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1. Introduction

Kuratowski established the fundamental concept of ideal topological spaces [23].
Later vaidyanathaswamy [30] studied the concept in point set topology. Hamlett
and Janković [20] discovered a new topology τ∗ that is finer than τ and uses previous
ones. They also created the concept of ideal topological spaces and introduced a new
Kuratowski closure operator cl∗. The contributions of Hamlett and Janković in ideal
topological spaces started the generalization of several important features in general
topology via topological ideal [21]. They also established the use of topological
ideals in the extension of topological notions by introducing the concept of I− open
sets [22]. Hatir and Noiri introduced the ideas of α− I− open, semi− I− open and
β − I− open sets in ideal topological spaces [18]. Hatir and Keskin introduced the
idea of strong β− I− open sets [16]. Ekici introduced the concepts of β∗− I− open
sets [10]. Aqeel and Bin Kuddah ( [6], [5]) presented the concepts of S.S∗−I− open
sets and S.P ∗ − I− open sets. Recently, the ideal topological spaces have evolved
through paactical research that has studied many new concepts, including [7,13,27].
We define strong β∗ − I− open sets and strong β∗ − I− closed sets in this article.
Several traits and qualities are investigated.

2. Preliminaries

In this section, we summarize the definitions and results that are needed in the
sequel. By a space, we always mean a topological space (X, τ) with no separation
properties assumed. If A ⊂ X, then cl(A) and int(A) denote the closure and interior
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of A in (X, τ), respectively. An ideal I in a topological space (X, τ) is a nonempty
collection of subsets of X that satisfies the following two conditions [23]:

(i) If A ∈ I and B ⊂ A, then B ∈ I.

(ii) If A ∈ I and B ∈ I, then A ∪B ∈ I.

Let (X, τ) be a topological space, and I be an ideal on X. An ideal topological
space is a topological space (X, τ) with an ideal I onX and it is denoted by (X, τ, I).
For a subset A ⊂ X, A∗(I, τ) = {x ∈ X : U ∩A /∈ I for each neighborhood U of x}
is called the local function of A with respect to I and τ [30]. It is obvious that
(.)∗ : p(X) → p(X) is a set operator. Throughout this paper, we use A∗ instead
of A∗(I, τ). cl∗(A) and int∗(A) denote the closure and interior of A in (X, τ∗)
respectively. In [20], Note cl∗(A) = A ∪ A∗ defines a Kuratowski operator for a
topology τ∗, finer than τ . We start with recalling some lemmas and definitions that
are necessary for this study in the sequel.

Among the results published in [1,2,4–6,10,12,14–16,18,19,22,24,25,28,29] we
mention the following results in the form of Definition 2.1.

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is called:

(i) pre − open if A ⊂ int(cl(A));

(ii) strong pre∗ − I− open(S.P ∗ − I− open) if A ⊂ int∗(cl∗(A));

(iii) α− I− open if A ⊂ int(cl∗(int(A)));

(iv) strong α∗ − I− open(S.α∗ − I− open) if A ⊂ int∗(cl∗(int∗(A)));

(v) semi∗ − I− open if A ⊂ cl(int∗(A));

(vi) strong semi∗ − I− open(S.S∗ − I− open) if A ⊂ cl∗(int∗(A));

(vii) β− open if A ⊂ cl(int(cl(A)));

(viii) β − I− open if A ⊂ cl(int(cl∗(A)));

(ix) β∗ − I− open if A ⊂ cl(int∗(cl(A)));

(x) strong β − I− open(S.β − I− open) if A ⊂ cl∗(int(cl∗(A)));

(xi) b− I− open if A ⊂ cl∗(int(A)) ∪ int(cl∗(A));

(xii) weakly semi −I− open if A ⊂ cl∗(int(cl(A)));

(xiii) ∗− dense in itself if A ⊂ A∗;

(xiv) ∗− perfect if A = A∗;

(xv) I− open if A ⊂ int(A∗);

(xvi) Almost strong −I− open if A ⊂ cl∗(int(A∗));

(xvii) Regular − open if A = int(cl(A));

(xviii) t− set if int(A) = int(cl(A));

(xix) t− I− set if int(A) = int(cl∗(A));

(xx) δ − I− open if int(cl∗(A)) ⊂ cl∗(int(A)).

The complement of pre − open ((resp. strong pre∗ − I− open, α − I− open,...))
sets is called pre − closed ((resp. strong pre∗ − I− closed, α− I− closed,...)) sets.
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Definition 2.2. [3] A subset A of an ideal topological space (X, τ, I) is called
I −R− closed if A = cl∗(int(A)).

Definition 2.3. [9] In an ideal topological space (X, τ, I), I is said to be codence
if τ ∩ I = ϕ.

Lemma 2.1. [20] Let (X, τ, I) be an ideal topological space, where I is codence.
Then the following hold:

(i) cl(A) = cl∗(A), for every ∗ − open set A,

(ii) int(A) = int∗(A), for every ∗ − closed set A.

Lemma 2.2. [17] Let A be a subset of an ideal topological space (X, τ, I) and U
be an open set. Then U ∩ cl∗(A) ⊂ cl∗(U ∩A).

Lemma 2.3. [8] Let (X, τ, I) be an ideal topological space and A be a ∗ − dense
in itself subset of X. Then A∗ = cl(A∗) = cl(A) = cl∗(A).

Corollary 2.1. [26] For each A ⊂ (X, τ, I) we have

(i) (∪cl∗(Aα) : α ∈ ∆) ⊂ cl∗(∪Aα : α ∈ ∆).

(ii) cl∗(∩Aα : α ∈ ∆)) ⊂ (∩cl∗(Aα) : α ∈ ∆).

Lemma 2.4. [11] An ideal topological space (X, τ, I) is I-extremally disconnected
if and only if cl∗(int(A)) ⊂ int(cl∗(A)), for every subset A of X.

Theorem 2.1. [26] For two subsets, A and B of a space (X, τ, I), the following
properties hold:

(i) If A ⊂ B, then cl∗(A) ⊂ cl∗(B);

(ii) cl∗(cl∗(A)) = cl∗(A);

(iii) cl∗(A ∩B) ⊂ cl∗(A) ∩ cl∗(B);

(iv) cl∗(A ∪B) = cl∗(A) ∪ cl∗(B);

(v) A ⊂ cl∗(A) ⊂ cl(A).

Lemma 2.5. [31] Let A and B be subsets of (X, τ, I) and let int∗(A) denote the
interior of A with respect to τ∗. The following properties hold:

(i) If A ⊂ B, then int∗(A) ⊂ int∗(B);

(ii) If A is an open in (X, τ, I), then A = int(A) and A = int∗(A);

(iii) int(A) ⊂ int∗(A) ⊂ A;

(iv) int∗(A ∩B) = int∗(A) ∩ int∗(B);

(v) int∗(A) ∪ int∗(B) ⊂ int∗(A ∪B).

3. Strong β∗−I− open sets and strong β∗−I− closed
sets

Based on the Definition 2.1 [(ii), (iii), (iv), (vi), (ix), (x)], in this section, we will
define the new type of sets: strong β∗− I− open, strong β∗− I− closed and deduce
their characteristics and relationships with other sets.
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Definition 3.1. Given a space (X, τ, I) and A ⊂ X, A is said to be a strong β∗−I−
open set (briefly S.β∗−I− open) if A ⊂ cl∗(int∗(cl∗(A))). We denote that all S.β∗−
I− open sets by S.β∗IO(X) that is S.β∗IO(X) = {A ⊂ X : A ⊂ cl∗(int∗(cl∗(A)))}.

Definition 3.2. A set F ⊂ (X, τ, I) is called strong β∗−I− closed (briefly S.β∗−I−
closed) if its complement is an S.β∗ − I− open set. We denote that all S.β∗ − I−
closed by S.β∗IC(X).

The following diagram holds for any subset A of a space (X, τ, I).

open(closed) β − open(closed)

pre− I − open(closed) S.β − I − open(closed) β − I − open(closed)

α− I − open(cosed) semi− I − open(closed)

S.P ∗ − I − open(closed) S.β∗ − I − open(closed) β∗ − I − open(closed)

S.α∗ − I − open(closed) S.S∗ − I − open(closed)

Figure 1.

Remark 3.1. The reverse of the implication in Figure 1 is not true in general as
shown in the following examples.

Example 3.1. Let X = {a, b, c, d}, τ = {ϕ,X, {a}, {b, c}, {a, b, c}} and
I = {ϕ, {a}, {d}, {a, d}}. Then

(i) A = {b} ∈ S.β∗IO(X), but A is not S.α∗−I− open, A is not S.S∗−I− open
and A /∈ τ .

(ii) A = {a, d} is β∗ − I− open while A /∈ S.β∗IO(X) .

Example 3.2. LetX = {a, b, c, d}, τ = {ϕ,X, {a}, {a, b}, {a, b, c}} and I = {ϕ, {a}}.
Then A = {b} ∈ S.β∗IO(X), but it is not S.β − I − open.

Example 3.3. Let X = {a, b, c}, τ = {ϕ,X, {a}, {c}, {a, c}} and I = {ϕ, {b}}.
Then A = {b, c} ∈ S.β∗IO(X) while A is not S.P ∗ − I− open.

Remark 3.2. It clear that, S.β∗−I−open sets and β−I−open sets are independent
concepts (Example 3.4).

Example 3.4. From Example 3.2 we get

(i) A = {a, c} is β − I− open while A /∈ S.β∗IO(X).
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(ii) A = {b, c} ∈ S.β∗IO(X) while A is not β − I− open.

Theorem 3.1. Let (X, τ, I) be an ideal topological space. Then A ∈ S.β∗IO(X) if
and only if cl∗(A) = cl∗(int∗(cl∗(A))).

Proof. Letting A ∈ S.β∗IO(X), then A ⊂ cl∗(int∗(cl∗(A))). We obtain
cl∗(A) ⊂ cl∗(cl∗(int∗(cl∗(A)))) = cl∗(int∗(cl∗(A))).

Also, it is obvious that cl∗(int∗(cl∗(A))) ⊂ cl∗(A). Thus cl∗ = cl∗(int∗(cl∗(A))).
Conversely, let cl∗(A) = cl∗(int∗(cl∗(A))). Since (cl∗) is a closure oprator and

A ⊂ cl∗(A), ∀A ⊂ X, by using hypothesis we have A ⊂ cl∗(int∗(cl∗(A))). Hence
A ∈ S.β∗IO(X).

Remark 3.3. S.β∗ − I− closed sets and β− closed sets are independent notions.
We show that with the following examples.

Example 3.5. From Example 3.1 if A = {b, c}, then A is a β− closed set but
A /∈ S.β∗IC(X).

Example 3.6. From Example 3.2 if A = {a}, then A is not β− closed set while
A ∈ S.β∗IC(X).

Theorem 3.2. Let (X, τ, I) be an ideal topological space and A,B ⊂ X. Then
B ∈ S.β∗IO(X) if there exists A ∈ S.β∗IO(X) such that A ⊂ B ⊂ cl∗(A).

Proof. It is obtained that cl∗(A) = cl∗(B) by taking the ∗− closure of
A ⊂ B ⊂ cl∗(A). Suppose that A ∈ S.β∗IO(X). Then A ⊂ cl∗(int∗(cl∗(A))) and
we obtain that

B ⊂ cl∗(A) ⊂ cl∗(cl∗(int∗(cl∗(A)))) = cl∗(int∗(cl∗(A))) = cl∗(int∗(cl∗(B))).
Therefore B ⊂ cl∗(int∗(cl∗(B))) and this shows that B ∈ S.β∗IO(X).

Corollary 3.1. Let B ⊂ (X, τ, I). Then B ∈ S.β∗IO(X) if there exists a ∗− open
set A such that A ⊂ B ⊂ cl∗(A).

Proof. This follows directly from Theorem 3.2.

Theorem 3.3. Let (X, τ, I) be an ideal topological space and A ⊂ X. Then the
following properties are equivalent:

(i) A ∈ S.β∗IO(X);

(ii) There exists S.P ∗ − I− open B in X such that B ⊂ cl∗(A) ⊂ cl∗(B) ;

(iii) cl∗(A) = cl∗(int∗(cl∗(A))).

Proof. (i) ⇒ (ii) Let A ∈ S.β∗IO(X). Then A ⊂ cl∗(int∗(cl∗(A))). We set
B = int∗(cl∗(A)), which is ∗− open, then we have B ⊂ int∗(cl∗(B)). Therefore, we
obtain B is S.P ∗ − I− open and B ⊂ cl∗(A) ⊂ cl∗(B).
(ii) ⇒ (iii) Assume that there exists S.P ∗ − I− open B in X such that
B ⊂ cl∗(A) ⊂ cl∗(B). Then B ⊂ int∗(cl∗(B)). This implies that

cl∗(B) ⊂ cl∗(int∗(cl∗(B)))

= cl∗(int∗(cl∗(cl∗(A))))

= cl∗(int∗(cl∗(A)))

⊂ cl∗(A)

⊂ cl∗(B).
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Therefore, we obtain cl∗(B) = cl∗(int∗(cl∗(A))).
On the other hand, since B ⊂ cl∗(A) ⊂ cl∗(B), cl∗(A) = cl∗(int∗(cl∗(A))).

(iii) ⇒ (i) This proof is given in Theorem 3.1.

Theorem 3.4. Let A ⊂ (X, τ, I). Then A ∈ S.β∗IC(X) if and only if
int∗(cl∗(int∗(A))) ⊂ A.

Proof. Let A ∈ S.β∗IC(X). Then X −A ∈ S.β∗IO(X) and hence
X −A ⊂ cl∗(int∗(cl∗(X −A))) = X − int∗(cl∗(int∗(A))).

Therefore, int∗(cl∗(int∗(A)) ⊂ A.
Conversely, let int∗(cl∗(int∗(A))) ⊂ A. Then X − A ⊂ cl∗(int∗(cl∗(X −A)))

and hence X −A ∈ S.β∗IO(X). Therefore, A ∈ S.β∗IC(X).

Theorem 3.5. Let (X, τ, I) be an ideal topological space and I be codense. Then
A ∈ S.β∗IC(X) if and only if int∗(cl(int∗(A))) ⊂ A.

Proof. Let A ∈ S.β∗IC(X). Then A ⊃ int∗(cl∗(int∗(A))) = int∗(cl(int∗(A))).
Conversely, let A ⊂ X such that A ⊃ int∗(cl(int∗(A))) ⊃ int∗(cl∗(int∗(A))). Hence
A ∈ S.β∗IC(X).

Theorem 3.6. Let (X, τ, I) be an ideal topological space. Then B ∈ S.β∗IC(X) if
there exists A ∈ S.β∗IC(X) such that int∗(A) ⊂B⊂ A.

Proof. IfA ∈ S.β∗IC(X) such that int∗(A) ⊂ B ⊂ A, thenA ⊃ int∗(cl∗(int∗(A)))
and int∗(A) = int∗(B). Hence,
B ⊃ int∗(A) ⊃ int∗(int∗(cl∗(int∗(A)))) = int∗(cl∗(int∗(A))) = int∗(cl∗(int∗(B))),
which shows that B ∈ S.β∗IC(X).

Corollary 3.2. Let B ⊂ (X, τ, I). Then B ∈ S.β∗IC(X) if there exists a ∗− closed
set A such that int∗(A) ⊂ B ⊂ A.

Proof. The proof can be obtained from Theorem 3.6.

Corollary 3.3. Let (X, τ, I) be an ideal topological space.Then cl∗(A) ∈ S.β∗IO(X)
if A ∈ S.β∗IO(X).

Proof. Let A ∈ S.β∗IO(X). Then by Theorem 3.1
cl∗(A) = cl∗(int∗(cl∗(A))).

Therefore, cl∗(A) ⊂ cl∗(int∗(cl∗(cl∗(A)))).
This implies cl∗(A) ∈ S.β∗IO(X).

Theorem 3.7. Let (X, τ, I) be an ideal topological space. If A ∪ (X −A∗) ∈
S.β∗IC(X), then A∗ −A ∈ S.β∗IO(X).

Proof. Suppose A∪(X −A∗) ∈ S.β∗IC(X). Since X−(A∗−A) = A∪(X −A∗),
then A∗ −A ∈ S.β∗IO(X).

Corollary 3.4. Let (X, τ, I) be an ideal topological space. Then A ∈ S.β∗IO(X) if
A is an I− open set .

Proof. Let A be an I− open set, then
A ⊂ int(A∗) ⊂ int(A∗ ∪A) = int(cl∗(A)) ⊂ int∗(cl∗(A)) ⊂ cl∗(int∗(cl∗(A))).
Hence A ∈ S.β∗IO(X).

Theorem 3.8. Let (X, τ, I) be an ideal topological space where I is codense and A
is ∗− dense in itself. Then A ∈ S.β∗IO(X) if and only if A is an almost strong
−I− open set.
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Proof. Let A ∈ S.β∗IO(X) and ∗− dense in itself. Then
A ⊂ cl∗(int∗(cl∗(A))) = cl∗(int(cl∗(A)) = cl∗(int(A∗)).

This implies that A is almost strong −I− open.

Conversely, let A be an almost strong −I− open set. Then
A ⊂ cl∗(int(A∗)) = cl∗(int(cl∗(A)) ⊂ cl∗(int∗(cl∗(A))).

This implies that A ∈ S.β∗IO(X).

Theorem 3.9. Let (X, τ, I) be an ideal topological space. Then if A is b− I− open
in X, then A ∈ S.β∗IO(X).

Proof. Let A be b− I− open in X. Then
A ⊂ cl∗(int(A)) ∪ int(cl∗(A)) ⊂ cl∗(int(cl∗(A))) ⊂ cl∗(int∗(cl∗(A))).

Thus, A ∈ S.β∗IO(X).

Theorem 3.10. Let (X, τ, I) be a space, A,B ⊂ X. Then

(i) If Uγ ∈ Sβ∗IO(X) (resp. Uγ ∈ Sβ∗IC(X)), ∀γ ∈ ∆, then
⋃

{Uγ : γ ∈ ∆}
∈ Sβ∗IO(X) (resp.

⋂
{Uγ : γ ∈ ∆} ∈ Sβ∗IC(X)).

(ii) If A ∈ Sβ∗IO(X) (resp. A ∈ Sβ∗IC(X)) and B ∈ τ (resp. B is closed ),
then A ∩B ∈ Sβ∗IO(X) (resp. A ∪B ∈ Sβ∗IC(X)).

(iii) If A ∈ S.β∗IC(X) and B is a t− I− set, then A∩B is a β∗ − I− closed set.

Proof.

(i) We only need to prove the case of Uγ ∈ Sβ∗IO(X).
Since Uγ ∈ Sβ∗IO(X), we have Uγ ⊂ cl∗(int∗(cl∗(Uγ))), for each γ ∈ ∆.
Then we obtain ⋃

γ∈∆ Uγ ⊂
⋃

γ∈∆ cl∗(int∗(cl∗(Uγ)))

⊂ cl∗(
⋃

γ∈∆ int∗(cl∗(Uγ)))

⊂ cl∗(int∗(
⋃

γ∈∆ cl∗(Uγ))

⊂ cl∗(int∗(cl∗(
⋃

γ∈∆ Uγ))).

Hence
⋃

γ∈∆ Uγ ∈ Sβ∗IO(X). With res. U ∈ Sβ∗IC(X)) the proof is similar.

(ii) We only need to prove the case of A ∈ Sβ∗IO(X).
Let A ∈ Sβ∗IO(X) and B ∈ τ . Then A ⊂ cl∗(int∗(cl∗(A))). Thus, we obtain

A ∩B ⊂ cl∗(int∗(cl∗(A))) ∩B

⊂ cl∗(int∗(cl∗(A)) ∩B)

= cl∗(int∗(cl∗(A)) ∩ int∗(B))

= cl∗(int∗(cl∗(A) ∩B))

⊂ cl∗(int∗(cl∗(A ∩B))).

Hence A ∩B ∈ S.β∗IO(X). With res. A ∈ Sβ∗IC(X) the proof is similar.

(iii) Let A ∈ S.β∗IC(X) and B is a t− I− set. Then A ⊃ int∗(cl∗(int∗(A))) and
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int(B) = int(cl∗(B)). Now

A ∩B ⊃ int∗(cl∗(int∗(A))) ∩B

⊃ int∗(cl∗(int∗(A))) ∩ int(B)

= int∗(cl∗(int∗(A))) ∩ int(cl∗(B)).

⊃ int(cl∗(int(A))) ∩ int(cl∗(int(B))).

= int(cl∗(int(A)) ∩ cl∗(int(B))).

⊃ int(cl∗(int(A) ∩ int(B))).

= int(cl∗(int(A ∩B))).

Hence A ∩B is β∗ − I− closed.

Remark 3.4. The intersection of two S.β∗ − I− open sets need not be an S.β∗ −
I − open set and the union of two S.β∗ − I− closed sets need not be an S.β∗ − I−
closed set and as is illustrated by the following example.

Example 3.7. Letting X = {a, b, c, d}, τ = {ϕ,X, {c}, {a, b, d}} and I = {ϕ, {a}},
then

(i) A = {a, b, c} ∈ S.β∗IO(X) and B = {a, c, d} ∈ S.β∗IO(X), but A ∩ B =
{a, c} /∈ S.β∗IO(X).

(ii) A = {d} ∈ S.β∗IC(X) and B = {b, c} ∈ S.β∗IC(X), but A ∪ B = {b, c, d} /∈
S.β∗IC(X).

Theorem 3.11. Let (X, τ, I) be an ideal topological space, where I is codense and
A is a ∗− dense set. Then the following statements are equivalent:

(i) A ∈ S.β∗IO(X),

(ii) A is an almost strong −I− open set,

(iii) A is a β∗ − I− open set.

Proof. (i) ⇒ (ii) Letting A ∈ S.β∗IO(X), then
A ⊂ cl∗(int∗(cl∗(A))) = cl∗(int(cl∗(A))) = cl∗(int(A∗)).

Hence A is almost strong −I− open.
(ii) ⇒ (iii) Letting A be an almost strong −I− open set, then

A ⊂ cl∗(int(A∗)) = cl∗(int(cl(A))) ⊂ cl(int∗(cl(A))).
Hence A is β∗ − I− open.
(iii) ⇒ (i) Letting A be β∗−I− open, then A ⊂ cl(int∗(cl(A))) = cl∗(int∗(cl∗(A))).
Hence A ∈ S.β∗IO(X).

Theorem 3.12. Let (X, τ, I) be an ideal topological space, where I is codense. Then
for any set A ⊂ X the followings hold:

(i) If A is a semi∗ − I− open, then A ∈ S.β∗IO(X).

(ii) A ∈ S.β∗IO(X) if it is regular − closed.

(iii) If A ∈ S.β∗IO(X), then it is β− open.
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Proof.

(i) Let A is semi∗ − I− open. Then
A ⊂ cl(int∗(A)) = cl∗(int∗(A)) ⊂ cl∗(int∗(cl∗(A))).

Hence A ∈ S.β∗IO(X).

(ii) Let A be a regular − closed set. Then
A = cl(int(A)) ⊂ cl(int∗(cl∗(A))) = cl∗(int∗(cl∗(A))).

Hence A ∈ S.β∗IO(X).

(iii) Let A ∈ S.β∗IO(X). Then
A ⊂ cl∗(int∗(cl∗(A))) = cl∗(int(cl∗(A))) ⊂ cl(int(cl(A))).

Hence A is β− open.

Remark 3.5. The converse of Theorem 3.12 is not true in general as shown in the
following example.

Example 3.8. From Example 3.7 we obtain

(i) A = {b} ∈ S.β∗IO(X) while it is not semi∗ − I− open.

(ii) A = {a, b, c} ∈ S.β∗IO(X), however A is not regular − closed.

(iii) A = {a, c} /∈ S.β∗IO(X), but A is β− open.

Corollary 3.5. Let (X, τ, I) be an ideal topological space and A ⊂ X. Then A ∈
S.β∗IO(X) if A is a pre− open and t−set .

Proof. Let A be pre − open. Then A ⊂ int(cl(A)). Since A is a t− set, then
int(cl(A)) = int(A). Now A ⊂ int(cl(A)) = int(A) ⊂ cl∗(int∗(cl∗(A))).
Hence A ∈ S.β∗IO(X) .

Theorem 3.13. Let (X, τ, I) be an ideal topological space where I is codense, A ⊂
X be a ∗− closed set and (X, τ, I) be an I − extremally disconnected. Then A is
an S.α∗ − I− open set if A ∈ S.β∗IO(X) .

Proof. Letting A ∈ S.β∗IO(X). Then
A ⊂ cl∗(int∗(cl∗(A))) = cl∗(int(A)) ⊂ int(cl∗(A)) = int(A) ⊂ int∗(cl∗(int∗(A))),
which shows A is S.α∗ − I− open.

Theorem 3.14. Let (X, τ, I) be an ideal topological space and A ⊂ X be a δ − I−
set where I is codense. Then A is an S.S∗ − I− open set if A ∈ S.β∗IO(X).

Proof. Let A ∈ S.β∗IO(X) and A is a δ − I− set. Then

A ⊂ cl∗(int∗(cl∗(A)))

= cl∗(int(cl∗(A)))

⊂ cl∗(cl∗(int(A)))

= cl∗(int(A))

⊂ cl∗(int∗(A)).

Hence A is S.S∗ − I− open.
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Theorem 3.15. Let (X, τ, I) be an ideal topological space and A ⊂ X be a ∗−
closed (resp. ∗− open) set. Then A is an S.S∗ − I− open (resp. S.S∗ − I− closed)
set if A ∈ S.β∗IO(X) (resp. A ∈ S.β∗IC(X)).

Proof. We only prove the case where A is ∗− closed.
Let A ∈ S.β∗IO(X) and ∗− closed. Then A ⊂ cl∗(int∗(cl∗(A))) = cl∗(int∗(A)).
Hence A is S.S∗ − I− open. With res. ∗− open the proof is similar.

Theorem 3.16. Let (X, τ, I) be an ideal topological space and A ⊂ X. If A is an
I −R− closed set, then A ∈ S.β∗IO(X).

Proof. Let A be I −R− closed. Then A = cl∗(int(A)) ⊂ cl∗(int∗(cl∗(A))).
Hence A ∈ S.β∗IO(X).

Remark 3.6. The converse of Theorem 3.16 is not true in general as shown in the
following example.

Example 3.9. From Example 3.1 we obtain A = {a, b} ∈ S.β∗IO(X), but it is not
I −R− closed.

Definition 3.3. The strong β∗ − I− interior of a subset A of a space (X, τ, I) is
defined to be the union of all S.β∗−I− open sets of X contained in A. It is denoted
by S.β∗Iint(A), i.e. S.β∗Iint(A) = {∪B : B ⊂ A,B ∈ S.β∗IO(X)}.

Definition 3.4. The strong β∗ − I− closure of a subset A of a space (X, τ, I) is
defined to be an intersection of all S.β∗ − I− closed sets of X containing A. It is
denoted by S.β∗ICl(A), i.e. S.β∗Icl(A) = {∩B : B ⊃ A,B ∈ S.β∗IC(X)}.

Lemma 3.1. Let A ⊂ (X, τ, I). Then

(i) X − S.β∗Iint(A) = S.β∗Icl(X −A),

(ii) X − S.β∗Icl(A) = S.β∗Iint(X −A).

Proof.

(i) Since S.β∗Iint(A) = {∪B : B ⊂ A,B ∈ S.β∗IO(X)}, then

X − S.β∗Iint(A) = X − {∪B : B ⊂ A,B ∈ S.β∗IO(X)}

= {∩(X −B) : X −B ⊃ X −A,X −B ∈ S.β∗IC(X)}

= {∩F : F ⊃ X −A,F ∈ S.β∗IC(X)}

= S.β∗Icl(X −A).

(ii) Since S.β∗Icl(A) = {∩B : B ⊃ A,B ∈ S.β∗IC(X)}, then

X − S.β∗Icl(A) = X − {∩B : B ⊃ A,B ∈ S.β∗IC(X)}

= {∪(X −B) : X −B ⊂ X −A,X −B ∈ S.β∗IO(X)}

= {∪F : F ⊂ X −A,F ∈ S.β∗IO(X)}

= S.β∗Iint(X −A).
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4. Conclusion

In this paper, we introduce the notion of strong β∗−I− open sets in ideal topological
spaces. We demonstrate that the concept of strong β∗−I− open sets is weaker that
of open sets in ideal topological spaces. We discuss and prove several properties
and relationships of strong β∗ − I− open sets and strong β∗ − I− closed sets.
Furthermore, the concept of continuity can be studied in the light of the newly
defined generalized open sets.
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