cooperative hunting exists in crocodiles [6], li-
ons [7], wolves [8], spiders [9], eagles [10], ants [11] and other species. To more
adequately describe the phenomenon of cooperative hunting across predator popu-
lations, Cosner et al. [12] proposed a functional response in 1999 in which a predator
feeds in a spatially linear pattern and the predators congregate when they encounter
a group of prey. In 2010, Berec [13] used ordinary differential equations to simulate
a predator-prey model with Holling-II functional response to explain the foraging
facilitation between predators and discussed the influence of different intensities of
predator interference on the dynamics of the predator-prey model. Following that,
in 2017, Alves and Hilker [14] argued that cooperative hunting has an impact on
predator population attack rates and that it is necessary to add a cooperative item
to predator population attack rates, and proposed the following functional response

Φ(x, y) = (l + αy)x,

where x and y denote prey and predator, respectively; both l and α are positive
model parameters. l is the attack rate of a predator on prey, α is the cooperative
hunting efficiency of a predator, and αy is the cooperative term. Therefore, they
developed the following model of cooperative hunting with the Holling-I functional
response 

dx

dt
= rx

(
1− x

k

)
− (l + αy)xy,

dy

dt
= e(l + αy)xy − dy,

(1.1)

where r is the intrinsic growth rate of prey per capita, k is the carrying capacity
of prey, e is the conversion efficiency, and d is the predators’ per capita mortality
rate. All parameters are positive. There have been many results in the discussion
of model (1.1). For instance, Zhang et al. [15] investigated the existence and
stability of the positive equilibrium point as well as the optimal control problem
after introducing the Allee effect into the model (1.1). Pal et al. [16] considered the
impact of hunting cooperation and the fear factor on the dynamics of the predator-
prey model by incorporating a fear factor into the model (1.1). Halder et al. [17]
investigated that cooperative hunting produced both fear and Allee effect under
Holling type I and Holling type II functional response. Recently, Thirthar et al.
[18] examined the effect of fear in a predator-prey model with additional food, prey
refuge, and harvesting by the super predator.

In an ecosystem, fear induced refuge is another fascinating and critical factor
that is acquired by prey. It plays an important role in balancing predator-prey
interactions. Thus, for an ecosystem, the concept of refuge is worthy of investigation
[19]. For modeling purposes, two types of refuges are commonly used by many
researchers. The quantity of prey in cover xr is proportional to prey density x,
that is, xr = θx. The other one, for which the refuge population is a fixed quantity
xr = θ. Ruxton [20] considered xr = θxy, where y is predator density. In the
present article, we are interested in investigating the situation where prey in the
refuge is related to the number of predators which is xr = θ(1− 1

1+my )x = θmy
1+myx,
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where θ is the prey refuge coefficient and m indicates that the prey refuge ratio is
a coefficient dependent on the number of predators. Further, xr is monotonically
increasing with respect to y; if y = 0, then xr = 0, which means if the predator
does not exist, the prey refuge population is zero; if y tends to infinity, then this
translates into a ratio refuge, which is a common type. Thus, the number of prey

available to the predator is x− xr = 1+(1−θ)my
1+my x.

Inspired by the above work, in this paper we will consider prey refuge based
on the model (1.1), where the number of prey refuge depends on the number of
predators. Compared to model (1.1), we consider that this predator-dependent
refuge will be more ecologically meaningful than proportional or constant refuge.
We will consider the following model

dx

dt
= rx(1− x

k
)− (l + αy)

1 + (1− θ)my

1 +my
xy,

dy

dt
= e(l + αy)

1 + (1− θ)my

1 +my
xy − (d+ sy)y,

(1.2)

with initial conditions:

x(0) ≥ 0, y(0) ≥ 0,

where x(t) and y(t) denote the number of prey and predator populations respec-
tively, at any time t. And the biological significance of other parameters are de-
scribed in Table 1. For ecological realism, we restrict θ such that (1− θ) > 0.

Table 1. Parameters and their descriptions used in system (1.2).

Parameters Description

r Intrinsic prey growth rate

k Environmental intake capacity

l Attack rate per predator and prey

α Predator hunting cooperation

θ Prey refuge coefficient

m Prey refuge rate depends on the number of predator

e Conversion factor

d Natural mortality rate of the predator

s Intraspecific competition rate of predator

The rest of the paper is organized as follows. In Section 2, we discuss the
boundedness and positivity of the solution of the system (1.2) and investigate the
existence of the equilibrium points. In Section 3, we determine the local stability
of each equilibrium point. In Section 4, we establish criteria for local and global bi-
furcations using center-manifold and normal-form theory. All our analytical results
are verified numerically using MATLAB in Section 5. Finally, based on the above
discussion, we give some conclusions in Section 6.
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2. Preliminary analysis

2.1. Positivity and boundedness of the solution

In this subsection, we shall first show the positivity and bounds solutions to the
system (1.2), which are vital for the biological understanding of the system and the
subsequent analysis.

Lemma 2.1. All the solutions of system (1.2), which start in R2
+, are always pos-

itive and bounded.

Proof. Firstly, we want to prove that (x(t), y(t)) ∈ R2
+ for all t ∈ [0,+∞). For

system (1.2) with initial conditions x(0) > 0, y(0) > 0, we have

x(t) = x(0) exp

{∫ t

0

[
r(1− x(s)

k
)− (l + αy(s))

1 + (1− θ)my(s)

1 +my(s)
y(s)

]
ds

}
,

y(t) = y(0) exp

{∫ t

0

[
e(l + αy(s))

1 + (1− θ)my(s)

1 +my(s)
x(s)− (d+ sy(s))

]
ds

}
,

(2.1)
which shows that all the solutions of system (1.2) are always positive for all t ≥ 0.

Secondly, we will prove the boundedness of the solution. Let x(t), y(t) be the
solution of the system (1.2), and define the function W (t) = x(t)+ 1

ey(t) and η > 0
be some constant. Then

dW

dt
=

dx

dt
+

1

e

dy

dt
,

= rx(1− x

k
)− 1

e
(d+ sy)y.

Next,

dW

dt
+ ηW = rx(1− x

k
)− 1

e
(d+ sy)y + ηx+

1

e
ηy,

= x
(
r(1− x

k
) + η

)
+

1

e
(η − (d+ sy))y,

≤ x
(
r(1− x

k
) + η

)
+

1

e
(η − d)y.

Now, we choose η ∈ (0, d). The maximum value of x
(
r(1− x

k ) + η
)
is (η+r)2k

4r .
Then, we have

dW

dt
+ ηW ≤ (η + r)2k

4r
= β.

Therefore, applying differential inequality, we obtain

0 ≤ W (t) ≤ β

η
+W (x(0), y(0))eηt.

Thus, all solutions of system (1.2) enter into the region D = {(x, y) : 0 ≤
W (x, y) ≤ β

η . This shows that every solution of the system (1.2) is bounded.
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2.2. The existence of equilibria

(i) The trivial equilibrium E0(0, 0) always exists.

(ii) The predator free equilibrium E1(k, 0) is always feasible.

(iii) Now we analyze the existence of the positive equilibrium E∗(x∗, y∗), where the
expressions of x∗, y∗ can be obtained by solving the following equations

r(1− x∗

k
)− (l + αy∗)

1 + (1− θ)my∗

1 +my∗
y∗ = 0,

e(l + αy∗)
1 + (1− θ)my∗

1 +my∗
x∗ − (d+ sy∗) = 0.

(2.2)

From (2.2), we solve that

x∗ =
(d+ sy∗)(1 +my∗)

e(l + αy∗)(1 + (1− θ)my∗)
> 0,

and y∗ is the root of the equation

a1y
∗5 + a2y

∗4 + a3y
∗3 + a4y

∗2 + a5y
∗ + a6 = 0, (2.3)

where

a1 = ekα2m2(θ − 1)2,

a2 = 2ekα2m(1− θ) + 2eklαm2(θ − 1)2,

a3 = ekα2 + ekαm(4l − rm)(1− θ) + ekl2m2(θ − 1)2 + rsm2,

a4 = dm2r + 2mrs+ 2ekl2m(1− θ) + αekmr(θ − 2) + eklm2r(1 + θ) + 2αekl,

a5 = rs+ 2dmr + ekl2 − αekr + eklmr(θ − 2),

a6 = r(d− ekl).

3. Stability analysis

We compute the Jacobian matrix for system (1.2) to investigate the local stability
of equilibria whenever they exist. J(x, y) of system (1.2) at any point (x, y) is given
by

J(x, y) =

J11 J12

J21 J22

 , (3.1)

where
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α = 0.86, elk < d
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α = 3.54, elk < d

Figure 5. The number of possible positive internal equilibrium points for different values of hunting
cooperation α; (a) the system (1.2) has no positive equilibrium point for α = 0.5; (b) there exists only
one equilibrium point for α = 0.64; when α continues to increase, the graphs (c) and (d) show that the
system (1.2) will have two equilibrium points. The other parameters are as follows: r = 0.28, k = 4,
l = 0.05, θ = 0.26, m = 0.03, e = 0.18, d = 0.12, s = 0.03.
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α = 0.5, elk > d
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α = 0.64, elk > d
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α = 0.86, elk > d
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α = 3.54, elk > d

Figure 10. The number of possible positive internal equilibrium points for different values of hunting
cooperation α. No matter what value α takes, the system (1.2) has only one positive equilibrium point
when the parameter satisfies elk > d. The other parameters are as follows: r = 0.28, k = 4, l = 0.05,
θ = 0.26, m = 0.03, e = 0.18, d = 0.01, s = 0.03.
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J11 = r(1− 2x

k
)− (l + αy)

1 + (1− θ)my

1 +my
y,

J12 = −αxy(1 + (1− θ)my)

1 +my
− (l + αy)(1− θ)mxy

1 +my
− x(l + αy)(1 +my(1− θ))

1 +my

+
mxy(l + αy)(1 +my(1− θ))

(1 +my)2
,

J21 = e(l + αy)
1 + (1− θ)my

1 +my
y,

J22 = eα
(1 + (1− θ)my)xy

1 +my
+

ex(l + αy)(1 + 2my(1− θ))

1 +my

− e(l + αy)(1 + (1− θ)my)mxy

(1 +my)2
− d− 2sy.

The local stability is analyzed below by calculating the Jacobian matrix correspond-
ing to each equilibrium point.

Accordingly, for the trivial equilibrium point E0, the Jacobian matrix takes the
form as

J(E0) =

r 0

0 −d

 . (3.2)

The eigenvalues of J(E0) are r and −d. Therefore, E0 is a saddle point. So we
have the following theorem.

Theorem 3.1. The trivial equilibrium E0 is always unstable.

Next, the Jacobian matrix of E1 is given by

J(E1) =

−r kl

0 elk − d

 . (3.3)

The eigenvalues of the Jacobian matrix at E1 are −r and elk − d. Since all
parameter values are non-negative, the trivial equilibrium E1 is stable if elk < d
and unstable if elk > d. Based on the above discussion, we have the following
Theorem.

Theorem 3.2. Predator-free equilibrium point E1 is locally asymptotically stable if
elk < d; otherwise, it is a saddle point if elk > d.

Evaluating the Jacobian matrix of the model system (1.2) at the interior equi-
librium point E∗ = (x∗, y∗), we have

J(E∗) =

J∗
11 J∗

12

J∗
21 J∗

22

 ,
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where

J∗
11 = −rx∗

k
,

J∗
12 = −αx∗y∗(1 + (1− θ)my∗)

1 +my∗
− (l + αy∗)(1− θ)mx∗y∗

1 +my∗
− d+ sy∗

e

+
mx∗y∗(l + αy∗)(1 +my∗(1− θ))

(1 +my∗)2
,

J∗
21 =

d+ sy∗

x∗ ,

J∗
22 =

(d+ sy∗)αy∗

l + αy∗
+

ex∗(l + αy∗)(1 + 2my∗(1− θ))

1 +my∗

− e(l + αy∗)(1 + (1− θ)my∗)mx∗y∗

(1 +my∗)2
− d− 2sy∗.

The characteristic equation around E∗ is λ2−Tr(J(E∗))λ+Det(J(E∗)) = 0, where

Tr(J(E∗)) = J∗
11 + J∗

22,

Det(J(E∗)) = J∗
11J

∗
22 − J∗

12J
∗
21.

(3.4)

Now, if Tr(J(E∗)) < 0 and Det(J(E∗)) > 0, by using the Routh-Hurwitz criterion,
all the eigenvalues of J(E∗) have a negative real part. According to the above
discussion, we can obtain the following theorem.

Theorem 3.3. The positive equilibrium point E∗ is always locally asymptotically
stable if Tr(J(E∗)) < 0 and Det(J(E∗)) > 0.

4. Bifurcation analysis

Now, in this section, we consider the bifurcation of the system (1.2) when there
exists a positive equilibrium point E∗. Then, we focus on the conditions for the
existence of Hopf bifurcation in the system (1.2) and the direction of the Hopf
bifurcation of the system (1.2) occurring at the positive equilibrium point E∗.

Define µ1 = Tr(J(E∗)), µ2 = Det(J(E∗)). Select m as the hopf bifurca-
tion parameter if there exists m = mhb, such that H1 : tr(J(E∗))|m=mhb

= 0,
det(J(E∗))|m=mhb

> 0 and 2µ′
1µ2 + µ1µ

′
2 ̸= 0 holds, where µ′

1 and µ′
2 denote the

derivatives of µ1 and µ2 with respect to m, respectively.

Theorem 4.1. Assume that condition H1 holds. When m = mhb, the system (1.2)
undergoes a Hopf bifurcation at the positive equilibrium point E∗.

Proof. The Jacobian the characteristic equationmatrix at the positive equilibrium
point E∗ corresponds to the following characteristic equations

λ2 − µ1λ+ µ2 = 0. (4.1)

When m = mhb, µ1 = 0, the characteristic equation (4.1) can be described as

λ2 + µ2 = 0, (4.2)
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then, equation (4.2) will have a pair of purely imaginary roots as λ1 = i
√
µ2,

λ2 = −i
√
µ2. Next, differentiating the characteristic equation (4.1) with respect to

m, we will obtain

2λ
dλ

dm
− λµ′

1 −
dλ

dm
µ1 + µ′

2 = 0. (4.3)

Rectifying the equation (4.3) we can get

dλ

dm
=

λµ′
1 − µ′

2

2λ− µ1
, (4.4)

then,

dλ

dm

∣∣∣∣
λ=i

√
µ2

=
2µ′

1µ2 + µ1µ
′
2

4µ2 + µ2
1

+ i[
2
√
µ2µ

′
2 − µ1

√
µ2µ

′
2

4µ2 + µ2
1

]. (4.5)

Consequently,

Re

(
dλ

dm

)∣∣∣∣
λ=i

√
µ2

=
2µ′

1µ2 + µ1µ
′
2

4µ2 + µ2
1

̸= 0. (4.6)

Thus, we know that system (1.2) undergoes a Hopf-bifurcation at E∗ as s passes
through value mhb.

Next, we calculate the first Lyapunov number σ at the system (1.2) positive
equilibrium point E∗ to further explore the nature of the limit cycle.

Let u = x− x∗, v = y − y∗. The system (1.2) reduces to

du

dt
=a10u+ a01v + a11uv + a20u

2 + a02v
2 + a30u

3 + a21u
2v + a12uv

2 + a03v
3

+ P (u, v),

dv

dt
=b10u+ b01v + b11uv + b20u

2 + b02v
2 + b30u

3 + b21u
2v + b12uv

2 + b03v
3

+Q(u, v),

where

a10 =− rx∗

k
,

a01 =− αy∗
m+ sy∗

e(l + αy∗)
− (m+ sy∗)(1− θ)my∗

e(1 + (1− θ)my∗)
− msy

∗

e
+

(m+ sy∗)my∗

e(1 +my∗)
,

a20 =− r

2k
, a11 = 0,

a02 =
α(l + αy∗)(m+ 2sy∗)− α2(my∗ + sy∗2)

2e(l + αy∗)2

− (1− θ)m(m+ 2sy∗)(1 + (1− θ)my∗)− (1− θ)2m2y∗(m+ sy∗)

2e(1 + (1− θ)my∗)2

− s

2e
− (1 +my∗)(m+ 2sy∗)m−m2(my∗ + sy∗2)

2e(1 +my∗)2
,

.
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a30 =0, a21 = 0, a12 = 0,

a03 =
2αs

12e(l + αy∗)− αl(m+sy∗)
12e2(l+αy∗)4

− 2ms(1− θ)

12e(1 + (1− θ)my∗)

− 2m2(1− θ)2(m+ 2sy∗ +msy∗2)

12e(1 + (1− θ)my∗)3
+

2ms

12e(1 +my∗)

− 2m2(m+ 2sy∗ +msy∗2)

12e(1 +my∗)3
,

b10 =
(m+ sy∗)y∗

x∗ ,

b01 =
(m+ sy∗)

l + αy∗
+

(m+ sy∗)(x∗ + 2(1− θ))

(1 + (1− θ)my∗)x∗ − (m+ sy∗)my∗

1 +my∗
− d− 2sy∗,

b20 =
−(m+ sy∗)y∗

2x∗2 , b11 =
m+ 2sy∗

x
,

b02 =
mα(1 + 2sy∗)

2(l + αy∗)
− (m+ sy∗)α2y∗

2(l + αy∗)2
+

s(x∗ + 4(1− θ)mx∗y∗) + 2(1− θ)m2x∗

2(1 + (1− θ)my∗)x∗

− m(1− θ)(m+ 2sy∗)(x∗ + 2(1− θ)mx∗y∗)

2(1 + (1− θ)my∗)2x∗ − m2(1 + 2sy∗)

2(1 +my∗)

+
m2y∗(m+ sy∗)

2(1 +my∗)2
− 4s,

b30 =
(m+ sy∗)y∗

6x∗3 , b21 =
−(m+ 2sy∗))

4x∗2 , b12 =
s

x∗ ,

b03 =
2mαs

12(l + αy∗)
− mα2(1 + 2sy∗)

12(l + αy∗)2
+

2(m+ sy∗)α3y∗(1 + (1− θ)my∗)2x∗

12(l + αy∗)3

+
4(1− θ)smx∗

12(1 + (1− θ)my∗)x∗

− m(1− θ)(sx∗ + 2(1− θ)msx∗y∗) + 2(1− θ)mx∗(m+ sy∗)

12(1 + (1− θ)my∗)2x∗

+
2m2(1− θ)2(m+ sy∗)(x∗ + 2(1− θ)mx∗y∗)

12(1 + (1− θ)my∗)3x∗

− m2(2s−m)

12(1 +my∗)2
+

2m3y∗(m+ sy∗)

12(1 +my∗)3
,

P (u, v) =
+∞∑

i+j=4

aiju
ivj , Q(u, v) =

+∞∑
i+j=4

b4iju
ivj .

.

Hence the first Lyapunov number σ for a planar system is given by

σ =− 3π

2a01∆
3
2

{[a10b10(a211 + a11b02 + a02b11) + a10a01(b
2
11 + a20b11 + a11b02)

+ b210(a11a02 + 2a02b02)− 2a10b10(b
2
02 − a20a02)− 2a10a01(a

2
20 − b20b02)

− a201(2a20b20 + b11b20) + (a01b10 − 2a210)(b11b02 − a11a20)]

− (a210 + a01b10)[3(b10b03 − a01a30) + 2a10(a21 + b12) + (b10a21 − a01b21)]},

where ∆ = a10b01 − a01b10.

The periodic solution is subcritical or supercritical in nature if the value of σ > 0
or σ < 0, respectively.
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5. Numerical simulations

In this section, we will verify the theoretical results obtained in the previous sec-
tions through Matlab numerical simulations. In order to get a more comprehensive
understanding of the existence and stability of the equilibrium point of the system
(1.2). We divide the parameter selection into two categories, i.e., parameter condi-
tions satisfying elk < d or elk > d. First, we take into consideration the following
parametric values:

r = 0.28, k = 4, l = 0.05, θ = 0.26, m = 0.03, e = 0.18, d = 0.12, s = 0.03,

(5.1)
and the stability of the system (1.2) at each positive equilibrium point is shown in
Figure 3. Here, we choose a different predator hunting coefficient α to analyze, and
we find that in Figure 3(a), two nullclines intersect at the unique positive equilib-
rium point E1∗ = (2.7532, 0.33275), and the eigenvalues at E1∗ are−0.062588 and
−0.035185. Obviously, E1∗ is a nodal sink. In this case, both species may survive in
a coexisting steady state. For α = 0.68, both prey and predator nullclined intersect
at two positive equilibrum points in Figure 3(b). The eigenvalues of the equilibrium
point E2∗

2 = (2.4413, 0.36606) are −0.036582 + 0.09008i and −0.036582− 0.09008i.
The complex eigenvalues have negative real parts. Thus, the positive equilibrium
point E2∗

2 is locally asymptotically stable. On the other hand, the eigenvalues of the
equilibrium point E1∗

2 = (3.1998, 0.25288) are (−0.17655, 0.043673), therefore, E1∗
2

is a saddle point. In Figure 3(c), α = 1, and it is found that E2∗
2 = (1.7164, 0.37618)

is still a locally asymptotically stable point. When α is increased continuously to
1.5, a limit cycle for the system (1.2) appears in Figure 3(d). In Figure 3(e) and
Figure 3(f), there is a spiral source at E2∗

2 . In addition, in Figure 3, the boundary
equilibrium point E1 is always locally asymptotically stable.

Then, we select a set of parameters to satisfy elk < d, as follows:

r = 0.28, k = 4, l = 0.05, θ = 0.26, m = 0.03, e = 0.18, d = 0.01, s = 0.03,

(5.2)
with initial condition (0.3, 0.6). It is clear to see that this set of parameters satisfies
elk > d. In Figure 4(a), it is found that the eigenvalues of the equilibrium point
E∗

1 = (0.28679, 0.52256) are −0.0063774 + 0.11165i and −0.0063774 − 0.11165i.
Thus, the interior equilibrium point E∗

1 is a spiral sink. In Figure 4(b), for α = 3.54,
it is noted that two limit cycles appear in the system. In addition, the boundary
equilibrium point E1 = (4, 0) is always a saddle point.

After examining the stability of the equilibrium point, time series, phase dia-
gram, and Hopf bifurcation are used to undertake a temporal study of the system
(1.2). In Figure 5, when α is between 0.5 and 3.54, the increase in predator-prey
cooperation coefficient α has a negative effect on the prey population, that is, the
prey population decreases. When α = 3.54, the system exhibits oscillations. In Fig-
ure 6, s varies from 0.01 to 0.18, and the results show that interspecific mortality s
can change the stability of the system (1.2). It is found that when the competition
coefficient s between predators increases to 0.18, the system exhibits a steady state.
Further, Figure 7 shows that the increase in the value of the dependence coefficient
m of the prey refuge ratio on the number of predators may be responsible for the
stability of the system.

Next, in Figure 8, the bifurcation of the system (1.2) with respect to α is plotted.
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(a) α = 0.64, elk < d
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(b) α = 0.68, elk < d
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(c) α = 1, elk < d
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(d) α = 1.5, elk < d
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(e) α = 2.54, elk < d
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(f) α = 3.54, elk < d

Figure 17. Phase diagram of equilibrium point stability at different values of cooperative hunting α.
The other parameters are as follows: r = 0.28, k = 4, l = 0.05, θ = 0.26, m = 0.03, e = 0.18, d = 0.12,
s = 0.03.
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In the bifurcation diagram, the blue solid curve represents a stable steady state, the
red solid curve indicates instability, and the green region indicates the bifurcation
of the periodic solution. It can be seen that if we change the value of α from 0.4
to 1.8, the system will undergo a Hopf bifurcation. The bifurcation diagram clearly
shows that as the value of α increases, the number of prey decreases, while the
number of predators rises first and then decreases. In addition, it is seen that a too
large value of α destabilizes the system and leads to a Hopf bifurcation. Thus, we
can conclude that an increase in cooperative hunting by predators can destabilize
the system. On the other hand, Figure 9 shows the bifurcation diagram of system
(1.2) with regard to s. The system experiences a Hopf bifurcation when the value
of s is changed from 0 to 0.25, as seen in this diagram. Further, we observe that
large values of s have the potential to stabilize the system, but values that are too
large lead all the predators to extinction.

Bifurcation diagram of system (1.2) with respect to m has been drawn in Figure
10. From this figure, it is seen that if we change the value of m from 0 to 0.8, then
the system possesses Hopf bifurcation. For 0 < m < 0.2314 the system exhibits
oscillating behavior, whereas for 0.2314 < m ≤ 0.8 the system exhibits stable
steady state behavior. As a result, it may be concluded that the prey refuge ratio
on the number of predators may be responsible for the stability of the system.

From the perspective of biology, cooperative predator hunting, prey refuge and
interspecific competition are the key factors affecting dynamical behaviors of the
prey-predator system. Initially, cooperative hunting is beneficial to the predator
because the prey is less aware of refuge during this period, and the predator provides
food for all cooperative members, so the number of predators grows. But with time,
prey adopts the refuge behavior, and the predator can only successfully capture a
certain quantity of prey. The predators’ interspecific competition is heightened by
this meager food supply. The predator will become an endangered species if this
interspecific rivalry reaches its peak.

6. Conclusion

In the present study, we consider the dynamical behavior of inter-predator coopera-
tion and prey population refuge. Firstly, we validate the positivity and boundedness
of solutions of system (1.2). Secondly, the existence and stability of the system equi-
librium points are analyzed in detail. Finally, theoretically, we study the sufficient
conditions for Hopf bifurcation with respect to the dependence coefficient of the
prey refuge ratio on the number of predators m in the system (1.2).

We have simulated the system (1.2) numerically by taking the values of the pa-
rameters. When the system parameters satisfy elk < d, the stability of the positive
equilibrium point E2∗

2 varies as the hunting cooperation coefficient α increases (see
Figure 3). When α = 1.5, the system will have a limit cycle, which disappears as α
continues to increase. When the system parameters satisfy elk > d, it can be seen
that the system has only one positive equilibrium point E∗

1 . When the value of the
hunting cooperative system α increases to 3.54, the system develops two limit cycles
(see Figure 4). It is observed that as the predator-prey cooperation coefficient α
increases, the system may be destabilized (see Figure 5, Figure 8). It is also found
that the increase of interspecific competition coefficient s may stabilize the system
(see Figure 6, Figure 9). It has been discovered that the increase in the value of the
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(a) α = 0.86, elk > d
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(b) α = 3.54, elk > d

Figure 20. Phase diagram of the local stability of the system (1.2). For α = 0.86, the system (1.2)
has a unique positive equilibrium E∗

1 , which is asymptotically stable; when the value of α increases to
3.54, two limit cycles appear in the system (1.2). The other parameters are as follows: r = 0.28, k = 4,
l = 0.05, θ = 0.26, m = 0.03, e = 0.18, d = 0.01, s = 0.03.

dependence coefficient m of the prey shelter ratio on the number of predators may
be responsible for the stability of the system (see Figure7, Figure 10). Therefore,
by analyzing the system, we obtain the range of the control parameters α, s, and
m that the predator-prey system can maintain.

Animals must engage in foraging to survive and reproduce. Different tactics
are used by predators and prey to improve their density. To capture prey more
effectively, predators cooperate in the hunting process. By cooperating in hunting
to obtain animals that are larger or faster than themselves, they also increase their
success rate in obtaining prey. As the rate of predator attack increases, prey popu-
lations defend themselves through refuge behavior. From a biological point of view,
our study concludes that in the predator-prey system, predators follow cooperative
hunting for food, while prey adopt a refuge behavior that is dependent on the preda-
tor to protect themselves from predators. These two factors play an important role
in balancing the system. As prey species follow refuge behavior, predators are forced
to use cooperation to capture more prey. It is due to the prey’s refuge behavior
that hunting food is in short supply, thus creating interspecific competition among
predators. Predators will inevitably become extinct as this interspecies conflict in-
tensifies, making them an endangered species. As a result, cooperative hunting and
predator-dependent prey refuge are crucial to the stability of ecosystems.
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(a) α = 0.5
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(b) α = 0.86
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(c) α = 1.34
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(d) α = 3.54

Figure 25. Time evolution, with parameters value r = 0.28, k = 4, l = 0.05, θ=0.26, m = 0.03,
e = 0.18, d = 0.03, s = 0.03.
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s = 0.035

0 500 1000

t

0.4

0.6

0.8

x

0 500 1000

t

0.35

0.4

0.45

y

y

t

x

0.35
0.8

0.4

1000
0.6

0.45

500
0.4 0

Figure 28. *

s = 0.085
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s = 0.18

Figure 30. Time evolution, with parameters value r = 0.28, k = 4, l = 0.05, θ=0.26, m = 0.03,
e = 0.18, α = 1.34, d = 0.03.
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Figure 31. Figure shows time series solutions of the system (1.2). The other parameters are as follows:
r = 0.28, k = 4, l = 0.05, θ=0.26, s = 0.03, e = 0.19, α = 1.34, d = 0.032.
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Figure 32. Bifurcation diagram of system (1.2) has been drawn with respect to α of prey and predator
by taking the parametric values r = 0.28, k = 4, l = 0.05, θ=0.26, m = 0.03, e = 0.18, d = 0.12,
s = 0.03.
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Figure 33. Bifurcation diagram of system (1.2) has been drawn with respect to s of prey and predator
by taking the parametric values r = 0.28, k = 4, l = 0.05, θ=0.26, m = 0.03, e = 0.18, d = 0.12,
s = 0.03.
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Figure 34. Bifurcation diagram of system (1.2) has been drawn with respect to m of prey and predator
by taking the parametric values r = 0.28, k = 4, l = 0.05, θ = 0.26, α = 1.34, e = 0.19, d = 0.032,
s = 0.03, m = mhb = 0.2314.
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