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Numerical Approximation of the Fractional Pine
Wilt Disease Model via Taylor Wavelet
Collocation Method

Kumbinarasaiah S*f Manohara G*

Abstract This article aims to develop a quick and easy Taylor wavelet col-
location method with the help of an operational matrix of integration of the
Taylor wavelets. Solving epidemiological models ensures the necessary accu-
racy for relatively small grid points. Finding the appropriate approximations
with a new numerical design is challenging. This study examines the fractional
Pine wilt disease (PWD) model. Using the Caputo fractional derivative for
the fractional order, we developed the novel wavelet scheme known as the Tay-
lor wavelet collocation technique (TWCM) to approximate the PWD model
numerically. The results have been compared between the developed method,
the Homotopy analysis transform method (HATM), the RK4 method, and the
ND solver. The numerical outcomes demonstrate that (TWCM) is incredibly
effective and precise for solving the PWD model of fractional order. The ap-
proach under consideration is a powerful tool for obtaining numerical solutions
to fractional-order nonlinear differential equations. The fractional order differ-
ential operator provides a more advanced way to study the dynamic behavior
of different complex systems than the integer order differential operator does.
The proposed wavelet method suits solutions with sharp edge/ jump disconti-
nuities. Fractional differential equations, delay differential equations, and stiff
systems can be solved using this method directly without using any control
parameters. For highly nonlinear problems, the TWCM technique yields ac-
curate solutions close to exact solutions by avoiding data rounding and just
computing a few terms. Mathematical software Mathematica has been used
for numerical computations and implementation.

Keywords Taylor wavelet, Caputo fractional derivative (CFD), system of
fractional ordinary differential equations (SFODESs), Pine wilt disease model
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1. Introduction

Mathematical modelling is a potent instrument for studying, investigating, and un-
derstanding the spread of various diseases and developing methods to manage them
in society. Mathematical modelling makes understanding a disease’s spread and
defining the essential factors easier. Numerous biological models have been exam-
ined from different aspects in this regard. Infectious disease models for humans,
animals, plants, and trees have all been developed in the literature. Forests are
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crucial to human life. Its significance is indescribable in words because a single
forest can completely rejuvenate the planet. Consequently, it is essential to safe-
guard trees. In addition to creating a green carpet on Earth, trees give us access
to necessities like clean air. Pine wilt disease (PWD) destroys trees within weeks
of symptoms showing, despite its majestic and elegant appearance. The pathogens,
which include bacteria, viruses, and protozoa, are the leading causes of infectious
disorders [1,2]. The average lifespan of pine trees with PWD infection is a few
months. “Wilt diseases” refers to various ailments that affect a plant’s vascular
system. Plants can be attacked by nematodes, fungi, and bacteria, which instantly
destroy them. Viruses can exist in plants as well. Two types of wilt diseases affect
woody plants: those that start at the branches and those that begin at the roots.
Only a small percentage of infections spread to other plants via the root grafting,
typically starting at the stems, where pathogens feed on leaves or bark. Most in-
fections start as lesioning or as pathogens entering the roots directly. The only way
to protect the pine forest is to keep it free of disease, as diseased pine trees cannot
be spared.

The following set of non-linear equations is used to describe the complex model
[3,11,43,44]. S (&), E(&), I(¢), R(§) and R (§) are used to represent the suscep-
tible pine tree class, exposed pine trees, infected pine trees, and susceptible beetle
class, respectively. Additionally, @ (£) represents the infectious class of beetles.
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The symbol 6 denotes the entry of new trees into growth. New beetles entering
induction are indicated by the symbol A, and v denotes the ratio of dead trees to
newly planted ones. Additionally, 8 reflects the beetle mortality rate, a represents
the nematode growth rate, x denotes the saturation of the beetle infection,e is the
infection saturation in trees, d is the trees contact rate, and 7 is the beetle contact
rate. The initial conditions are S (0) = 300, E(0) = 30, I(0) =20, R(0) =
65 and @ (0) = 20. The parametric values are § = 0.009041,6 = 0.00166, € =
0.01, < = 0.0000301, 7 = 0.002691, A = 0.057142, a = 0.00305, ~ = 0.02, B =
0.01176.

The fractional mathematical model in Caputo fractional derivative:
Now, we incorporate the fractional order into the ODE model. Since fractional
calculus has received much attention from researchers lately, various elements of the
topic are being considered for investigation. Creating mathematical models based
on fractional differential equation and examining their dynamical behaviors are
effective and valuable methods of understanding biological issues. The hereditary
characteristics, system memory, and non-local distributed effects are all considered
by fractional order derivatives and integrals.

Therefore, we modify the system by changing the time derivative with the CFD
to present the influence of non-locality. The following fractional SODEs represent
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the mathematical model of Pine wilt disease.
Dgs(§) =0-0S5)QE)(1+eQ(§)—v S(E),
DEE(E) =650@)QE)(L+eQ(8))—(T+v)E(E),
DgI(§) =7E§)—-v1(S), (1.2)
DgR(E) =A-al(QR(EA+rI(E))—FR(E),
DgQ(§) =al(REA+rI(E))—BQ(.

With 0 < a < 1, the fractional derivative in the Caputo sense is denoted by D?.

Several researchers have examined the various PWD facets. The pathophysiol-
ogy and history of PWD, brought on by Bursaphelenchus xylophilus, were covered
by Mamiya [4,5]. Fukuda [6] used pathological studies in 1997 to investigate con-
ceptual functions associated with the progression or inhibition of PWD. Proenca et
al. [7] described the characteristics of the bacteria the pinewood nematode carries
to understand PWD better. The model was examined by Ozair et al. [8] using Bio-
stimulated analytical heuristics. Numerical modelling and symmetry investigation
of a model were carried out by Padmavathi et al. [9]. Yongjin Li et al. initiated the
LADM for the PWD model [10,11]. Kamal Shah et al. conducted a semi-analytical
investigation on the PWD [3]. The N-ADM and fractional Euler methods were ap-
plied by El-Sayed et al. [12]. Dynamic aspects of the PWD model were examined by
Hussain T et al. [13]. In their studies, over the last few decades, many researchers
have covered a stability analysis of PWD and its causes [14,15].

A recent and promising development in mathematics is wavelet theory. It has
been applied in many fields, such as biological field, time-frequency analysis, sig-
nal analysis for waveform representation and segmentation, and rapid techniques
for simple implementation. The properties of wavelet methods, such as their or-
thogonality, compact support, and ability to accurately represent a range of func-
tions and operators at different resolution levels, have drawn much interest in the
last three decades for the numerical solution of differential equations. An or-
thogonal family of functions has been widely employed to approximate solutions
to many dynamical system problems. The integral operations can then be elim-
inated using the operational integration matrix. Despite not being constructed
on orthogonal functions, the Taylor series and Fibonacci polynomials possess the
operational integration matrix. Another benefit of using an orthogonal wavelet
basis over traditional methods is multi-resolution analysis. Numerous wavelet col-
location techniques, including the Hermite wavelet collocation method [16], the
Laguerre wavelet collocation method [17], the Bernoulli and Gegenbauer wavelet
collocation method [18,19], and the Chebyshev wavelet collocation method [20],
have been applied to some common mathematical problems. Fractional differen-
tial equations are typically solved using a variety of wavelet collocation techniques,
such as Hermite wavelets [21,22], Cubic B Spline [23], Chebyshev wavelets [24],
Genocchi wavelets [25], Bernoulli wavelets [26—-28], Haar wavelets [29], Chelyshkov
wavelets [30], Fibonacci wavelets [31,32], Legendre wavelet tau method [33], and
Legendre wavelets and Gegenbaur wavelets [34].

In the article [25], author Abdulnasir Isah et al. implemented the Genocchi
wavelets operational matrix technique to solve the nonlinear fractional differential
equation (FDEs). The Genocchi wavelet collocation method is developed with the
help of an operational matrix of integration. The numerical solution is obtained
for different examples of nonlinear FDEs and compared with the various techniques
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available in the literature. In the article [27], author Kumbinarasaiah et al. pro-
posed the Bernoulli wavelets functional matrix technique to solve the nonlinear
singular Lane-Emden equation system. Initially, a functional matrix of integration
(FMI) was extracted using Bernoulli wavelets. Later on, with the help of FMI, the
Bernoulli wavelet collocation method was implemented, and the numerical approx-
imation for the nonlinear singular Lane-Emden equation system was obtained. In
the article [28], author Kumbinarasaiah et al. proposed a similar Bernoulli wavelets
functional matrix technique to solve the biological model (HIV infection of CD4+ T
cells model). In both articles, the author obtained a numerical approximation that
is very close to the actual solutions and compared it with the existing techniques
available in the literature to show the methods’ accuracy and efficiency.

The ongoing effort aims to develop a quick and easy Taylor wavelets colloca-
tion method. Solving epidemiological models ensures the necessary accuracy for
relatively small grid points. Finding the appropriate approximations with a new
numerical design is challenging. The Taylor wavelets, created by Taylor polyno-
mials, are a recent addition to the wavelet family. Recently, there has been an
increased focus on wavelet techniques for solving differential and integral equations.
Mathematical problems such as Burger’s equation [35], Bratu-type equations [36],
linear and nonlinear Lane-Emden equations [37], fractional delay differential equa-
tions [38], Benjamin-Bona-Mohany PDEs [39], and systems of nonlinear FDEs with
application to HRS virus infection [40], are among some of the problems that re-
searchers have used this package to solve [42-45]. Some of the articles utilized to
improve the paper are listed below.

Splines solutions of boundary value problems [46], an innovative Fibonacci wavelet
collocation method for the numerical approximation of Emden-Fowler equations
[47], an approximate analytical view of physical and biological models in the set-
ting of Caputo operator via Elzaki transform decomposition method [48], an effi-
cient variable stepsize rational method for stiff, singular and singularly perturbed
problems [49], a study on fractional HIV-AIDs transmission model with awareness
effect [50], numerical approximation of fractional SEIR epidemic model of measles
and smoking model by using Fibonacci wavelets operational matrix approach [51], a
numerical combined algorithm in cubic B-spline method and finite difference tech-
nique for the time-fractional nonlinear diffusion wave equation with reaction and
damping terms [52], the novel cubic B-spline method for fractional Painleve and
Bagley-Trovik equations in the Caputo, Caputo-Fabrizio, and conformable frac-
tional sense [53], cubic splines solutions of the higher order boundary value problems
arising in sandwich panel theory [54], numerical approximation of the typhoid dis-
ease model via Genocchi wavelet collocation method [55], a new adaptive nonlinear
numerical method for singular and stiff differential problems [56], and extracting the
Ultimate New Soliton Solutions of Some Nonlinear Time Fractional PDEs via the
Conformable Fractional Derivative [57]. The ongoing effort of this article aims to
develop a quick and easy Taylor wavelets collocation method. Solving epidemiolog-
ical models ensures the necessary accuracy for relatively small grid points. Finding
the appropriate approximations with a new numerical design is challenging. The
system’s solution was significantly approximated after applying the Taylor wavelet
collocation technique. Currently, no one has been able to solve the fractional pine
wilt disease model using Taylor wavelets, which encourages us to investigate this
using the established method.

Here’s how this article is organized: Wavelet definitions can be found in Section
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2. In Section 3, the FMI of Taylor wavelets has been carried out. Sections 4 and 5,
respectively, we describe the method of solution and numerical illustration of the
method. The conclusion is finally given in Section 6.

2. Fractional derivative and Taylor wavelets

Definition 2.1. Caputo fractional derivative
The Caputo fractional derivative of f (§) € Cp is defined as [41]:

e fE©_ 1 e pmeast pm)
L) _ o[t e )

M'im-—«

For m —1 <a <m, m is any positive integer, { >0, f({) €Cy, p > —1

Definition 2.2. Taylor wavelets

On the interval [0,1], the Taylor wavelets are defined as [35],

255 T, (2PN E—nt1), S < €< 0,

0, Otherwise,

where T, (&) =v2m+1¢&™,

where T, (f ) is the normal Taylor polynomial of degree m, translation parameter
n =1, 2, ..., 251 and, k represents the level of resolution k¥ = 1,2, ... and
respectively. Taylor wavelets are compactly supported wavelets formed by Taylor
polynomials over the interval [0,1].

Tn,m (E) =

Theorem 2.1. [/1] Let L*[0,1] be the Hilbert space generated by the Taylor wavelet
basis. Let 1 (&) be the continuous bounded function in L*[0,1]. Then, the Taylor
wavelet expansion of N(€) converges with it.

Proof. Let n:[0,1] — R be a continuous function and |n(¢)| < u, where p is any
real number. Then Taylor wavelet dilation of 7(£) can be expressed as,

2

|

M

,_.

an an m )a

)

n=1 m=0

where apnm = (1( &), Th.m(&)) denotes inner product.

1
G = /0 0(E) Yo (€) de.

Since T, m are the orthogonal basis,

Qpm = f] (2" e —n+ 1) d€ where I = [gkill , 2,9%)

Since T,, (£ ) \/2m + 1 &™, we obtain,

angm = [;n (&) V2m+1 (2871 —n+ 1) d¢ where I = [=1, 2).
Substitute 28716 —n + 1 = y. Then, we get,

Y —|— n—1 m Ay
An,m = \/7 -1 k—1°
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93" /1 y+ n—1\ o
Apop = —F—— - .
o 2m + 1 '077 9 k-1 v

By generalized mean value theorem,

—k+1 1
2 72 0+n—1 m
ST 77( 5 1 )/0 y™ dy for some § € (0,1).

Up,m =

Since y™ is a bounded continuous function, put fol y™ dy = h,
d+n—1
()|

k41
2 3 S+n— 1
Hence, |ay m| = ‘\/m i h’ where p=n (921 .

Therefore, > _ an,m is absolutely convergent. Hence, the Taylor wavelet series

expansion 7)(§) converges uniformly to it. O
Theorem 2.2. [j1] Let I C R be a finite interval with length m(I). Furthermore, f (&)
is an integrable function defined on I and Zi]\ial 23:11 a; ;Y;;(§) be a good Taylor
wavelet approzimation of f on I. For somee > 0, ‘f (f)—zf\igl 251:11 a; ;Y (5)‘

<e Va el Then —em(I)+ [;3237 aijTi (&) d6 < [(f(§)dE < em(I)+
Jr 2237 aiy Tij(€) de.

—k+1

2 T2
v2m+1

‘anﬂn|::

Since n remains bounded,

3. Operational matrix of integration (OMI)

The following are the computed Taylor wavelet basis (TWB) at £k =1 and M = 6.

T10(§) =1,

Y11 () =3¢,
T2 (&) = V5E2,
Y13 (§) = V7,
T4 (€) =3¢,
Y15 () = V1€,
Y16 (€) = V13,
Y17 (§) = V15"

After integrating the first six bases mentioned above concerning the limit £ between
0 and &, and expressing the Taylor wavelet bases as a linear combination, we obtain,

13
[ tia@de=[o L o000] Te (o),

0

&
/ Y11 (§)dE = [0 0

0

\/2?000} Ts (£),
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; T12(£)dE = [000 \f oo} Y6 (£),
13
Tis(€)ds = 0000 Y2 0] T6 (©),
0
13
/011,4(5)@:[00000%} 6 (&),
13
/ Y5 () de = [000000] Y (€),
0
)
/O T(€) de = Boxs Yo (€) +To(E), (3.1)
where
Y6(€) = [T1,0(8), Y1,1(8), T1,2(8), T1,3(£),Y1,4(£), Y1,5(8)]7,
oL 0o 0o 0o 0| 0]
V3
00 \QF 0 0 0 0
Vi _ 0
Bexe = 00 0 7 \O[ 0 , Ye(§) =
00 0 0 ¥ 0 0
00 0 0 02 0
00 0 0 0 0 | _\/T%Tl,e(é“)_

Defined as follows, the generalized OMI of the n—wavelet basis is

3
/0 T (€) € = Brsen T(€) + T (6),

where r T

- 7 0

0% 03 00 .. 0 0

00 Yiogo .. 0 ’

00 0 0¥, 0 0 "

. . . . . N 0
Boxn= |0t 1+ 1 .. 0 0 () =

00 0 00 .. I |

e y/2(n-2)18 0
VDT
00 000 ... 0 oo :
00 000 ... 0 0 | LY ()]

Integrating the previously mentioned bases once again yields the following results:

& ré
| [ o de= oo 2z 000] vete).

& ré )
/O/OTl,l(ﬁ) d&z[oooﬁoo}n(&),
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Hence,

where T¢(&) =

00
00
, 00
B'exe =
00
00

00

[ N
| [ e de=JooooF o] vaco).
/g/ng,s ) d€E=100000 ﬁ]Ta(i)
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0 0
& r€
[ [
0 0

IS
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000000} Y6 (§)-

(3.2)

[T1.0(6), T11(8), T1.2(6), T13(8), T1.a(€), T15(8)]7,

‘ . O

.
0 2
0
0
0
0

oooo@
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0 0
0 0
5o
0 0VE
0 0
0 0

o O O O

o L7 (5)_

At k=2 and M = 6, the TWB is investigated as follows:

Ti0(§) =

V2,

Ti1 (&) =2V6 &,

T2 (€) = 4v10 €2,

T1,3 (f) = 8\/ﬁ 53’

Ti4(E) =48V2 €4,

Ti5(§)

= 32V/22 &°.

1
0< =
<€<3
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(3.3)

Biaxiz2 T12(€) + T12(£).

T (&) d¢

Biax12
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At k = 2, the generalized first integration of the n—wavelet basis is defined as

follows:

where
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o o o o o

V2n—1 T,
Yo (¢) = |2nv2net ~1n €)

o o o o o

_an% T2,n (f)_

Similar to the first integration, the second integration can be expressed as:

& €
/ /0 Y (€) dédé = B'1axi2 Y12 (&) + T/12 (£), (3.4)
0

where Y12 (§) = [T1,0(£), Y11 (§),T12(§),T13(6),Y14(€),T15(8),Y20(E),
T21(€),To2(§), Ta3(€), Tou(§), Y5 ()]
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!
B 12x12 =

Similarly, we can create matrices at our convenience.

4. Taylor wavelet collocation method (TWCM)
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The mathematical model of pine wilt disease is represented as an ODE system, and
its solution via TWCM is explained in this section.
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Assume that,
GE=AT (),

dg
T =BT,
4E — T (9, (4.1)

L =D ),
(

dg
where
T = [a1’17...,a17]y[,a2’1,...,GQ’M7 0,21c71’17...7(121«71’]\4]7
= [bl’l,...7b1’M,b2’1,...,b2’]\/[, bzk—l’l,...,bgk—l’M],
T = [01,1,...,Cl7M70271,...,CQjM,CQk—lJ,...,Czk—l’M],
T =dia,. s dinrydony- oy donr, doer g,y dor g,
=le1,1,-,€1,M, €21, -,€2 M, 62’€*1,17"'a62k*1,M]7

T (&) =[O0, T(E1,m-1,T(E)2,0, - - V() 2,m1-1, T(E)ar—1,0, - V() 2x-1 pr-1]-
Equation (4.1) is about ‘¢’ from ‘0’ to ‘¢’. We get

5(0) + / AT () de,

0

13
E(€) = E(0) + /O BT () de,

£
1(€) =1(0) + / CTY (€) d

0

13
R(€) = R(0) + /0 DY (¢) de.

3
T
+/0 E* 7Y (§)de

Using equation (3.1) and primary constraints S (0) = Sy, E(0) = Eg, [(0) =
Iy, R(0) = Rpand Q (0) = Qo described regarding T(¢) as S (0) = FT Y(¢), E(0) =
GT 1), 1(0)=HT 1), R(0)=KT Y(¢) and Q (0) = LT T (£), we obtain

S(&) = FY(§) + AT[BY ([g) + T ()],

£(6) = GTY(&) + BT[BY (I5) + T (&),

Z(§) = HTT(&) + CT[BY (|§) + T (&), (4.2)
R(§) = KTY(§) + DT[BY (|§) + T ()],

Q&) = LTY(&) + ET[BY (|§) + T (&),

where A, B, C, D,E,F,G,H,K, and L are the known vectors. Now, use the
definition of the Caputo-fractional derivative to differentiate equation (4.2) with
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D§(8(5)) = D§(FTH(5) + AT[BH(S) + H(9)]),
D§(£(8)) = Dg(GTH(8) + BT [BH(3) + H(9)]),
D§(Z(5)) = Dg (HTH(8) + CT[BH(5) + H(9))), (4.3)
D3 (R(8)) = D§ (KTH(d) + DT [BH(8) + H(9)]),
D$(Q(8)) = DS (LTH(8) + ET[BH(8) + H(3)])-

Substituting (4.2) and (4.3) in (4.1), we get,
DE(FTY(€) + A" [BY () + T(§)]) = 0 - SF™T (¢) + AT[BY (€) + T (¢)]
(LY () + B [BY (€ + T ()] (1+e(FT 1) + A" [BY (€) + T(€)])
— (FTT () + A" [BY () + T (¢)]),
DG T () +B" [BY () + T (©)]) =3 (FTT(€) + A" [BT (&) +T(©)])
~(r+) (G"T(©) + B

DE(HTY (&) +C" [BY (&) +

o (H™X (&) + 07 [BY (€ + T(©)])
L

)
(14 (HTT©+C" [BT(©)+ T (©)]))
]
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Collocating the above equations to the subsequent collocation locations & =

2i—1 . _ .
skars ¢ =1, 2... M, we obtain,

D5<FTT<£Z>+A [BT(&) T(€)])) =0 - 6FTT <&>+AT{BT<&> T (6)]
(L7 (&) + )(1+e AT [BY (€) + T(€)])
v (FTT(&-) [ T(€)]),
DG (&) + B [BT(&)H( D)) =0 (FTT (&) + A" [BY (&) + T (£)])

(L7 &)+ E" [BT(& +T(&)]) (1+e(F T (&) + A" [BY () + T (&)
+

—(r+9) (67T "[BY (&) + T (6)]),
De(H™ Y (&) + [ &) =7 (G"T (&) + B [BY (€) + T (€)])
— (HY (&) +C” [BT( 0+ (s)])
DE(K"Y (&) + D" [BY (€)+ T (€)]) = A—a (HY (¢) +C" [BY (&) + T (€)])

(K™ (&) + D" [BT(&)H(&)})(H (H#"T(€)+ " [BT () +T(€)]))
-3 (KTT(gi)-i—D [BY (&) +T ()]
D(L™T(&) + E" [BY (&) + T(&)]):a(HTT(&HC [BY (&) + T (¢)])

T (¢
(KT (€)+ D" [BY (€) + T (&)]) (1+r (HTT (&) + C" [BT (&) + T ()]))
—B (LY (&) + E" [BY (&) +

(4.4)
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Let
fi6n, €2, 6) = DE(FTT(&) + A" [BY (&) + T(&)]) — 0+ 6F T (&) + AT[BY (&)
+ T LT (&) + B [BY (&) + T ()] (1+e(F (&) + A" [BY () + T(&)])
+ (FTT (&) + A" [BY(6) + T (£)]),
gi (61,62, &) = DE(GTY (&) + BT [BY (&) + T (&)]) — 6(F™T (&) + A" [BY (&)
+T (&) (L7 T (&) + B [BY (&) + T (€)]) (1+e(FTT (&) + A" [BT (&) + T (€))
+@+9) (671 (&) + B [BY(€)+ T (&)]),
hi (61,62, &) = DEHTY (€) + C7 [BY (6) + T (&)]) = (G (&) + BT [BT (&)
+TE) + v (HY (&) +C" [BY (&) + T (&)]),
mi (&1, 62,...,&) = DE(KTY (&) + [BT(&)‘FT(&)])— —a
(H™Y () +C" [BY () + T (&)]) (K" T (&) + D" [BY (6) + T (&)])
(1+K(HTT(5)+ " [BY (&) + T (&)] ) ( Y (&) + D [BT(&)—FT(&)]),
i (61,62, ,6) = DE(LTY(E) + B [BY (&) + T (&)]) = a(H" Y (&)
+CT [BY (€) + T (&)]) (K™ T (&) + D" [BY (&) + T (&)])
(14 (H™T (&) +CT [BY () + T (6)])) + 8 (L7 (&) + E" [BY (€) + T (£)]) -

If the elements of a single iteration £() € R are identified as él), él), e ,52([), then
the equations about these elements are as follows:

P
f ( (1), gl“),...,éﬁ””) =f (é”, él),,..,g§l>) + 8—2

(4D _ (0 ofr
+ v
HO) ( ! ) 082

e
0
(£§z+1) _ 52()z)) I f% (££l+1) B 51@) ’
9 e
o (ﬁil“), ém),---,é””) —g (5!5”, g”,...,&) 4 o9 (gglﬂ) m) L 99
851 () 852 130)

(6 -)e v 2| (@)

I (§§Z+1>7§él+1>7‘H,&(Hl)) h( O 5(1)) ohy (dm) (l)>+ Ohy

8§ e af2 e
(1+1) () oh (1+1) _ )
(& @)+m+a&w(5 -¢),

1 1 1 H L 1 omi
(6,60, e 0) = m (6,6, 6) +

8{1
(@) e Gl (0 ),

I+1 I+1 1+1 1 l l Oex
e (00,600, e) = e (6,60, ,e) +

851
(67 =) 4w 2| (6 -0).

mi

! 1 omy
(5( +1) E)) + 5
RO €2 ey

(t+1) _ g0 der
_l’_ P
o) ( ! ) 0&2

[30)

e@
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Making use of the Taylor expansion for the functions fs, f3,..
h27h37"'7hi7m27m37"'

fi (g(l-i-l))
f2 (f(l+1))

fi (g(l+1))

a (g(lJrl))
g2 (§(l+1))

gi (§(z+1))

h (€(l+1))
ho (£(l+1))

h; (g(l-‘rl))

my (€(l+1))
ma (£0+Y)

m; (£04+D)

e1 (£(l+l))
es (€(l+1))

e (§(1+1))

f1 (D)
f2 (€9)

g: (€9)

hy (g(i))
ho (g(i))

of of

0&1 10! 082 110!
9f2 9f2

%1 |y 9&2|e "7
ofi ofi

%1 leay 92lewy T
991 991

%1 ey 982 |cy
992 992
1wy 982 |cy
99 99:

%1 lewy 9&2leay T
Ohy Ohy

91 ey 982 |e)
Ohy Ohy

981 |y 982 |e)
oh; oh,

%1 leay 982 |eay T
omq omq

081 10 062 10
Oms Oms

¢

E)mi

g

ey
061

892
061

de;

0]

,m;i, and es, e3,. ..

tlewy 982 e

0]

061

130)

ami

ey

96 (w

ey

Oe;

0&2 130

Assigning the left side matrix as zero, we obtain,

( (I+1) (z))
1 1

(A5
0&1 30)
Ofa
&1 30)

Ofi
2231 130)

of

082

8f2

082

082

Ofi

of
RO 0&;
of2
ew T 08
0fi
cw 1T 0%

€W

€W

130)

( (I+1)
2

<€ l+1): g(l )

991 I+1
TS £ g( )
agg (l+1
eI 10
dgi (I+1)
3 (5

oh (l+1
0 W
Ohs (z+1
T W
dh (l+1
TG f

9Es (w

)

o (1+1)
0&; 30) 1 -
Of2 (+1)
0¢; 30) 2

of; f(lH)
0¢; 110

€W

=

30

0]
ey I+1
0&; 130 ( ) -

ey l+1)
0&; 10

de; lJFl)
3 f(l)

f1(€9)
f2 (€9)

fi (€@)

'afi7927g3,~ ..
,€;, in a similar way,

)

Y

«
1
(

f“

f“

)

i

)

)

5(1)

dmy (1+1
5 51 ) _
BMQ (l+1)
dff E(l)
om; (l+1) (@)
o (£ =)

tlew 98 fewy

(l)
(z

5”

Y)
(l))

(4.5)

9
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991 991 991
91 ey O |eay W77 08
992 992 992
%1 ey 92 |ey "7 &
99 99 9gi
91 |ewy Of2fey "7 08
Ohy Ohy Oh1
%1 ey 92 |ey T 0&
Oha Ohs Oho
%1 ey 92 |ey T 0&
oh; dh; Oh;
91 |y 92 |ewy "7 O
omy omy omy
0&1 110 082 cw 0&;
Omo Omo Omo
061 130 082 cw 9&;
061 130 082 cw 9¢;
ey ey Oey
91 lewy O&2|ewy T &
ey ey Oey
91 lewy O&2|ey T &
de; de; Oe;
081 10 062 ew T 0&;
K = 9fi — 9gi

Set i lewy’ %j ey’

120)

0]

0]

€W

€W

110

30

30

30

120)

0]

30

(67 ="} o (e0)
(@ =) o]
<€z§l+1):_ &G)) gi (é(i))
<§l+1), gl)) hy (€9)
(™ =a) | __ ]
(€z+1): 5(;) h; (:E(i))
(- e
R 0 I LCTEUl
<£(l+1): g(l) m; (5”)
(& =al)) e
(@) e )
<€§l+1): glgl)) e; (é(i))

= | V= B, md 2= gel, where

K, J, W, V, and Z are the Jacobian matrices for the systems. Then, we have,

K Ax = —F,
J Az = —g,
W Ax = —h,
V Ax=-m
Z Az = —e.

. . . I+1 (1
Here, Az is an n—dimensional vector whose components are (§§ ) _ :mg )) ,

(ggl“) —gg”) and (gfl“) —gi(”) K, J, W, V, and Z are i x i matrix, — f, —g, —h,
—m and —e are the vector of n components. Adding the equation mentioned above
systems together, we attain @ Ax = —p , where Q = K+ J+ W +V + Z and
p=f+ g+ h-+m+e. The system mentioned above can be solved in the following

way since @ is invertible:

Ar = —

Q—l
p

= §(l+1) _ é—(l) _ K_lp.
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The equations mentioned above yield the unidentified Taylor wavelet coefficient
values. By replacing these coefficient values in (4.2), one can derive the TWCM
numerical solution for the problem.

5. Applications of the projected approach

In general, today’s problems are not determinable but have stochastic influence,
which offers an additional logical way to illustrate viral dynamics. Here, we em-
ployed the TWCM to solve SFODEs. Here, we used the TWCM and the opera-
tional matrix from Section 2 to transform the nonlinear differential equations into
a set of algebraic equations. Later, with the Newton-Raphson approach, the set of
nonlinear algebraic equations is resolved, and the Taylor wavelet coefficients and
wavelet-based numerical solutions of S (£), E(§), I(§), R(§) and R () are ob-
tained for the model by substituting these coefficient values. The TWCM solutions
produced for the value of & = 1 (integer order) are displayed in Tables 6-10. The nu-
merical approximations generated by the created methodology (TWCM) and other
current methods are contrasted with the NDSolve solution because no exact solu-
tion is available. The findings indicate that, compared to existing methods like the
Homotopy analysis transform method (HATM) and RK4 method, the TWCM so-
lutions are closer to the NDSolve results. The results are tabulated in Tables 6-10,
and the absolute errors of the developed approach with the NDSolve solution are
presented in Tables 1-5. The numerical solutions of the desired model at diverse
values of a are computed and listed in Tables 11-15. The pictorial illustrations of
the solution at o = 0.2, 0.4, 0.6, 0.8, and 1.0, respectively, are drawn in Figures
11-15. Different values of M and k are used to calculate the TWCM solutions.
Additionally, as shown in Tables 1-5, we can increase the precision of the results by
extending the estimates of M and k. It demonstrates that raising M and k can lead
to higher precision. From the numerical data in Figures 1-5, it is evident that when
the populations of susceptible pine trees and susceptible insects decrease, the pop-
ulations of infected pine trees and exposed classes increase. Also, the population
of infected beetle classes rises. Additionally, multiple observations of the corre-
sponding decay and growth can be made on various fractional orders. The quantity
of susceptible pine trees and beetles reduces when the order « of the fractional
derivative is decreased. However, the number of exposed, infected pine trees and
beetles dramatically increases, as shown in Figures 11-15. Therefore, based on the
graphical data, we may conclude that the model significantly stands on the order of
fractional derivatives, which produces biologically realistic outcomes. Additionally,
we conclude that, compared to the integer order PWD model, the suggested model
under Caputo fractional order derivative offers more prosperous and more flexible
outcomes.
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Figure 1. Plot of the Susceptible Pine tree class S(£) compared with different methods.
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Figure 2. Plot of the Exposed Pine tree class F(¢) compared with different methods.

20.10 ]
~=&~- TWCM Solution
NDSolve Solution
20,08 RK4 Solution |

s HATM Solution

20.06

16)

20.04

20.02

20.00

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. Plot of the Infected Pine tree class I(£{) compared with different methods.
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Figure 4. Plot of the Susceptible beetles’ class R({) compared with different methods.
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Figure 5. Plot of the Infected beetles’ class Q(£) compared with different methods.
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Figure 6. Graphical contrast of AE of S(&).
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Figure 7. Graphical contrast of AE of E(¢).
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Figure 8. Graphical contrast of AE of I(¢).
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Figure 9. Graphical contrast of AE of R(&).
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Figure 12. Graphical depiction of E(¢) with distinct values of a.
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Figure 13. Graphical depiction of I(£) with distinct values of a.
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Table 1. AE assessment of S(§) with the several estimates of M and k.

& Absolute error of GWCM with NDSolve method

k=1,M=3 | k=2,M=3 | k=1,M=4 | k=2,M=4 | k=1,M=6 k=2,M=6
0 0 0 0 0 0 0
0.1 | 748 x107° | 5.82x 107% | 3.34 x 107% | 9.96 x 1078 | 5.50 x 1079 | 6.53 x 107°
0.2 | 832x107° | 2.85 x107°% | 2.93 x107% | 6.23 x 1078 | 5.44 x 107 | 6.18 x 107°
0.3 | 6.35x107° | 284 x 107% | 1.98 x 107% | 9.04 x 1078 | 5.12 x 1079 | 5.84 x 107°
0.4 | 416 x 107° | 5,73 x 107 | 1.75 x 107% | 5.31 x 1078 | 4.69 x 107° | 5.49 x 10~°
0.5 | 3.28 x 107° | 4.39 x 107% | 2.20 x 107% | 4.39 x 1072 | 4.39 x 1079 | 5.15 x 107°
0.6 | 4.14 x 107° | 4.24 x 107° | 2.64 x 107% | 9.41 x 1078 | 4.09 x 107° | 4.81 x 10~°
0.7 | 6.21 x 107° | 2.09 x 1076 | 2.40 x 107% | 5.80 x 1078 | 3.67 x 1079 | 4.47 x 107°
0.8 | 8.02x107° | 2.09 x 107 | 1.46 x 107 | 8.52 x 1078 | 3.36 x 1072 | 4.13 x 107°
0.9 | 7.26 x 107° | 4.16 x 1079 | 1.06 x 107% | 4.91 x 1078 | 3.31 x 1079 | 3.80 x 107°
1.0 | 815 x 1076 | 2.64 x 1077 | 4.38 x 1076 | 1.35 x 1077 | 1.48 x 1079 | 1.04 x 10~ 1!

Table 2. AE assessment of F(£) with the several estimates of M and k.

13 Absolute error of GWCM with NDSolve method
k=1,M=3 | k=2,M=3 | k=1,M=4 | k=2,M=4 | k=1,M=6 | k=2,M=6
0 0 0 0 0 0 0

0.1 | 740 x107° | 6.13 x 107% | 3.73 x 1076 | 4.84 x 1077 | 3.90 x 10~7 | 3.91 x 107

5

0.2 | 823 x107° | 3.21 x 107°% | 3.34 x 107 | 4.60 x 1077 | 4.03 x 107 | 4.04 x 10~7
0.3 | 6.28 x 107° | 3.14 x 107% | 2.33 x 107 | 4.34 x 1077 | 3.48 x 1077 | 3.49 x 1077
0.4 | 413 x107° | 6.02 x 1076 | 2.14 x 1076 | 4.32 x 1077 | 3.83 x 1077 | 3.84 x 107
0.5 | 3.27 x 107° | 4.67 x 107% | 2.67 x 107% | 4.67 x 1077 | 4.67 x 1077 | 4.68 x 107
0.6 | 4.11 x 1077 | 4.63 x 1076 | 3.12 x 1076 | 5.67 x 1077 | 4.77 x 1077 | 4.78 x 107
0.7 | 6.15x 107° | 2.53 x 107% | 2.89 x 107 | 541 x 1077 | 4.86 x 1077 | 4.87 x 10~7
0.8 | 7.93x107° | 2.53 x 1076 | 1.95 x 1076 | 5.57 x 1077 | 4.93 x 1077 | 4.93 x 107
0.9 | 718 x 107° | 454 x 107°% | 1.53 x 107° | 5.21 x 1077 | 4.75 x 1077 | 4.76 x 10~7

1.0 | 847 x107% | 7.27 x 1077 | 4.86 x 107°% | 6.02 x 1077 | 4.65 x 10~7 | 4.67 x 107
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Table 3. AE assessment of /() with the several estimates of M and k.

13 Absolute error of GWCM with NDSolve method

k=1,M=3 | k=2,M=3 | k=1,M=4 | k=2,M=4 | k=1,M=6 | k=2,M=6
0 0 0 0 0 0 0
0.1 | 1.14x107% | 711 x 1078 | 1.93 x 1078 | 6.79 x 107° | 6.38 x 107° | 6.38 x 107°
0.2 | 1.30 x 107 | 3.01 x 107% | 1.94 x 1078 | 9.15 x 107? | 8.92 x 1079 | 8.92 x 10~°
0.3 | 1.00 x 107% | 3.02 x 1078 | 1.55 x 1078 | 9.83 x 1072 | 9.49 x 107° | 9.49 x 107°
0.4 | 671 x1077 | 7.13 x 1078 | 1.38 x 1072 | 9.29 x 107° | 9.14 x 107° | 9.14 x 107°
0.5 | 538x 1077 | 812 x 1072 | 1.41 x 1078 | 812 x 107° | 8.12 x 107° | 8.12 x 107°
0.6 | 6.91 x 1077 | 7.55 x 107% | 1.52 x 1078 | 8.35 x 107? | 8.06 x 1079 | 8.06 x 10~°
0.7 | 1.05 x 107% | 3.35 x 107® | 1.35 x 1078 | 8.15 x 1079 | 8.00 x 107? | 8.00 x 10~°
0.8 | 1.38 x107% | 3.40 x 107% | 9.18 x 1079 | 814 x 107° | 7.92 x 107? | 7.92 x 10~°
0.9 | 1.27x107% | 778 x 107® | 7.31 x 107° | 8.02 x 1079 | 7.93 x 107? | 7.93 x 10~°
1.0 | 1.44 x 1077 | 4.00 x 1079 | 2.02 x 1078 | 8.24 x 107 | 7.86 x 107° | 7.86 x 10~°

Table 4. AE assessment of R(§) with the several estimates of M and k.

13 Absolute error of GWCM with NDSolve method

k=1,M=3 | k=2,M=3 | k=1,M=4 | k=2,M=4 | k=1,M=6 | k=2,M=6
0 0 0 0 0 0 0
0.1 | 394 x107% | 221 x 1077 | 7.87 x 107® | 5.30 x 107% | 5.21 x 107% | 5.21 x 1078
0.2 | 439 x107% | 6.39 x 107® | 9.11 x 1078 | 6.79 x 1078 | 6.74 x 107% | 6.74 x 108
0.3 | 330 x107% | 6.20 x 1078 | 861 x 1078 | 7.02 x 1078 | 6.94 x 107% | 6.94 x 1078
0.4 | 2.07 x 1077 | 2.06 x 1077 | 8.30 x 1078 | 6.85 x 1078 | 6.80 x 107® | 6.80 x 1078
0.5 | 1.57x 1077 | 6.42 x 1072 | 8.26 x 107% | 6.42 x 1078 | 6.42 x 1078 | 6.42 x 1078
0.6 | 2.08 x 1077 | 2.21 x 1078 | 8.57 x 1072 | 6.46 x 1078 | 6.40 x 108 | 6.40 x 10~
0.7 | 332x107°% | 734 x 1078 | 839 x 107% | 6.41 x 107% | 6.38 x 107% | 6.38 x 10~8
0.8 | 443 x107° | 7.37 x 1078 | 7.71 x 1079 | 6.40 x 108 | 6.35 x 10~® | 6.35 x 10~%
0.9 | 397 x107°% | 222 x 1077 | 7.44 x 107% | 6.40 x 1078 | 6.36 x 107% | 6.36 x 10~
1.0 | 1.03 x 1077 | 6.49 x 1072 | 9.67 x 1073 | 6.43 x 1073 | 6.35 x 1078 | 6.35 x 108
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Table 5. AE assessment of Q(£) with the several estimates of M and k.

& Absolute error of GWCM with NDSolve method

k=1,M=3 | k=2,M=3 | k=1,M=4 | k=2,M=4 | k=1,M=6 | k=2,M=6
0 0 0 0 0 0 0
0.1 | 394%x107% | 221 x1077 | 7.84 x 1078 | 528 x 1078 | 5.19 x 1078 | 5.19 x 1078
0.2 | 4.39x107° | 6.41 x 107% | 9.08 x 1078 | 6.76 x 108 | 6.71 x 10~® | 6.71 x 108
0.3 | 3.30x107% | 6.22 x 1078 | 858 x 1078 | 6.99 x 1078 | 6.92 x 1078 | 6.92 x 1078
0.4 | 2.07 x107°% | 2.06 x 1077 | 8.28 x 1078 | 6.82 x 1078 | 6.78 x 10~ % | 6.78 x 108
0.5 | 1.57 x 107°% | 6.40 x 1077 | 8.24 x 1078 | 6.40 x 1078 | 6.40 x 1078 | 6.40 x 1078
0.6 | 2.08 x 107 | 2.21 x 107% | 8.55 x 1078 | 6.43 x 107® | 6.38 x 10~® | 6.38 x 108
0.7 | 3.32x107% | 7.36 x 107® | 837 x 107% | 6.39 x 107® | 6.35 x 107® | 6.35 x 108
0.8 | 443 x107° | 7.39 x 1078 | 7.68 x 107® | 6.38 x 107® | 6.33 x 107® | 6.33 x 1078
0.9 | 3.97 x 1076 | 222 x 1077 | 7.42 x 1078 | 6.37 x 107® | 6.34 x 107 % | 6.34 x 10~8
1.0 | 1.03 x 1077 | 6.47 x 107® | 9.65 x 1078 | 6.41 x 1072 | 6.32 x 10~® | 6.32 x 10~®

Table 6. The numerical results of S(§) compared with different methods.

¢ ND Solve TWCM RK4 HATM [9] | AE of HATM | AE of RK4 | AE of TWCM
0 | 300.0000000000 | 300.000000000 | 300.00000000 | 300.000000 0 0 0

0.2 | 297.5457374954 | 297545737502 | 207545737498 | 297.5450103 | 7.27x107* | 260 x 1077 6.60 x 107°
0.4 | 2949667201500 | 294.966720156 | 294.966720149 | 204.9608370 | 5.88x 107> | 9.99x 1077 5.99x 107°
0.6 | 2922675486378 | 292.267548643 | 292.267548632 | 202.2474799 |  2.00x 1072 | 5.80x 1077 5.19x 107
0.8 | 280.4520921276 | 289.452002132 | 289452992119 | 289.4049390 | 4.80x 1072 | 8.60 x 107" 440x107°
1.0 | 286.5279676719 | 286.527967672 | 286.527967656 | 286.4332145 | 9.47x 1072 | 1.59x 1077 | 9.99x 107!

Table 7. The

numerical results of F(¢) compared with different methods.

3 ND Solve TWCM RK4 HATM [9] | AE of HATM | AE of RK4 | AE of TWCM
0 | 30.00000000000 | 30.0000000000 | 30.000000000 | 30.0000000 0 0 0

0.2 | 32.43728831577 | 32.4372879116 | 324372879151 | 32.43802645 | 7.38x 107* | 400x 107 4.04x 1077
0.4 | 34.99798599822 | 34.9979856142 | 34.9979856209 | 35.00395898 | 5.97x 107 | 3.77x107° 3.84x 1077
0.6 | 37.67742774120 | 37.6774272634 | 37.6774272732 | 37.69779761 | 2.03x 1072 | 4.68x 107 478 x 107"
0.8 | 40.47078157756 | 40.4707810837 | 40.4707810971 | 40.51954233 | 487 x 1072 | 480x 107 493%x 1077
1.0 | 43.37307052910 | 43.3730700621 | 43.3730700785 | 4346919314 | 9.61x 107 | 4.50x 107° 467x 1077
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Table 8. The numerical results of /() compared with different methods.
¢ | ND Solve TWCM RK4 HATM [9] | AE of HATM | AE of RK4 | AE of TWCM
0| 20.00000000000 | 20.0000000000 | 20.000000000 | 20.0000000 0 0 0
0.2 | 20.01667577872 | 20.0166757876 | 20.0166757876 | 20.01666441 | 1.13x 107> | 8.88x 107" | 8.88x107°
0.4 | 20.03469662491 | 20.0346966341 | 20.0346966345 | 20.03460646 | 9.01x 107° | 9.59x 1077 | 9.19x 107
0.6 | 20.05412769437 | 20.0541277024 | 20.0541277024 | 20.05382613 | 3.01x 107 | 8.03x 1077 | 8.03x107°
0.8 | 20.07503159091 | 20.0750315988 | 200750315988 | 20.07432344 | 7.08x 107 | 7.89x 107" | 7.89x107°
1.0 | 20.09746828059 | 20.0974682885 | 20.0974682884 | 20.09609837 | 1.36x 107 | 7.81x 1077 | 791x 107
Table 9. The numerical results of R({) compared with different methods.
¢ | ND Solve TWCM RK4 HATM [9] | AE of HATM | AE of RK4 | AE of TWCM
0 | 6500000000000 | 65.0000000000 | 65.000000000 | 65.000000 0 0 0
0.2 | 6375080401227 | 63.7508039449 | 63.7598039449 | 63.75988658 | 8.25x 10 | 6.73x107% | 6.73x 107
0.4 | 6254220546138 | 62.5422953933 | 62.5422953034 | 6254295352 | 6.58 x 107° | 6.79x107° | 680 x 107
0.6 | 61.34698975500 | 61.3469896912 | 61.3469896915 | 61.34920081 | 221x 107 | 6.35x107° | 638 x 1078
0.8 | 60.17341134905 | 60.1734112856 | 60.1734112856 | 60.17862847 | 5.21x 107 | 634 x 107° 789x 1078
1.0 | 59.02109394151 | 59.0210938786 | 59.0210938781 | 59.03123648 | 1.01x 107 | 6.34x107% | 629x 107
Table 10. The numerical results of Q({) compared with different methods.
¢ | ND Solve TWCM RK4 HATM [9] | AE of HATM | AE of RK4 | AE of TWCM
0 | 20.00000000000 | 20.0000000000 | 20.000000000 | 20.000000 0 0 0
0.2 | 21.05185803560 | 21.0518581028 | 210518581028 | 21.05177564 | 8.23x 107> | 6.72x107° | 6.72x 107
0.4 | 22.08147123480 | 22.0814713026 | 22.0814713026 | 22.08081457 | 6.56x 107° | 6.78x107% | 6.78x 107
0.6 | 23.08932315000 | 23.0893232138 | 23.0893232138 | 23.08711678 | 220x 107 | 6.38x107° | 638 x 107
0.8 | 24.07588828763 | 24.0758883509 | 24.0758883509 | 24.07068228 | 520x 107 | 6.32x107° | 6.32x 1078
1.0 | 25.04163191445 | 250416319777 | 25.0416319777 | 25.03151105 | 1.01x 107 | 632x107° | 6.32x 1078
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Table 11. The numerical results of S(§) at « = 0.6, 0.8 and 0.9.

a = 0.6

a = 0.8

a=0.9

TWCM

HATM

TWCM

HATM

TWCM

HATM

300.0000000

300.0000000

300.0000000

300.0000000

300.0000000

300.0000000

0.2

294.7106234

290.8332821

296.3999586

294.2312730

297.0286465

295.9169066

0.4

291.5573732

288.7183111

293.4374249

291.6812730

294.2456359

293.3045941

0.6

288.8582880

286.9466815

290.6279594

289.2823904

291.4708042

290.7063195

0.8

286.4258392

285.3574883

287.8919546

286.9528908

288.6717324

288.0843841

1.0

284.2587780

283.8864707

285.2054067

284.6590141

285.8389362

285.4232667

Table 12. The numerical results of E({) at a = 0.6, 0.8 and 0.9.

a = 0.6

a = 0.8

a=0.9

TWCM

HATM

TWCM

HATM

TWCM

HATM

30.00000000

30.00000000

30.00000000

30.00000000

30.00000000

30.00000000

0.2

35.25169464

39.10004523

33.57487590

35.72766190

32.95070893

34.05441224

0.4

38.38080393

41.19892275

36.51577144

38.25886843

35.71371062

36.64785418

0.6

41.05819473

42.95693540

39.30388833

40.63981065

38.46790303

39.22704104

0.8

43.47021513

44.53381791

42.01829081

42.95167533

41.24542858

41.82943376

1.0

45.61813103

45.99336551

44.68280686

45.22800285

44.05565063

44.47046140

Table 13. The numerical results of I(§) at o = 0.6, 0.8 and 0.9.

a = 0.6

a = 0.8

a=0.9

TWCM

HATM

TWCM

HATM

TWCM

HATM

20.00000000

20.00000000

20.00000000

20.00000000

20.00000000

20.00000000

0.2

20.03706783

20.06569309

20.02473541

20.04041223

20.02028584

20.02820332

0.4

20.06087763

20.08158972

20.04604431

20.05894326

20.03997835

20.04678947

0.6

20.08230238

20.09504715

20.06709651

20.07664739

20.06031743

20.06560725

0.8

20.10249721

20.10721869

20.08842248

20.09406166

20.08157371

20.08488908

1.0

20.12144563

20.11856300

20.11019336

20.11140109

20.10386546

20.10472442
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Table 14. The numerical results of R({) at « = 0.6, 0.8 and 0.9.
a=0.6 a=0.8 a=09
¢ TWCM HATM TWCM HATM TWCM HATM
0 65.00000000 | 65.00000000 | 65.00000000 | 65.00000000 | 65.00000000 | 65.00000000
0.2 | 62.49632797 | 61.13521917 | 63.22741744 | 62.36277835 | 63.51565943 | 63.04502340
0.4 | 61.20269459 | 60.40677303 | 61.90801009 | 61.34428024 | 62.23613678 | 61.91386799
0.6 | 60.17452131 | 59.82779844 | 60.74736176 | 60.44600834 | 61.04707524 | 60.86194973
0.8 | 59.30331456 | 59.33049050 | 59.68779443 | 59.62275299 | 59.92104120 | 59.86504614
1.0 | 58.59233755 | 58.88735002 | 58.70747394 | 58.85433742 | 58.84566295 | 58.91180471
Table 15. The numerical results of Q(§) at a = 0.6, 0.8 and 0.9.
a=0.6 a=0.8 a=09
¢ TWCM HATM TWCM HATM TWCM HATM
0 20.00000000 | 20.00000000 | 20.00000000 | 20.00000000 | 20.00000000 | 20.00000000
0.2 | 22.11751690 | 23.25119176 | 21.50176424 | 22.22707314 | 21.25832669 | 21.65432952
0.4 | 23.20408274 | 23.85718191 | 22.61455672 | 23.08151053 | 22.33908977 | 22.60713914
0.6 | 24.06413397 | 24.33723469 | 23.58978058 | 23.83245361 | 23.34006118 | 23.49023543
0.8 | 24.79016955 | 24.74838860 | 24.47693785 | 24.51838248 | 24.28486364 | 24.32434237
1.0 | 25.37928523 | 25.11379385 | 25.29486272 | 25.15651828 | 25.18422414 | 25.11921053

6. Conclusion

In the present work, we have provided the numerical approximation of the PWD
model. The TWCM with the Caputo fractional derivative is used to generate the
numerical solution. We can apply the scheme to other types of fractional derivatives,
such as Riemann-Liouville, Caputo-Fabrizio, Mittag-Leffler, and Atangana-Baleanu
fractional derivatives. A novel operational matrix is constructed based on the Taylor
wavelets at diverse resolutions (k) and incorporated into the collocation method.
Methods like HATM, RK4, and ND Solver have been compared with the results
obtained from the established technique. Since the suggested technique is more
precise than the current numerical approaches in use, the findings in the tables and
figures support this claim. Numerical examples support the idea that only a small
number of TWBs are required to achieve appropriate results. The above statement
emphasizes our belief that the method efficiently deals with highly nonlinear FDEs.
This approach is straightforward, easy to apply, and requires less computing power.
Thus, compared with RK4 and HATM, we deduced that the technique under discus-
sion is a helpful tool for obtaining the numerical approximation of the mathematical
models in the form of nonlinear FDEs. Further, by slightly modifying the method,
the Taylor wavelet method can solve the PDEs, higher-order systems of ordinary
differential equations, stiff systems, delay differential equations, and chemical and
biological models.
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