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Abstract In this paper, we introduce the concept of square-mean pseudo
S-asymptotically (w, c)-periodic for stochastic processes and establish some
composition and convolution theorems for such stochastic processes. In ad-
dition, we investigate the existence and uniqueness of square-mean pseudo
S-asymptotically (w,c)-periodic mild solutions to some stochastic fractional
integrodifferential equations. We illustrate our main results with an applica-
tion to stochastic Weyl fractional integrodifferential equations.
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1. Introduction

Many publications have studied the problem of periodicity of stochastic and deter-
ministic evolution equations, because of its importance for both pure and applied
mathematics. Many real-world phenomena do not satisfy conditions of strict peri-
odicity, which are often hard to meet. Over the recent decades, researchers have
developed some generalized quasi-periodic functions, such as almost periodic func-
tions, asymptotic periodic functions, asymptotic almost periodic functions, pseudo
almost periodic functions and S-asymptotic periodic functions and so on, to better
investigate and represent these periodic behaviours and their mathematical models.
These types of functions are not exactly periodic, but posses some periodic charac-
teristics. They are helpful for modeling complex systems that have fluctuations or
perturbations. For more details on these subjects, see [7,12,13,16,19,20,25] and
references therein.

The topic of quasi-periodicity is very attractive and interesting to researchers
because it includes several and diverse fascinating untreated problems. Inspired by
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the well-known differential equation of Mathieu
©" (1) + [a — 2q cos(2t)]p(T) = 0,

with solution verifying ¢(t + w) = cp(t), w € R, ¢ € C that appear as simulations
in different scenarios, such as the firmness of train rails with passing locomotives
and the cyclic fluctuations in population growth, Alvarez, Gémez and Pinto [3]
introduced the category of (w, ¢)-periodic functions. Several authors have been in-
terested in the theory, such as Abadias et al. [1], Mophou and N’Guérékata [17],
Kéré et al. [15], Khalladi et al. [14]. On the other hand, some mathematicians
have also examined how small changes can affect (w,c)-periodic functions in ab-
stract spaces. For example, Alvarez, Castillo and Pinto [4,5] defined the concepts
of (w, c)-asymptotically periodic functions and (w, ¢)-pseudo periodic functions in
abstract spaces and applied them to the abstract Cauchy problem of first order and
the Lasota-Wazewska model with unbounded and ergodic production of red cells.
Recently, the concept of pseudo S-asymptotically (w,c)-periodic was introduced
by Chang et al. [8], which extends the S-asymptotically w-periodic functions. A
study on fundamental properties and applications of S-asymptotically w-periodic
functions can be found in [6,9,12,13,19,20].

It cannot be overlooked that the presence of random noise emanating from
natural sources frequently makes physical phenomena fluctuate or perturb. Hence,
to get a more precise model, it is required to include some stochastic terms in
the systems. The existence of quasi-periodic solutions for the stochastic evolution
equations is very limited (see [10,11,18,23,26] and references therein). It is natural
to study the stochastic versions of the deterministic concepts mentioned before.
According to our understanding and search, there is no previous work on the idea of
square-mean pseudo S-asymptotically (w, ¢)-periodic for stochastic processes, which
is the main reason for this research. This issue is interesting and new, and hence,
the question of whether there exists a (pseudo) S-asymptotically (w, ¢)-periodic mild
solution in square-mean sense is still untreated for stochastic evolution systems. The
primary novelties and major contributions of this paper are listed as follows :

(i) We introduce a new concept of square-mean S-asymptotically and pseudo S-
asymptotically (w, ¢)-periodic for stochastic processes.

(ii) We establish some completeness, composition and convolution theorems for
such stochastic processes.

(iii) We also investigate the existence and uniqueness of square-mean pseudo S-
asymptotically (w, ¢)-periodic mild solutions to the following class of stochas-
tic fractional evolution equations:

T

0%6(r) = A(r) + / b(r — ) Ad(s)ds + g(r, 6(r)) + f(r. &(r) (AW (r) /dr),

— 00

(1.1)
where 7 € R, 0% denotes the Weyl fractional derivative of order a@ > 0,
A : D(A) C L2(QH) — L?(Q,H) is a closed linear operator on a complex
separable Hilbert space L2(€2,H) (where L2(Q2,H) is an appropriate function
space specified in Section 2) and generate an a-resolvent family {Rq(7)}->0 on
H. g, f are H-valued appropriate functions to be define later. Here (W (7))rcr
represents a two-sided and standard one-dimensional Brownian motion on H.
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The obtained outcomes show that for each pseudo S-asymptotically (w, c)-
periodic input, the output is still a bounded and continuous mild solution to
the stochastic evolution equation (1.1), which is also pseudo S-asymptotically
(w, ¢)-periodic. Furthermore, we think that the obtained outcomes in this
paper could contribute to studying the existence and other qualitative prop-
erties of (pseudo) S-asymptotically (w, ¢)-periodic solutions of other kinds of
stochastic evolution equations, especially the fractional problems under differ-
ent situations, without Lipschitz conditions on nonlinear terms.

This paper is organized as follows: Section 2 is concerned with some basic defini-
tions, lemmas and notations. Section 3 mainly focuses on properties of square-mean
S-asymptotically (w,c)-periodic processes. Section 4 is devoted to applications to
some stochastic fractional evolution equations in Hilbert spaces. To end this work,
we give some illustrations in Section 5.

2. Background

Throughout this paper, we suppose that (£, F,P) represents a complete probability
space with some filtration {F; },> satisfying the usual conditions, and that H and
K denote complex separable Hilbert spaces. For convenience, the same notations
|| - || and (-,-) are applied to denote the norms and the inner products in H and K.
We denote by L(K, H) the Banach space of all bounded linear operators from K to
H endowed with the topology defined by the operator norm, and LL?(2, H) stands
for the collection of all strongly-measurable, square-integrable H-valued random
variables, which is a complex Hilbert space endowed with the norm

19ll= = (Ell6]*)!/2, ¢ € L2(QH),

where E(-) is the expectation defined by E||¢||? = / |¢||dP. For each t € R, we

Q
denote by F, the o-field generated by the random variables {W(s), s < t} and the
P-null sets.

Definition 2.1. A stochastic process ¢ : R — L2(Q,H) is said to be

(i) stochastically bounded if there exists a constant M > 0 such that
Ello(r)* = / |¢(7)||?dP < M for all T € R;
Q

(ii) stochastically continuous if
lim E[|¢(7) — #(s)|> =0 for all s € R.
We denote by BC (R, L?(€,H)) (resp. C(R,L?(Q,H))) the complex Banach space
of all bounded and continuous (resp. continuous) stochastic processes ¢ from R into
1/2
L2(Q,H) equipped with the norm ||¢||s = (sup E¢(T)||2> . Furthermore, the
TER

set C(R x L?(Q,H),L?(Q,H)) represents the collection of all continuous processes
g: R x L2(QH) — L2(Q,H).
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By using the principal branch of the complex Logarithm, we define cs :=
exp (% log(c)). In what follow, we use the following notations

ANNr) = ™% and le| () == [ (7)| = exp (5 1og(\c|)) .

We recall some definitions and properties on (w, ¢)-periodic functions. Let (X, ||-||x)
be a complex Banach space and C(R,X) be the set of all continuous functions
f:R— X equipped with sup-norm || f||ecc = sup,cp [ f(7)|x-

Definition 2.2 ( [3]). For given (w,c) € RT\{0} x C\{0}, a function ¢ € C(R, X)
is said to be (w, ¢)-periodic if (74+w) = c¢(7) for all 7 € R. w is called the c-period
of ¢.

We denote by P, (R, X)) the set of all (w, ¢)-periodic functions from R to X.

Lemma 2.1 ( [3]). P, (R,X)) is a Banach space equipped with norm

[Pllwe = sup [l (=7)e(7)[x-

TE€[0,w]

3. Main results and proofs

In this section, we introduce and establish some fundamental results on the new
concepts of square-mean S-asymptotically (w, ¢)-periodic and square-mean pseudo
S-asymptotically (w, ¢)-periodic process.

3.1. On square-mean S-asymptotically (w, ¢)-periodicity

We will define a square-mean S-asymptotically (w, ¢)-periodic process. First, for
given (w,c) € R\{0} x C\{0}, we define the following set

BC.. (R, L*(QH)) := {¢> €C(R,L*(QH)) : EEEEHCA(—TM(T)H? < oo}.

We get the following outcomes.

Proposition 3.1. Let ¢ € C (]R, LQ(Q,H)), Then ¢ € BCWVC(]R,IW(Q,H)) if and
only if
¢(r) = c"(1)g(1), g€ BC (R,L*(QH)).

Proof. It’s clear that if ¢(r) = ¢"\(7)g(7) with g € BC (R,L*(,H)) then ¢ €
BCMC(R,LQ(Q,H)). Inversely, suppose that ¢ € IS’CUJ,C(}RJL2 (QJHI)). If we put g(7) =
cN(=7)p(7), then we have

lgll% = sup E[le™ (=)o(7)|* < oo,
teR

We derive that g € BC (R,L?(Q,H)) and ¢(1) = ¢"(7)g(7). O
Lemma 3.1. Let 1,2, ¢ € BCy (RL*(QH)). The following results hold:

(i) o1+ @2 € BCo RL*(QH)), and ke € BC,, (R, L*(LH)) for each k € C.
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(ii) BC%C(R,LQ (Q,H)) is a Banach space equipped with the norm

9]

1/2
e — (supE|cA<T>¢<T>||2) .
T7ER

Proof.
(i) Let @1, 02 € BCy R, L*(L,H)). Then @1, p2 € C (R, L*(Q,H)),

SUEEHCA(_T)%(T)HZ < oo and SUEEHCA(—T)(,Dg(T)Hz < 0.
TE TE

We get
sup E||c" (=7)[i1(7) + @2 (7)]||* <2sup E[|c" (=7)p1 (7)]|?
T€R TR
+ 2sup E|c" (—=7)p2(7)||* < 0.
TER
Then @1 + @2 € BCw,C(R,]Iﬁ(Q,H)).
For k € C and ¢ € BC,, (R,L*(,H)), we have kg € C (R, L*(,H)) and

sup E[|c" (—=7)ko(7)[|? = [k[* sup E[|c" (—7)(7)|* < o0.
TER TER
Then kg € BC%C(R,LQ(Q,H)).

Thus ¢1 + @2, kf € SAP,, . (R, L*(Q,H)), for each k € C.

(ii) Let {¢n}n C BCyu R, L*(Q2,H)) be a Cauchy sequence. Using Proposition 3.1,
we can write ¢, (7) = ¢(7)g,(r) with g, € BC(R,L*(QL,H)), 7 € R. Since
llgn — gmlloo = llon — Pmllbw.e , then {g, }nen is also a Cauchy sequence in the
Banach space BC (R, ]LQ(Q,H)). Thus, there exists g € BC (]R, ]LQ(Q,H)) such
that ||gn — gllec = 0 as n — co. Let o(7) = ¢"(7)g(7). Then by Proposition
3.1, g € BC. (R, L?(,H)) and consequently,

lim [lgn — @l = lim supElle? (~7)pn(r) — e (~r)p(r)]?
TER

0 2 —
= lim [lgn — g% =0

That is ¢n(7) = (1) = (1)g(7) in (BCu,RL*(QH)) ;| - lpw,c). This
implies that the space BC%C(R,LQ(Q,H)) is Banach space equipped with the
norm || - {[pw,e-

O

Definition 3.1. A stochastic process ¢ € BCW,C(]R,IL2 (Q,]HI)) is said to be square-
mean S-asymptotically (w, ¢)-periodic if for given w € R, ¢ € C\{0},

‘ 1|im El|c"(=7)[o(T +w) — co(7)]|I* = 0.

T|—00

The collection of all square-mean S-asymptotically (w, ¢)-periodic stochastic pro-
cesses will be denoted by SAP,, . (R,L?(Q,H)).

In Definition 3.1, when ¢ = 1 and ¢ = —1, S-asymptotically (w, ¢)-periodic
process reduces to the standard S-asymptotically w- periodic and w-antiperiodic
process, respectively. The above notions have been studied in [10,11,23,26].

We now present the following basic properties.
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Lemma 3.2. Let 1,02, € SAP, . (R,L*(QH)). Then the following results
hold:

(i) o1+ v2 € SAP, . (R,]LQ(Q,H)), and kp € SAP, . (R,Lz(Q,H)) for each
keC.

(ii) For each b € R, the process oy (1) := (7 + b) € SAP, . (R,L*(Q,H)).
(i1i) SAP, ¢ (]R, LQ(Q,H)) is a Banach space equipped with the norm

6

1/2
lbw.e = (Sup EIICA(—T)¢(T)|I2> , ¢ €SAP,. (R, L*(QH)).
TER

Proof.

(i) Let k € C and € > 0. Then from Definition 3.1, there exists a constant J. > 0
such that for each |7| > d., we have :

Ellc (=) p(r + w) — cp(M]|? < -

k2 +1
€ .
Ellc" (=n)lpi(r +w) —epi(m)]I* < 3, i=1,2.

Hence,
Ellc” (=) [k (T +w) — ckeo(n)][I* = [k[PE[lc" (=) [o(T + w) — @(1)]]| <,
and

Ellc™(=)[(¢1 + @2)(7 +w) = c(pr + 2)(7)]|I?
=E[[c"(=7)[p1 (7 +w) — ep1 () + pa(7 + w) — ()]
<2E[|c" (= 7)pa (7 + w) = cor (M + 2Bl (=7)[2(T + w) — cpa(7)]||?

<e+e
—+ - =e.
2 2

Thus ke, @1 + @2 € SAP, . (R, L2(QL,H)).

(ii) Let b € R and ¢ € SAP, . (R,L*(Q,H)). Definition 3.1 implies that, for any
€ > 0, there exists . > 0 such that

Ellc" (=7)[p(7 +w) = cp(n)]]|* < for || > 4.

_ €
(D)
We derive that

Ellc" (=) [p(T + b+ w) — cp(T + b)]||?
=E[|c" (=7 = b)c"" (D) [p(T + b +w) — cp(r + b)]||?
=|"B)PE" (= (7 + ) [p(T + b+ w) — ep(T +b)]|”
<€

for |7] > & = max{d. — b, 8. + b}. Thus ¢}, € SAP, . (R,L?(QH)).
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(iii) From assertion (i), we deduce that SAP,, . (R,L*(Q,H)) is a vector space.
Let {¢ntnen C SAP, ¢ (R,L2(Q,H)) such that ¢, — ¢ as n — oco. Then for
any € > 0, there exist constants N > 0 and . > 0 such that

forn > N,

lon = @l w.e = s E[" (=) [pn(7) — oM < ¢
TER 9‘ |

and

Elc(=7)[en (T +w) — con(D)]||2 < =, for 7> 6.

We obtain that for 7 > 4,

< £
9’

Elle" (=) [e(r + w) — ep(7)]1?
=E[[e" (=)l (T + w) — on (T + ) + o (T + w) — ep(T) + cpn (T) — con (T)]]1?
BE[[ (=) (T + w) — on (T + WII? + 3E[|c (=7) [pn (T + w) — con (7)]|1?
+ 3E[[¢" (=) [ewn (1) — co(7)]|?
<Ble B[l (—(1 + w)) (T + w) — on (T + w)]|1?
+ 3E[[¢" (=) [en (1 + w) — epn (D17
+3|0|2E||c (—=n)len () — p(D)I1?
Sg + § + g =€

This implies that the space SAP,, . (R, L2 (Q,]HI)) is a closed sub-space of
BC%C(R,]LQ(Q,H)). Thus it’s a Banach space equipped with || - ||p.w,c- O

3.2. On square-mean pseudo-S-asymptotically (w, c)-periodicity

Definition 3.2. A stochastic process ¢ € BCW,C(]R,IL2 (Q,]HI)) is said to be square-
mean pseudo-S-asymptotically (w, ¢)-periodic if for given w € R, c € C\{0},

lim —— / ElM(—)[$(r + w) — cd(r)]]|dr = 0.

gq—o0 2q

We denote by PSAP,, . (R, L2 (Q,H)) the set of all square-mean S-asymptotically
(w, ¢)-periodic stochastic processes.
We have the following basic properties.

Lemma 3.3. Let ¢1, 02,9 € PSAP, . (R, L2(QH)). The following results hold:

(i) o1+ @2 € PSAP,, . (R,LQ(Q,H)), and kp € PSAP,, . (R,}LQ(Q,H)) for each
k e C.

(it) For each b € R, the process py(7) := p(1 + b) € PSAP,, . (R,L*(Q,H)).
(111) PSAP, (R,LZ(Q,H)) is a Banach space equipped with the norm || - ||pw.c-
Proof.

(i) From Definition 3.2, we have :

i o [ BP0 el =0, i= 1.2

g—o0 2q
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Hence, for any k € C, we get

lim - / "l (=) [k (7 + w) — chip()]|2dr

Sy
q—00 2q J_,

Ry /q Ellc*(=)lp(r +w) + @(n)]|*dr =0,

g—oo 2¢q —q
q

<2 fim L / Ellc™ (=) i1 (r + w) — egq (7)]12dr
9= 2q J_,

Thus kg, o1 + @2 € PSAP,, ¢ (R, L2(§27H)).
(ii) Let b € R and ¢ € PSAP, . (R,L*(Q,H)). From Definition 3.2, we have :

tim o [ Bl rl(r 40 ) Par =0

Thus for each b € R, we get

lim L [ " EJN ()l + b+ w) — epl(r + b)]|2dr

q+10|
<OP Jim o [ Bl @) - ol Pdr

A2 gen (@ 10]) 1 el Al B 2
<o tim L s [ Bl nlptr ) = ot

Thus ¢ € PSAP, . (R, L*(Q,H)).

(iii) From assertion (i), we deduce that PSAP,, . (R,L*(,H)) is a vector space.
Let {¢n}nen C PSAP,, . (R, ]LQ(Q,H)) such that ¢, — ¢ as n — oo. Then
for any € > 0, there exist constants N > 0 and . > 0 such that

€

W, fOI”TLZN
c

len = @lwe = sup Ellc™ (=7)[on(r) = @(7)]|Pdr <

and 1 e
€
% Ellc"(—7)[en(T +OJ)—C(pN(T)]||2dT < g for g > o..
—q
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We obtain for g > 4.
I A 2
o [ Bl el + ) — ol
q4.J—q

= DB (T + ) — o (r + W)+ ox (4 w) — eplr)
+csON 7) — cpn (7)]||2dr

<tz [ EINnletr 4 o) = (e
4 3E[ M)+ w) — e (P)]Pdr

3 "¢ (n)lepn (1) — ep(n)] [P

<l o [ qucA<<T+w>>[so<f+w>¢N<T+w>1||2d7 (since cA<+w>c)
35 [ EIACDlew(r +) - con (]| Par

+3eP o [ EleN () - ol Par

<3

1 q
e+ 35 | BN Dlon(r +0) - con()Pdr
—q

+3[e* on — ¢llp w,e
<ELEL €
-+ -+-=c
-3 3 3
This implies that the space PSAP,, . (R, ]LQ(Q,H)) is a closed sub-space of
BC%C(R,]LQ(Q,H)). Thus it’s a Banach space equipped with || - ||p.w,c- O
The following Lemma gives a characterization of the square-mean pseudo-S-
asymptotically (w, ¢)-periodic process
Lemma 3.4. Let p € BCQ,’C(R,LQ(Q,H)), Then the following assertions are equiv-
alent:

(1) lim i/ Ellc™(=)lp(r +w) — cp(r)]||*dr = 0.

g—o0 2q

1
(i1) For each € > 0, lim —/ dr = 0 where
Mag,e(#)

q—00 2(]
={r€[-a.q : E[l"(=n)[p(T +w) — cp(r)]|I* > €} .
Proof.
Claim 1. (i) = (ii).
Since
7/ Ell" (=) [o(r + w) — co(r)]||Pdr

=5 Ell (=) [e(r + w) — co()]|IPdr
4 J1-q,q)\Mq,c(#)
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i C/\ —T T w)— co\T 2 T
* 5 fo L It ) ol
1

25 Ellc" (=) (7 +w) — cp(7)]|*dr
q Mg,e(9)

> dr >0,
29 Mg c0)

we can see that if assertion (i) holds, then assertion (ii) is true.
Claim 2. (ii) = (i).

1 q
50 | El(=n)lp(r +w) = co(r)]|Pdr
4J—q
1
=% Ellc*(=7)lp(r +w) — ep(r)]|[*dr
9 J1~4.a)\ Mg, (¢)
1
b [ BNl + ) — ol Pr
1M ()
e [
<— dr
2q J_q
1
o {2E|CA(+W)CA((T +w))e(r +w)|* + 2lePEllc* (—=)p(r)]? | dr
24 Jrq. ()
1
<ctAleP el [ an
q MQ,G @)
Hence, we deduce that if assertion (ii) holds, then assertion (i) is true. O

3.3. Some convolution theorems in PSAP,, . (R,L*(Q,H))

We establish two convolution theorems for pseudo S-asymptotically (w, ¢)-periodic
stochastic processes. Our outcomes are based on Proposition 3.1 and Lemma (3.3).

Theorem 3.1. Let {U(7)}r>0 C B(H) be strongly continuous such that
[N (=T)U(T)|| <p(T) where p € LY(Ry). If f € PSAP, . (R, ]LZ(Q,H)), then

z(1) == /_T U(T — 5)f(s)ds € PSAP,, . (R,L*(QH)) .

Proof. Since f € PSAP,, . (R,L?(Q,H)) then by Proposition 3.1,
f(r)=c"(7)ug(7), where uy € BC(R,L?(Q,H)) . Then,

sr) = [ U= 9)ss = / S U - Ouplr - )¢

(r) / N OUQug(r — €.

Let g(7) = / AN(=OU(Quy (T — ¢)d¢, for 7 € R. We have to show that g €
0
BC (R, LQ(Q,H)). By using the Cauchy- Schwarz inequality, we get
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2

E ()] EH/ Cus(r— e <e [ o - ]

2

<] | A OU (s )M

<€ | [T vl ¢ >||d<]

/w dc/w JEllus (v — ¢)12d¢

<llugllZlwlize < oo

Let 7,79 € R. Then, by using the Cauchy- Schwarz inequality, we get

€ lg(r) — g(m)|* =€ | [ A —OU(©) (um — )~ uglm <>)

<[]

<E [ / T p(Qllug(r = ¢) — up(ro - olldcr

(-0 (ar(r =) = ustr = ) Hdc} 2

< / P(O)dC / YOE||us(r — ) — up(mo — O)||2dC
<Ie)2 / G(QE g (r — €) — ug(ro — O)||dC.
Since
/0 WOElus (7 — ) — wp(mo — OPdC < 4l ug |12 < oo,

using the fact that uy € BC(R,L?(€,H)) and the dominated convergence theorem,
it follows that

oo

lim P(QE[up(r = ¢) —ugp(ro — Q)|IPd¢ = 0.

T-}T(J 0
Therefore )
lim Eflg(7) — g(7o)||” = 0.

T—T0
We conclude that g € BC (R,LQ(Q,H)). Hence by Proposition 3.1,
z € BCo o R,L*(Q,H)) .

Now let ¢ > 0. Then, we have

7/ Ellc” (=) [ (7 +w) — cx(7)]|2dr
zziq j E e —r) {/:wL{(Ters)f(s)dsc/;L{(Ts)f(s)ds} Cir
271q qu M) U_;U(T—s)f(s+w)ds—c/_;U(T—s)f(s)ds] Cir
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2

:Qiq qu N—r) UOOOU(S)[f(THw)cf(Ts)]ds} dr

Sgiq —qu /Ooo ||CA(—T)u(s)[f(T—s+w)—cf(T—s)]IldsrdT

g2iq _qq E /OOO [N (=s)U(s)c" (s — T)[f (T — s +w) — cf (T — s)]| dsr dr
<5 ZE :/Owws)w(s—r)[ﬂf—sw)—cf<T—s>]||dsrdr-

By using Cauchy- Schwarz inequality and Fubini’s theorem, we get that

—/ E||c(—=7)[2(T + w) — cz(7)]||?dr

<5 [(/¢ i) ([ DRI 6 = 717 = s0) = e (= )P s )

W”L/ (/ YSEN s — D (7 — s +w) —ef(r — o))l ds)dT

=T

<[l </ P(s / Elle™(=(r = s))[f(T — s +w) —cf(r =)l dT) ds.

By f € PSAP, . (R,L?(QH)), Lemma 3.3-(ii) and the dominated convergence
theorem, we get that

R Y AN _
ql;rglo % /_q El|c"(—7)[2(T + w) — cz(7)]||*dr = 0.

Thus z € PSAP,, . (R, L?(Q,H)). O

Theorem 3.2. Let {U(7)}r>0 C B(H) be strongly continuous such that
N (=T)U(T)|| < (1) where ¢ € L2(Ry). If g € PSAP,, . (R, ]LQ(Q,H)), then

2(7) = [ U(T — 5)g(s)dW (s) € PSAP,, . (R,L*(QH)) .

Proof. Since g € PSAP,, . (IR, ]LQ(Q,H)), then by Proposition 3.1
9(1) = "(1)uy(7) V7 € R, where u, € BC(R,L*(,H)) . Then,

ZT):/_;U(T—S / U(T — 5)c"(s)ug(s)dW (s)

— M) /_ M = T)UT — 8)ug(s)dW (s).

Let f(r) = / (s = T)U(T — s)uy(s)dW (s), for 7 € R. We have to show that
fenBc (R, L2 (Q,H)) And by using the Ito’s isometry property, we obtain

2

ENI =€ [ o= s = sy e
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=/T le” (s = T)U(T = 5)|I* % E||ug(s)|[*ds

<[ - sluglds
<ol [ O < gl < o
Let 7,79 € R. Then, by using the Cauchy- Schwarz inequality, we get
Ellf(r) — f(mo)l?
=E H/ (s = TU(T — s)ug(s)dW (s) — / (s —70))U(T0 — 8)ug(s)dW (s)

— 00

2

2

/ M ($)U(S)ug(T — 8)dW (T + s) — /00 AN (8)U(s)ug(to — 8)dW (9 + 5)
0 0

For ¢ € R, let W(s) = W(s+¢) —W((), Vs € R. By using the fact that W is
a Brownian motion and has the same distribution as W and by applying the Ito’s
isometry property and Fubini’s theorem, we get that

2

/OOO N(—s)U(s) (ug(r +8) — ug(To + S)>dW(s)

EL£(r) — Flm)]l SE\
< / 1A (= U (5)PE g (7 + 5) — g (70 + )]s
0
</ () Ellug(r + 5) — ug(ro + ) |ds.
0
Since
/0 W2 ()E g (7 + 5) — g (10 + 5)[2ds < 4|2 lug |2 < 00,

by using the fact that u, € BC (R,LQ(Q,H)) and the dominated convergence theo-
rem, it follows that

tim [ 2()Ellug(r + 8) — uglto + 5)]? =

T—T0 0

Therefore

lim E|\f(r) - f(to)||* = 0.

T—T0

We conclude that f € BC(R,L?(Q,H)). Hence by Proposition 3.1, we get that
z€BC. (R, L*(,H)). Now let ¢ > 0, then we have

7/ Elle (—7)[2(r + w) — e2(7)]|2dr
- [ e cA(ﬂ[ / :%ws)g(s)dvv(s)c [ utr = sy i
5[ E|ern| [ Ut - gt - s o) - [ - gtsrawes)] i
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Let W(s) = W(s+w)— W(w). By using the fact that W is a Brownian motion and
has the same distribution as W and by applying the Ito’s isometry property and
Fubinni’s theorem, we get that

7/ EflcN (=) [2(r + w) — cx(r)]|2dr

2

CA(—T)Z/{(T —9)[g(s +w) — cg(s)]dW(s) dr

2q
_7/7 / EHC (T*S>[g(5+w)—cg(s)]|‘2d5d7
2
_QQ/q_/ EHC WU(s)[g(r —s+w) —cg(T — 9)]||” dsdr
<2‘1/—q/o E || (—s)U(s) (s — 7)[g(r — s + w) — cg(r — 5)]||* ds dr

<qi [ [ PN = =) = eptr = )P s
< [T [2q/_qE|cA<s—T>[g<T—s+w>—cgv—s)m ds| dr.

By g € PSAP, . (RJL2 (Q,H)), Lemma3.3-(ii) and the dominated convergence
theorem, we get that

Jim i/ Eflc (=) [2(r + w) — c2(r)]|%dr = 0.

q—o0 2q

Thus z € PSAP,, . (R, LA(Q,H)). D

3.4. Some superposition theorems in PSAP,, . (R, L*(Q,H))

Let’s state and prove some superposition theorems. We define the set

L(g) = {h R — R is locally integrable and hm —/ h(T)dr < oo}

For given F € C(R x L?(,H),L?(Q,H)), we consider the following conditions:
(C1) (a) supE|c"(—7)F(r,y)||* < oo uniformly for y € L2(Q,H).
TER

(b) lim i/ El|cN(—7)[F (T + w,cy) — cF(r,y)]||’dr = 0 uniformly for

a0 2q J_,
y € L?(Q,H).
(C2) There exists a constant kp > 0 such that for all y,§ € L%(Q,H) and 7 € R,

EIF(r,y) = F(r.9)* < krElly — 7II*.

(C3) F,(y) := c(—7)F(r,c"(7)y) is uniformly continuous for y in any bounded
subset of L2(Q,H) uniformly in 7 € R; that is , for any € > 0 and any bounded
subset Q C L?(Q,H), there exists § > 0 such that z,y € Q and E[jz —y||*> < §
imply that

E||Fr(2) - Fr(y)|* < e
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(C4) There exists a function pu(-) € L(g) such that for any € > 0, there is a constant
k> 0 such that

Bl Fr(2) = Fr(y)l* < ulr)e
for all z,y € L?(Q,H) with E[|lz — y||> < k and 7 € R.

Theorem 3.3. Suppose that F €C(R x L?(Q,H),L?(Q,H)) satisfies (C1) and (C2).
Then for each ¢ € PSAP,, . (R, L2(QH)), 7+ F(7, (7)) € PSAP, . (R,L?(Q,H)).

Proof. From (C1)-(a), we have that F(-,¢(-)) € BCy (R, L*(QLH)). For each
¢ € PSAP,, . (R,L?(Q,H)), we have that

lim 1 /j Ellc(—7)[e(T +w) — c<p(T)]||2d7' =0.

g0 2q J_,
We have
37 || EINRIP (ol ) = P (o)) P
zgiq qu Nr) [F(T+w,g0(7'+w)) —eF(rp(r) +CF( i (T+w))
—cF (’7’, %@(T + w))} 2 dr
g% ok |eren) |:F(T+W,QO(T+OJ)) —cF( i (T+w))] “ir
+ 7/ 2E [ (T, i¢(7+w)> —CF(T,(,D(T)):| 2cl7'
= 2[J1(q) + J2(q)]-
From (C1)-(b), we get lim Ji(q) = 0. For Ja(q), we have
0 < Jo(q) :Jq/qu Mer )[@( i (T+w)) —CF(T,(p(T)):| ar

2

1 4 1
E |cA<T>|2c|2EHF<T,w<v+w>)F<T,so<¢>> dr
2q —q c
1 4 A 2 2 1 ?
<L [P ke E R+ w) — o) ar
2q —q c

1 q
Sk‘F*/ EHC/\(—T)[(,D(T—FLU)—C(p(T)]||2dT—>0 as q — oo.
q4J—q

Then hm 21q/¢1 El|cM(—T)[F(T + w, o(T + w)) — cF(1,0(7))]|*dT = 0. Hence
F(-,0(- )) € PSAP,.. (R,L*(Q,H)). O

Theorem 3.4. Suppose that F €C(R x L?(Q,H),L?(Q,H)) satisfies (C1) and (C3).
Then for each ¢ € PSAP, . (R, L2(QH)), F(-,¢(-)) € PSAP, . (R,L*(QH)).
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Proof. From condition (C1)-(a), we have F(-,¢(-)) € BC,, R,L?(Q,H)) and there
exists K > 0 such that sup E||c"(—7)F(7,y))||*> < K for all y € L?(Q,H). Now, we
T€ER

have

1 [ A ,
Qq/q Ell"(—7)[F (7 + w, o(T +w)) — cF(T,p(7))]||“dT

q
gi/ 2
+f/ 2E

= 2[/1(q) + J2(a)]-

2
dr

M) [F(T—HU,L,O(T—HU))—CF( i (T+w)>}
(- |er (r 20 +0)) - eprpto) 2

dr
From (C1)-(b), we get lim Ji(q) = 0. Let Q := {¢"(—7)p(7r) : 7 € R}. Since
q—o0

¢ € PSAP, . (R, L?(QH)) then @ C L?*(L,H). Let € > 0. Then by (C3) there
exists 0 > 0 such that

€

E| Fr (" (=7 = w)o(r +w)) = Fr(c" (=1)p(T))|I* < B

if

Ellc” (=7 = w)o(7 + w) = " (=1)o(T)]|* = Ellc" (=7 = w)[io(T +w) — C@(T)]HQé f)
Note that relation (3.1) is equivalent to E|[c"(—7)[@(T + w) — cp(T)]||? < |c\2(§.

Then, we have

2

1[4
dr

— E
2q J_,

M=) {CF (7, %@(T + w)) _ eF(r, @(T))}

=|C|221q/ZEIICA(— )[F(r, " 07— (T +w)—F(r, ) (r)o(r))] | dr
—021 E|lcN(—=7)[F (1,cMNT)eMN (=T — w)o(T + w
|| 2q/[q7q]\MqH26() " (=7) [F" (7, " ()" ( )o(T +w))

—F(1,N(r)MN(=r)(n)]|* dr

2i MN—=T1 7, M) =T — we(T + w
Helgy Bl EDIF (e (e (o7 —aetr )

—F(1,cN()(=)(n))]|* dr

cN—T) [FT (C/\(—T —w)o(T + w))

iy :
29 J—q.a\M, . 25(9)

—F, (CA(—T)SO(T)H H dr
) [Fr (CA (~r— W)W(TH")) — (CA FT)SD(T))} HQdT

1
+ ‘C|2?/ E
q Mq,\c\%(‘/’)

1
< <1 - —/ dT) €+ 4K |c]* — / dr.
2(] Mq,\c\Z,s(‘P) 2q q,lc \25(‘/7)
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Since ¢ € PSAP,, . (R,L?(Q,H)) then we derive by Lemma 3.4 that lim J5(g) = 0.
q—o0

1 q
Thus, we obtain lim —/ El[c(—T)[F(T + w, o(T + w)) — cF (1, ¢())]||*dr = 0.
q—00 2q J_,
Therefore, we get 7 —F(7,0(7)) € SAPy.c (]R,]LZ(Q,H)).
[

Theorem 3.5. Suppose that F €C(R x L?(Q,H),L?(Q,H)) satisfies (C1) and (C4).
Then for each ¢ € PSAP,, . (R,L*(QLH)), F(-,¢(-)) € PSAP, . (R,L*(Q,H)).

(-
Proof. From condition (C1)-(a), we know that F(-,(-)) € BC, (R,L?(Q,H)) and
there exists K > 0 such that sup E||c"(—=7)F(7,y))||> < K for all y € L2(Q,H).
T7€ER

Now, we have

2 | e () [P + w0, o(r + ) — eF(r, o(r))] 2

1 /9 2
<— 2E dr

—4q

N(-1) [F(T +w, (T +w)) —cF (7, étp(T —i—w))}

2
dr

q

3 N —T) [cF( i (T+w)> - CF(T,SO(T))]
= 2[J1(q) + J2(q)].
From (C1)-(b), we get qliﬁrgo Ji(q) = 0.

Let € > 0. Since for all 7 € R ¢"(—7)p(7) € PSAP, . (R,L*(Q,H)), then by
(C3) there exists ¢ > 0 such that

EIF () (=7 — w)plr + w)) — Fr( (—)p(r)]? < M)
if

Ellc" m—w)p(rtw) = (=1)p(n)]|I* = Ellc" (—7—w)[p(r+w) —cp(r)]|* < 4. (3.2)

Note that relation (3.2) is equivalent to E|[c"(—7)[@(T + w) — co(T)]||? < |c|?6.

Then, we have

2

2%1 ! E CA(—T) |:CF (T,%(p(T-f—w)) —cF(T,cp(T))] dr
—|c\22iq /q E HC/\(—’T) [F (7‘, CA(T)CA(—T —w)(T +w)) — F(r, cA(—T)cA(T)gO(T))] | 2dr

—iepL / E | (=) [F (7, (1) (= — w)p(r + w))
[ qq]\Mq‘ ‘2,;(%)

—F(r, o (T)C/\(—T)QO(T))] H2 dr

+ || Q—q/ . ‘25(¢)EHC (—7) [F (T,c (m)e (77’*(4))@(7’4’&)))

—F(r, ¢\ (1)c" (=r)p(r))] || dr
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2

:|c\22—1q/[ o ( )E =) [FT (C/\(—T —w)ap(T—l—w)) — F; (C/\(—T)L,O(T))] dr
—q,q ale2s(®
+ |c\2% /M E " (=) [Fe (& (= = @)t + ) = Fe (e (=)o) ]| r
a,lc|26\¥
1 9 , 1
<p / il 4K el /Mmémdr.

By the fact that 4 € L(q) and Lemma 3.4-(ii), we derive that lim J(q) = 0.
q—o0
1 q
Thus, we obtain lim —/ El[c(—T)[F(T + w, o(1T + w)) — cF (1, 0(7))]||*dr = 0.
q—oco 2q —q
Therefore, we get 7 — F(7,¢(7)) € SAP, . (R, L?(Q,H)).
O

Corollary 3.1. Suppose that F € C(R x L*(Q,H),L?(Q,H)) satisfies (C1) and the
following condition:
(C’4) There ezists a function p € L(q) such that

B Fr(2) = Fr(m)|* < p(r)E]Jz — y|*.

for all z,y € L2(QH) and 7 € R. Then for each ¢ € PSAP,.. (R, ILQ(Q,]HI)),
F('> 90()) € PSAPw,c (R,LQ(Q,H))

Proof. Since condition (C’4) implies (C4), the proof can be completed as in
Theorem 3.5. O

4. A class of nonlinear stochastic fractional evolu-
tion equations

We discuss the existence and uniqueness of pseudo S-asymptotically (w, ¢)-periodic
mild solution for problems (1.1). We need to recall some facts about Weyl fractional
integral and derivative of order @ > 0, and a-resolvent operators (see [22]). First,
suppose that X is a Banach space. For given function h : R — X, the Weyl fractional
integral of order a > 0 is defined by

1 T
07 “h(1) :== () [m(T — ) h(s)ds, T ER,
when this integral is convergent. The Weyl fractional derivative 0 of order « is
defined by

Oth(T) = C;i_—na;("_o‘)h(ﬂ, TER,

where n = [a] 4+ 1, and the notation [a] represents the integer part of a. Now, Let
A be a closed and linear operator with domain D(A) defined on a Banach space X,
and a > 0. For a given kernel b(-) € L}, .(R), it is said that A is the generator
of an a-resolvent family if there exists £ > 0 and a strongly continuous family

Rea : Ry — B(X) such that

AO(
{1—&-5()\) : Re(A) > f} C p(4)
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and for all y € X,

1
()\O‘ —(1+b(>\))A)71y: 1+]é()\) (1‘:\6(/\) A) !

:/ e MR, (T)ydr, Rel > &,
0

where b denotes the Laplace transform of b. {Rq(7)},r0 is called the a-resolvent
family generated by the operator A.

Motivated by Ponce [22], we present the concept of mild solutions for Eq.(1.1).
For each 7 € R, W(r) is a two-sided and standard one-dimensional Brownian
motion defined on the filtered probability space (2, F,P, F;) with F, = o{W(u) —
W(v)u,v <7}

Definition 4.1. An F,-progressively measurable process {®(7)}cr is called a mild
solution of problem (1.1) if it satisfies the following stochastic integral equation

&(r) = /_T Ral(m —3)g(s, P(s))ds + /_T Ral(m —38)f(s,P(s))dW(s)

for all 7 € R, where {R,(7)}r>0 is the resolvent family generated by the operator
A.

Theorem 4.1. Suppose that the operator A generates an a-resolvent operator
{Ra(T)}r>0 C B(H) such that for T > 0, ||["(=T)Ra(7)|| < Ka(T) where Ko €
LY(R4) N L*(Ry).  Furthermore, assume that g € C(R x L*(Q,H),L2(Q,H)), f €
C (R x L2(QH), L(K,H)) satisfies (C1) and there exist constants L,L' > 0 such
that for any ®1, P, € L?(Q,H),

Ellg(r, ®1) — g(r, ®2)||* < LE|®1 — s,

Ellf(7,®1) — [ (7, P2) |2 ) < L' E[| @1 — %,
uniformly for all T € R.

Then equation (1.1) has a unique mild solution & € PSAP,, . (]R, ]LQ(Q,H)),
provided

2(||’Ca||2L1L+L'lCa|%z) -1

Proof. From Theorem 3.3, for each & € PSAP,, . (R,]LQ(Q,H)), the stochastic
processes s — f(s,®(s)) and s — g(s,®(s)) belongs to PSAP,, . (R,L?(Q,H)).
From Lemmas 3.1, 3.2 and 3.2-(a), we can define the operator

S : PSAP,, . (R, L*(QH)) - PSAP,, . (R,L*(Q,H))
by

(sqs)(T):/_T Ra(r—s>g<s,¢(s))ds+[ Ro(r — ) f(5,B(s))dW(s). (4.1)

Let @1,P9 € PSAP,, . (R,LZ(Q,H)) and 7 € R. Then using Cauchy- Schwarz’s
inequality and Ito’s isometry property of stochastic integral, we have

Ellc* (=)(881)(7) — (82)(7)||?
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<2EII/ Ra(7 = 5)lg(s, P1(s)) — g(s, P2(s))]ds]*
+QEH/ Ra(7 = 5)[f(5,P1(5)) — f (5, P2(s))]dW (s) >
<2E|| / —T + 8)Ra(T = 5)c" (=5)[g(s, P1(s)) — g(s, Pa(s))]ds|*

+ QEH/ ~7 + 8)Ra (T — 8)c" (=5)[f (5, D1(5)) — f(s, Pa(s))]dW (s)||?

<2 [Katr = 9yts [ Kalr = BN C9)lato.21() - als 2ol

— 00

2 ( | K- I s, 1)) - f(s@(s))]n?ds)

<L ( / ; Kalr - s)ds)2 sup E[[c” (—5)[81 (5) — B (s)] I

seR

iy ( JR s)ds) |82 — B2,
2 / 2 2
§2(|KQ|L1L+ L ||ica||L2) |81 — B2,

Therefore,
158, — SB|2,. < 2(||ica||ilL T L'||/ca||iz) |81 — B2

which proves that S is a contraction owing to the condition
2(||/Ca||ilL + L’/caliz> <1

Thus there exists a unique ¢ € PSAP, . (R, ]L2(Q,]HI)) such that S® = & via
Banach fixed point theorem.
O

Theorem 4.2. Suppose that the operator A generates an a-resolvent operator
{Ra(T)}r>0 C B(H) such that ||c"(—T)Ra(7)|| < Kuol(T) where Ko is a non-

increasing function with Ky = ZICa(n) < 00. Furthermore, assume that g €
n=0

C(R x L*(Q,H),L?(Q,H)), f € C (R x L*(Q,H), L(K,H)) satisfies (C1) and there
exist py, ue € L*(R,R,) such that

Ellc" (=7)lg(r,¢"(1)P1) — g(r, " (1)P2)]|* < pa(7) E[|D1 — P2,

Ellc™ (=) [f (1, (7)P1) = F(7, " (T)P)|Z ey < p2(7) EllP1 — Po|?,

for @1, P4 € L2(Q,H), for all T € R. Then equation (1.1) has a unique mild solution
P € PSAP, . (R,}LZ (Q,H)), provided

2M’C0<||/Ca||L1 +zc0> <1
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T T
where i = max { sup/ w1 (s)ds, sup/ ug(s)ds}.
TER Jr+1 TER J 741

Proof. Since K, is a non-increasing function with ZICa(n) < 00, then we
n=0

deduce that K, € L'(R;) N L?(Ry). Then from Corollary 3.1, for each & €

PSAP,, . (R,L?(Q,H)), the stochastic processes s — f(s,®(s)) and s — g(s, P(s))

belongs to PSAP,, . (R,L?(2,H)). From Lemmas 3.1, 3.2 and 3.2-(a), we can define

the operator

S : PSAP, . (R, L*(QH)) — PSAP,, . (R,L*(Q,H))

as in (4.1). Let &1,Py € PSAP,, . (R,Lz(Q,H)) and 7 € R. Then using Cauchy-
Schwarz’s inequality and Ito’s isometry property of stochastic integral, we have

Ellc" (=7)(81) (1) — (82)(7)I?

< [ NrIRalr = o). 1(5) — gl Bl s
+ 2] / (7 = 91 (5.21(5) — J 5. a(s) IV (5)
< [ AT IRa(r = 9N (s 01(5) — 9o, Bl

28] [ A Ra (=) (55~ )W ()
<2 [Kautr=s)is ( JE s>E|cA(—sng(s,@(s))—g(s,@z(s))}|2ds)
w2 ([ K2 - BN 61 (5) — Flo (o] )

<Ol 3 ( [ mKat = I i) - ¢2<s>1||2d8>

n—0 7—(n+1)

Z</ oy 2Rl S)ECA(S)[@1(5)¢2(5)H2d5>

<2 Kyl Z/cam) < /

T—(n+1)

+ 22’C2 (/ N2(s)d8> Hdsl - dsQHaw,c

T—(n+1)

T—nN

pl(s)ds> |®1 — Polff, .

swco(ucam " ico) 181 — B2,
Therefore, we get

|5, — SB[, < wco(n/c oo +/co> |8 — ol

Since 20/Co | [|Kal| L2 +IC(> <1, then there exists a unique # € PSAP,, . (R, L?(Q,H))
such that S® = @ via Banach fixed point theorem.
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O

5. An illustrative example

Let H = L2[0,7], ] > 1, w > 01 < a < 2, v > 0 and consider the following
problem

%u(r,z) = —vu(r,z)— VZ /T (T;(Soz)a_u(s,x)ds
tolru(r, ) + £, ulr,a) Do
w(7,0) = u(r,m) =0,

— 00

(5.1)

(r,2) € R x (0,7),

where W (7) is a two-sided and standard one-dimensional Brownian motion defined
on the filtered probability space (Q, F,P, F;). The problem (5.1) can be written

into the form (1.1) with @(7)(z) = u(r, z), b(r) = %ﬁ and A = —vI, I is the

identity operator on the Hilbert space H. It follows from [22, Example 4.17], that A
generates a a—resolvent family {R,(7)},r>0 with its Laplace transform satisfying

R PR ra—a/2 Ax—/2
Ra()\) - (/\Ot +V/2)2 = ()\a —|—V/2) ’ (/\a +V/2)
and
Ra(T) - (K * K)(T) where K(T) = 7'%715@70‘/2 ( _ ;7_04>

and &, o/2(-) is the Mittag-Leffter function (see [2]). From [21, Theorem 4.12], there
exists a constant C' > 0, depending only on «, such that, for 7 > 0
|e[*(=7)C ¢

N — < < = )
[ (T Ra(DIl € S < 77 = Kal7)

(o)
It follows that KC,, is a non-increasing function. Since a>1 then Ko:=) K, M) <oo.

n=0

Simple calculations yield that :

c 1 1
IKallzr = WB (,1 - ) <00

« «

e C? C? 1 1
Koll22 = dr = B(—,2——
Kallz: /0 (14 wv71e)? 7= at/e-t (a’ a) <0

where B(:,-) denotes the Beta function.

and

5.1. Illustration of Theorem 4.1

To illustrate Theorem 4.1, let us take the forcing terms as follows:

1 .
g(r,u) = 9(r) cos(n(r)u) + T——5 () sin(fla(r)ul)),
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1

Frw) = (r)e O 4 () cos(la(r)ul),

for 7 € R and v € H, where ¢ € P, . (R,R) and n,a € P, 1 (R,R). For u € H,

supE||c" (—7)g (7, u)|*
TER

=sup Ec"(—7) <1/)(T) cos(n(T)u) +

TER

s vsindla(ul) ) I

1472
< 2sup||e” (=) (7) [°E| cos(n(r)w)|[* + 2suplle’ (=)o (7) | °E] sina(r)w)|

< dsup [ (=m)e(n)I* < 4|9 )%, < oo
TE

< 2sup Ee” (=) (r) cos(n(r)u) [ + 25upE| T ) sinlla(ryul) P

Similarly we have, sup E||c"(—7) f(7,u)||* < oc.
TER

Since (1 + w) cos(n(T + w)cu) = ¢Y(7) cos (1n(7)cu> = (1) cos(n(T)u),

then
1 q A )
- [ El"(=7)g(1 +w,cu) — cg(r,w)]||*dr
2q J_,
LMo (<o) (g + @) sin(lar + w)eul)
9. - — 5 in
29/, N—T1 e 7+ w)sin(|la(T + w)eu
2
c .
1_i_721/)(7-)51n(||a(7)u|)> dr
1 A ¢ . 2
S% . <2E c (—T)mw(ﬂsm(na(ﬂuu)
2
C .
+2E c’\(—r)ﬁz/}(T)sm(||a(T)uH) )dq-
L (e e c (—r)i(r)\
< o L ATTIVAT) o CC\ZTIWT)
~ 2 q{ <1+(T+w)2 + 52 dr
1 [ 1 2 1 2
<292 */ dr ).
<ty [ [(Gomr) + (5s) |7)
Since
L 1P L (% dr arctan(q)
- L <« X _
2q J_, |1+ 72 “2¢) 1472 q —0as q— oo,
and
4 2 qtw 2
LN A N S dTSW<1/ ot dT)%OaSHOO’
2q —q 1+(T+w)2 q 2(q+OJ) g-w 1+T2
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then it follows that

1 2,
Jim o / Elle? () g + . cu) — cg(r,w)[*dr = 0.

Similarly, we have
1 q
lim — / E||cN(—=T)[f(T +w,cu) — cf (1,u)]||*dT = 0.
—q

Therefore f and g batlsfy (C1). Remark that ¢(7 + w)n(r + w) = cip(r)in(r) =
Y(r)n(r) and (1 + w)a(r + w) = cp(r)La(r) = ¥(7)a(r). Hence the functions ¢n
and ta are periodic. Then it follows that (¥n), (Ya) € BC(R,R). Let u,v € H,
Ellg(r,u) — g(r,0)II* < 2E[|v(7) cos(n(r)u) — (7) cos(n(r)v) |

+ 2E H H%w(ﬂ sin(||a(T)ul]) — ﬁlﬂib(ﬂ sin([la(7)vl])

< 2|lynll3Ellu — v]|* + 2[[pal|3Ellu — v
< 2(]lvnl3, + vall3)Ellu — vf|*.

2

The same arguments performed above give us
Ellf(m,u) = F(m0)lI” < 2(l[vnl3 + [all2)Ellu — v

Therefore, by Theorem 4.1, the problem (5.1) has a unique square-mean pseudo-S-
asymptotically (w, ¢)-periodic mild solution on R provided that (||ym|% + |[val%)
is small enough.

5.2. Illustration of Theorem 4.2

Now, for Theorem 4.2, we take f and g as follows

o) = = w(r)sinlla(ryul), and f(r,u) = 1 p(r) cos([b(r)ul),

for 7 € R and u € H, where ¢,p € P, . (R,R) and a,b € P, 1 (R,R). Similarly,
the same arguments performed above show that f and g satisfy (C1). Let u,v € H
and 7 € R. Then

Ellc* (=) [g(r,c"(r)u) = g(r,c"(r)o)] ||

M) i e (=)
@) sine (a(r)ul) - T

2
< (2wl wma ) el o?

1 2
< Jvall (5 ) Elu— ol

(r)sin([|c” (T)a(r)v]])

<E

1 \2
Let p1(7) = |[val/%, (1—1—72) for 7 € R. We have

— 2 - 1 ?
Jmryar =2wals, [~ () ar
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< dr
<2 2 = 2 < o0.
<2uall, [ 13 = wllvals <o

Then p1 € L'(R,Ry). Similarly, we get
Ellc™ (=) f (7, " (T)u) = f(r, (1)) < pa(7)E[Ju — v]]?,

2
where 2 (1) = [|1b]|%, (1 n 7_2) belongs in L}(R, R, ). Therefore, by Theorem 4.2,

the problem (5.1) has a unique square-mean pseudo-S-asymptotically (w, ¢)-periodic
mild solution on R provided that ||1)allec + ||1b]|oo is small enough.
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