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Critical Point Theorems of Non-smooth
Functionals without the Palais-Smale Condition
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Abstract This paper introduces some new variants of abstract critical point
theorems that do not rely on any compactness condition of Palais Smale type.
The focus is on locally Lipschitz continuous functional Φ : E → R, where E is a
reflexive banach space. The theorems are established through the utilization of
the least action principle, the perturbation argument, the reduction method,
and the properties of sub-differential and generalized gradients in the sense
of F.H. Clarke. These approaches have been instrumental in advancing the
theory of critical points, providing a new perspective that eliminates the need
for traditional compactness constraints. The implications of these results are
far-reaching, with potential applications in optimization, control theory, and
partial differential equations.
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1. Introduction

Critical point theory has long been a cornerstone in the study of the existence and
multiplicity of solutions for various classes of nonlinear problems. Traditionally, this
domain has relied heavily on specific compactness assumptions, notably the Palais-
Smale condition [3,15,23]. Notwithstanding, these presumptions are not universally
applicable, particularly concerning certain substantial classes of functionals. This
underscores the importance of developing innovative critical point theorems that
are free from these constraints for broader applicability [2, 10,16,21,22,25].

The Palais-Smale condition is a classical compactness assumption that is often
used to prove the existence of critical points for functionals on Banach spaces.
However, this condition may not hold for some important classes of functionals,
such as non-smooth or non-convex ones. Therefore, many researchers have tried
to develop new critical point theorems that can overcome this limitation, see for
example [6, 9], or apply to more general settings, see for example [1, 5, 19,26].

However, the Palais-Smale condition proved to be too restrictive for many mod-
ern variational problems that involve more complicated functionals. In response,
researchers looked for more flexible frameworks that could handle non-compact sit-
uations, leading to the emergence of critical point theories that do not depend on
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this traditional compactness constraint.
The study in question has its roots to the early and mid-20th century, during

which mathematicians like Marston Morse [17] and R. Palais [20] established the
fundamental principles of critical point theory by building upon the variational
methods developed by Euler and Lagrange. Morse theory, for instance, unveiled
the correlation between the topology of manifolds and the critical points of smooth
functions.

This study focuses on the category of locally Lipschitz continuous functionals
Φ : E → R, where E is a reflexive Banach space. We present novel variations of
abstract critical point theorems that eliminate the need for any compactness cri-
terion of Palais-Smale condition. The primary methodologies we employ include
the least action principle, the perturbation argument, the reduction approach, and
the characteristics of sub-differential and generalized gradients as defined by F.H.
Clarke [11]. These strategies enable us to acquire critical points for functionals that
may exhibit non-smooth or non-convex components, and to handle different sorts
of restrictions and boundary conditions. By eliminating the need for traditional
compactness constraints, these new critical point theorems offer far-reaching im-
plications, with potential applications in optimization, control theory, and partial
differential equations. The generalizations presented in this paper provide a new
perspective on critical point theorems, making them applicable to a wider range
of functionals and settings, and eliminating the need for traditional compactness
constraints.

A.C. Lazer, E.M. Landesman and D.R. Meyers in [13, Theorem 1] established
the existence and uniqueness of critical points for certain functional without the
compactness conditions. This theorem provided conditions under which a real val-
ued function defined on a real Hilbert space has a unique minimizer. The theorem
uses a variational argument and the saddle point principle to demonstrate the ex-
istence and uniqueness of the critical point.

Bates and Ekeland [4], Manasevich [14] and A.C. Lazer [13] generalized [13,
Theorem 1] to the case where X and Y are not necessarily finite dimensional or by
weakening the conditions:

(D2Φ(u)h, h) ≤ −m1∥h∥2, (1.1)

(D2Φ(u)k, k) ≥ m2∥k∥2 (1.2)

for all u ∈ H,h ∈ X and k ∈ Y .

Moussaoui and Gossez [18] generalized Theorem 1 in [13] by relaxing conditions
(1.1) and (1.2) to conditions of coercivity and concavity and they supposed that Φ
is of class C1 instead of C2 . They proved the following theorem:

Theorem 1.1. Let H be a Hilbert space such that : H = V ⊕ W , where V is
finite dimensional subspace of H and W its orthogonal space. Consider a functional
Φ : H → R that satisfies the following conditions:
(i) Φ is of class C1.
(ii) Φ is coercive on W .
(iii) For a fixed w ∈ W , the mapping v 7→ Φ(v + w) is concave on V.
(iv) For a fixed w ∈ W , Φ(v + w) → −∞ when ∥v∥ → +∞, v ∈ V ; and this
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convergence is uniform on bounded subsets of W .
(v) For all v ∈ V , Φ is weakly lower semicontinuous on W + v.
Under these conditions, the functional Φ admits a critical point in H.

We can also find the proof of this theorem in [12]. By the proof of Theorem
1.1, we conclude that the critical point, the existence of which has been proven, is
of the minimax form. Then with assymptions of Theorem 1.1, there exists at least
one critical point u0 = x0 + w0 such that

Φ(u0) = max
x∈V

Φ(x+ w0) = min
w∈W

max
x∈V

Φ(x+ w).

On the other hand, by the proof of Theorem 1.1, we can deduce easily that it’s dual
version is also available. We present its dual of Theorem 1.1

Theorem 1.2. Let H be a Hilbert space such that H = V ⊕W , where V is a finite-
dimensional subspace of H and W its orthogonal space. Consider a functional
Φ : H → R that satisfies the following conditions:
(i) Φ is of class C1.
(ii) Φ is anticoercive on W .
(iii) For a fixed w ∈ W , the mapping v 7→ Φ(v + w) is convexe on V .
(iv) For a fixed w ∈ W , Φ(v + w) → +∞ when ∥v∥ → +∞, for v ∈ V ; and this
convergence is uniform on bounded subsets of W .
(v) For all v ∈ V , Φ is weakly upper semicontinuous on W + v.
Under these conditions, the functional Φ admits a critical point u0 = x0 + w0 such
that

Φ(u0) = min
x∈V

Φ(x+ w0) = max
w∈W

min
x∈V

Φ(x+ w).

In this paper, we will generalize Theorem 1.2. We assume a less restrictive
smoothness condition for functionals. We assume that the functional Φ is locally
Lipschitz continuous. We present four variants of [13, Theorem 1]. In the first
theorem, we assume V has a finite dimension. In the other theorems , we remove
the requirement that V be finite-dimensional. Our results generalize our previous
theorems in [7] and [8] and the work of Chun-Lei Tang and Xing-Ping Wu in [24].

2. Preliminaries

Let X be a Banach space. We recall some properties for local Lipschitz functionals:

Definition 2.1. Let Φ : X → R be a locally Lipschitz functional. For any x, v ∈ X,
the generalized directional derivative of Φ at x in the direction v is defined as:

Φo(x, v) = lim sup
y→x,t→0+

Φ(y + tv)− Φ(y)

t
. (2.1)

Definition 2.2. The generalized gradient (Clarke subdifferential) of Φ at a point
x, denoted by ∂Φ(x), is the set of all vectors ξ ∈ X∗ such that: Φo(x, v) ≥ ⟨ξ, v⟩
for all v ∈ X.

Definition 2.3. Let Φ : X → R be a locally Lipschitz functional. For each x, v ∈
X, the directional derivative of Φ at x in the direction v is

Φ′(x, v) = lim
t→0

Φ(x+ tv)− Φ(x)

t
.
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Let Φ : X → R be a locally Lipschitz functional with rank k near x. The
following properties of the generalized directional derivative and the generalized
gradient may be proved in [11].

• Φo(x, v) is finite, positively homogeneous, subadditive on X and satisfies

|Φo(x, v)| ≤ K∥v∥.

• Φo(x,−v) = (−Φ)o(x, v).

• (x, v) → Φo(x, v) is upper semicontinuous.

• For each x ∈ X, ∂Φ(x) is non-empty, convex, weak∗ compact subset of X∗.

• For every v in X, one has

Φo(x, v) = max{(x∗, v); x∗ ∈ ∂Φ(x)}.

• Let Φ,Ψ : X → R be a locally Lipschitz function. Then

∂(Φ + Ψ)(x) ⊂ ∂Φ(x) + ∂Ψ(x).

• If Φ is convex, then ∂Φ(x) coincides with the subdifferential of Φ in the sense
of convex analysis. In fact

∂Φ(x) = {x∗ ∈ X∗; Φ(x′)− Φ(x) ≥ (x∗, x′ − x), ∀x′ ∈ X}.

• Consider U as an open convex subset of X. When f : U → R is both
convex on U and Lipschitz near x, ∂f(x) is equivalent to the subdifferential
at x according to convex analysis, and fo(x, v) coincides with the directional
derivative f ′(x, v) for each v.

3. Main results

According to our first theorem, we generalize Theorem 1.2 by assuming that Φ :
E → R is a locally Lipschitz continuous functional. However, rather than convexity,
we assume that Φ(.+ w) is strictly convex for all w ∈ W .

Theorem 3.1. Consider a reflexive Banach space E that can be decomposed as the
direct sum of two closed subspaces V and W , where V is finite dimensional. Let
Φ : E → R be a function that is locally Lipschitz continuous. Φ is weakly upper
semi-continuous on W + x for all x ∈ V , and Φ is anti-coercive on W , meaning
that

Φ(w) → −∞ as ∥w∥ → +∞.

Assume that Φ(.+ w) : V → R is strictly convex for all w ∈ W and

Φ(x+ w) → +∞ as ∥x∥ → +∞, (3.1)

and the convergence is uniform on bounded subsets of W. Then Φ has at least one
critical point u0 = x0 + w0 such that

Φ(u0) = min
x∈V

Φ(x+ w0) = max
w∈W

min
x∈V

Φ(x+ w).
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The proof of Theorem 3.1 relies on the reduction method and the least action
principle. We reiterate this principle, as seen in [15].

The least action principle : Let V be a reflexive Banach space and Ψ : V → R
be weakly lower semi-continuous. Assume that Ψ is coercive, that is,

Ψ(x) → +∞ as ∥x∥ → +∞.

Then Ψ has at least one minimum.

In the proof of Theorem 3.1, we will need the following Lemma.

Lemma 3.1. The set

V (w) = {x ∈ V : φ(w) = Φ(x+ w) = min
g∈V

Φ(g + w)}

is a singleton and φ : W → R is bounded above and achieves its maximum at some
w0 ∈ W .

Proof. The functional Φ(.+ w) : V → R is strictly convex for all w ∈ W and it is
continuous, so it is weakly lower semi-continuous. Moreover, Φ(. + w) : V → R is
coercive, then according to the least action principle, it has a minimum on V +w for
all w ∈ W . Then the set V (w) is nonempty. We confirm that V (w) is a singleton.
Otherwise, we suppose that there exist x1 and x2 such that

Φ(x1 + w) = Φ(x2 + w) = min
g∈V

Φ(g + w).

Let xλ = λx1 +(1−λ)x2 and 0 < λ < 1. As Φ(.+w) is strictly convex on V for all
w ∈ W , then

Φ(xλ + w) < λΦ(x1 + w) + (1− λ)Φ(x2 + w) = Φ(x1 + w),

which contradicts x1 ∈ V (w).

There exists a sequence un = xn + wn such that Φ(un) → supW φ = b with
wn ∈ W and xn ∈ V (wn). We claim that

∥wn∥ ≤ c.

Otherwise, as
Φ(un) = Φ(xn + wn) ≤ Φ(wn),

and by the anti-coercivity of Φ on W , we deduce that Φ(wn) → −∞. Then
Φ(un) → −∞, which contradicts the convergence of Φ(un) to b. Hence, there
exists a subsequence, still denoted by wn such that wn ⇀ w. For all x in V , we
have

Φ(x+ w) ≥ lim sup
n→+∞

Φ(x+ wn) ≥ lim sup
n→+∞

Φ(xn + wn) = b,

for all x ∈ V , so in particular for x ∈ V (w). Then, φ is bounded above and achieves
its maximum at some point w0 ∈ W .



308 H. Boukhrisse & Z. El Allali

Proof of Theorem 3.1. Let w0 ∈ W and u = x0 + w0 such that x0 ∈ V (w0) and
φ attains its maximum on W at w0. We will prove that u is a critical point of Φ.
Let’s prove that Φ0(u, x) = 0 for all x ∈ V . We have

Φ(u+ tx)− Φ(u) ≥ 0, ∀t ∈ R, ∀x ∈ V.

So for t > 0, we have

Φ(w0 + x0 + tx)− Φ(x0 + w0)

t
≥ 0.

Since Φ is convex on V, by passing to the limit, where t converges vers 0, we obtain
that

Φ′(x0 + w0, x) ≥ 0, ∀x ∈ V.

Then
Φ′(x0 + w0, x) = 0, ∀x ∈ V.

Hence
Φ0(u, x) = 0, ∀x ∈ V. (3.2)

Let wt = w0 + th for h ∈ W and |t| ≤ 1. By Lemma 3.1, for each 0 < |t| ≤ 1,
there exists vt ∈ V (wt). Since ∥wt∥ ≤ ∥w0∥+∥h1∥, by (3.1), there exists a constant
A > 0 such that:

Φ(x+ wt) > max
W

Φ ≥ Φ(wt), (3.3)

for x ∈ V, ∥x∥ ≥ A and |t| ≤ 1. (Since Φ is anticoercive and weakly upper
continuous in the reflexive space W , it reaches its maximum. ) We claim that:

∥xt∥ ≤ A.

Otherwise, we would have
Φ(xt + wt) > Φ(wt),

which contradicts xt ∈ V (wt). Since V is reflexive, there exists a subsequence
tn → 0 and tn ≥ 0 such that xtn → x1 ∈ V (V is of finite dimension). We have

Φ(xtn + wtn) ≤ Φ(x+ wtn), ∀x ∈ V.

By passing to the limit, we obtain that

Φ(x1 + w0) ≤ Φ(x+ w0), ∀x ∈ V.

We deduce that x1 ∈ V (w0). Hence, by Lemma 3.1, we conclude that x1 = x0 and
for tn < 0, we have:

Φ(wtn + xtn)− Φ(xtn + w0)

tn
≥ Φ(wtn + xtn)− Φ(x0 + w0)

tn
≥ 0.

Then, by Lebourg mean value theorem, there exists θn ∈ ]0, 1[ and

y∗n ∈ ∂(−Φ)(w0 + xtn + θn(−tn)(−h))

such that
−Φ(wtn + xtn)− (−Φ(xtn + w0))

−tn
= ⟨y∗n,−h⟩ .
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Then ⟨y∗n,−h⟩ ≥ 0. Hence (−Φ)0(w0+xtn+θn(−tn)(−h),−h) ≥ 0. Since (−Φ)0(., .)
is upper semi-continuous, then

(−Φ)0(w0 + x0,−h) ≥ 0, ∀h ∈ W.

Then

Φ0(w0 + x0, h) ≥ 0, ∀h ∈ W.

For all y ∈ E,∃x ∈ V and h ∈ W such that y = x+ h. We have

Φ0(u, h) = Φ0(u, y − x) ≤ Φ0(u, y) + Φ0(u,−x).

So

Φ0(u, y) ≥ Φ0(u, h)− Φ0(u,−x).

Hence

Φ0(u, y) ≥ 0 ∀y ∈ E.

Then 0 ∈ ∂Φ(u) and u is a critical point of Φ.

In the following theorem, we remove the condition that V is finite dimensional.
This result generalizes some theorems in [12] and our Theorem 2.1 in [8]. Our
theorem also generalizes Theorem 2.1 of Tang and Wu in [24] by assuming that
Φ : E → R is a locally Lipschitz continuous functional instead of being of class C1.
Moreover, Tang and Wu proved the existence of a criticlal point u0 = x0 +w0 such
that:

Φ(u0) = inf
x∈V

Φ(x+ w0) = sup
w∈W

inf
x∈V

Φ(x+ w),

or, in the following theorem, our critical point is attained:

Φ(u0) = min
x∈V

Φ(x+ w0) = max
w∈W

min
x∈V

Φ(x+ w).

Theorem 3.2. Consider a reflexive Banach space E that may be decomposed as
the direct sum of two closed subspaces V and W . Suppose that Φ : E → R is a
locally Lipshitz continuous function, Φ is weakly upper semi-continuous on W + v
for all v ∈ V and Φ is anti-coercive on W, that is,

Φ(w) → −∞ as ∥w∥ → +∞.

Assume that there exists a > 0 such that for all ξ ∈ ∂Φ(v1+w) and ξ′ ∈ ∂Φ(v2+w),
we have

(ξ − ξ′, v1 − v2) ≥ a∥v1 − v2∥2, (3.4)

for all w ∈ W, v1, v2 ∈ V . Then Φ has at least one critical point u0 = v0 + w0 such
that :

Φ(u0) = min
v∈V

Φ(v + w0) = max
w∈W

min
v∈V

Φ(v + w).

Remark 3.1. Condition (3.4) indicates that ∂Φ exhibits strong monotonicity,
which in turn requires strict convexity of Φ.

Prior to presenting the proof of Theorem 3.2, we shall establish the following
lemmas.
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Lemma 3.2. The set

V (w) = {v ∈ V : φ(w) = Φ(v + w) = min
g∈V

Φ(g + w)}

is a singleton and φ : W → R is bounded above and achieves its maximum at some
w0 ∈ W .

Proof. We first show that Φ is coercive on V. ∂Φ is strongly monotone which
implies that Φ− 1

2a∥v∥
2 is convex. So

Φ(v + w)− 1

2
a∥v∥2 ≥ Φ(w) + (η, v), ∀η ∈ ∂Φ(w).

Then

Φ(v + w) ≥ 1

2
a∥v∥2 − ∥η∥∥v∥+Φ(w).

Since η ∈ ∂Φ(w), ∃k > 0 such that ∥η∥ ≤ K. So

Φ(v + w) → +∞ as ∥v∥ → +∞.

Since the fact that ∂Φ is strongly monotone implies that Φ is strictly convex, the
rest of the proof is the same as in Lemma 3.1

Lemma 3.3. The mapping f : W → V such that f(w) ∈ V (w) is continuous.

Proof. From Lemma 3.1, V (w) is a singleton and we suppose that f is not con-
tinuous, then there exists γ > 0 and a sequence (wn) converging to w ∈ W and an
integer N large enough such that

∥f(wn)− f(w)∥ ≥ γ, ∀n ≥ N.

Let P be the projection of H onto V defined by P (v + w) = v, and let P ∗ be the
operator adjoint of P . Let ξn ∈ ∂Φ(wn + f(w)) and ξ′n ∈ ∂Φ(wn + f(wn)). Then
for each n we obtain

(ξn, f(wn)− f(w)) = (ξn, P (f(wn)− f(w)))

= (P ∗(ξn), f(wn)− f(w)).

Therefore
∥P ∗ξn∥∥f(wn)− f(w)∥ ≥ −(ξn, f(wn)− f(w)).

Since ξ′n ∈ ∂Φ(wn + f(wn)), then we have

Φ0(wn + f(wn), h) ≥ (ξ′n, h) ∀h ∈ V.

By the proof of Theorem 3.1, we obtain

Φ0(wn + f(wn)), h) ≤ 0 ∀h ∈ V.

So
(ξ′n, h) ≤ 0 ∀h ∈ V.

Then

∥P ∗ξn∥∥f(wn)− f(w)∥ ≥ (ξ′n − ξn, v1 − v2)

≥ a∥f(wn)− f(w)∥2.
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For n large enough, we deduce that

∥P ∗ξn∥ ≥ aγ, (3.5)

and ξn ∈ ∂Φ(wn + f(w)) implies

Φ0(wn + f(w), h) ≥ (ξn, h) ∀h ∈ V.

Since Φ0 is upper continuous, we deduce that

lim sup
n→∞

Φ(ξn, h) ≤ Φ0(w + f(w), h) ∀h ∈ V.

So
lim sup
n→∞

Φ(ξn, h) ≤ 0 ∀h ∈ V.

Then
lim sup
n→∞

(P ∗ξn, h) ≤ 0 ∀x ∈ X.

This contradicts the inequality (3.5).

Proof of Theorem 3.2. Let w0 ∈ W and u = v0 + w0 such that v0 ∈ V (w0)
and φ attains its maximum on W at w0. Then, we demonstrate that u is a critical
point of Φ by employing the identical procedures outlined in Theorem 3.1. Let
wt = w + th for |t| ≤ 1 and h ∈ W . For each t such that 0 < |t| ≤ 1, there exists
a unique vt ∈ V (wt) and by Lemma 3.2, we conclude that vtn converges to v0 and
that v0 ∈ V (w0). The rest of the proof is the same as in Theorem 3.1.

Remark 3.2. We can prove Theorem 3.2 under condition of convexity weaker than
condition (3.4). Instead of condition (3.4), We suppose that there exists a strictly
increasing function g : [0,+∞[ → [0,+∞[ such that for all ξ ∈ ∂Φ(v1 + w) and
ξ′ ∈ ∂Φ(v2 + w), we have

(ξ − ξ′, v1 − v2) ≥ g(∥v1 − v2∥)∥v1 − v2∥, (3.6)

for all w ∈ W, v1, v2 ∈ V . And moreover, Φ must be coercive on V + w, for all
w ∈ W .

We obtain the following corollary.

Corollary 3.1. Let E be a reflexive Banach space such that E = V ⊕W , where V
and W are two closed subspaces of E. Suppose that Φ : E → R is a locally Lipschitz
continuous function. Φ is weakly upper semi-continuous on W + v for all v ∈ V
and Φ is anti-coercive on W, that is,

Φ(w) → −∞ as ∥w∥ → +∞.

There exists a strictly increasing function g : [0,+∞[ → [0,+∞[ such that for all
ξ ∈ ∂Φ(v1 + w) and ξ′ ∈ ∂Φ(v2 + w), we have

(ξ − ξ′, v1 − v2) ≥ g(∥v1 − v2∥)∥v1 − v2∥,

for all w ∈ W, v1, v2 ∈ V . Moreover Φ is coercive on V + w, ∀w ∈ W , that is,

Φ(w + v) → +∞ as ∥v∥ → +∞.

Then Φ has at least one critical point u0 = v0 + w0 such that :

Φ(u0) = min
v∈V

Φ(v + w0) = max
w∈W

min
v∈V

Φ(v + w).
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The proof of this corollary is the same as that of Theorem 3.2.
In the following theorem, as in Theorem 3.2, we drop the condition that V is of

finite dimension. We assume that the functional Φ is strictly convex on V + w for
all w ∈ W , but we add a new assumption:

Φ0(., v) is weakly upper semi-continuous for all v ∈ V.

Theorem 3.3. Consider a reflexive Banach space E that can be decomposed as the
direct sum of two closed subspaces V and W . Let Φ : E → R be a function that is
locally Lipschitz continuous such that Φ0(., x) is weakly upper semi-continuous for
all x ∈ E. Moreover, Φ is weakly upper semi-continuous on W + x for all x ∈ V ,
and Φ is anti-coercive on W , meaning that

Φ(w) → −∞ as ∥w∥ → +∞.

Assume that Φ(.+ w) : V → R is strictly convex for all w ∈ W and

Φ(x+ w) → +∞ as ∥x∥ → +∞, (3.7)

and the convergence is uniform on bounded subsets of W. Then Φ has at least one
critical point u0 = x0 + w0 such that

Φ(u0) = min
x∈V

Φ(x+ w0) = max
w∈W

min
x∈V

Φ(x+ w).

Proof of Theorem 3.3. Lemma 3.1 is still valid for Theorem 3.3. Assume that φ
attains its maximum on W at w0. Let wt = w0 + th for h ∈ W and |t| ≤ 1. As in
the proof of Theorem 3.1 , we prove that there exists a subsequence xtn ∈ V (wtn)
such that xtn converges weakly to v0 ∈ V when tn → 0 and tn ≥ 0.

Let’s prove that v0 ∈ V (w0). Since Φ0(., v) is weakly upper semi-continuous for
all v ∈ V , we obtain

lim sup
n→+∞

ϕ0(wtn + xtn , v) ≤ ϕ0(w0 + v0, v) ∀v ∈ V.

By the proof of Theorem 3.1, we have

ϕ0(wn + f(wn), v) = 0.

We deduce that
ϕ0(w0 + v0, v) ≥ 0 ∀v ∈ V.

By the convexity of Φ on w0 + V , we have

∂Φ(w0 + v0) = {x∗ ∈ V ∗; Φ(w0 + v)− Φ(w0 + v0) ≥ (x∗, v − v0), ∀v ∈ V }.

Then 0 ∈ ∂Φ(w0 + v0), and we conclude that

Φ(w0 + v0) = min
g∈V

Φ(w0 + g),

and because f(w0) is the unique element of V such that

Φ(w0 + f(w0)) = min
g∈V

Φ(g + w0),
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we deduce that v0 ∈ V (w0).

For tn < 0, we have

Φ(wtn + xtn)− Φ(xtn + w0)

tn
≥ Φ(wtn + xtn)− Φ(v0 + w0)

tn
≥ 0.

Then, by Lebourg mean value theorem, there exists θn ∈ ]0, 1[ and

y∗n ∈ ∂(−Φ)(w0 + xtn + θn(−tn)(−h))

such that
−Φ(wtn + xtn)− (−Φ(xtn + w0))

−tn
= (y∗n,−h).

Then (y∗n,−h) ≥ 0. Hence (−Φ)0(w0 + xtn + θn(−tn)(−h),−h) ≥ 0. Since
(−Φ)0(w0 + xtn + θn(−tn)(−h),−h) = Φ0(w0 + xtn + θn(−tn)(−h), h) and Φ0(., h)
is weakly upper semi-continuous, then

Φ0(w0 + v0, h) ≥ 0, ∀h ∈ W.

The rest of the proof is the same as the proof of Theorem 3.1. By using Theorem
3.2 and employing the perturbation argument, we derive the subsequent theorem
that extends the scope of precedent theorems. In the following theorem, we assume
a less requirement:

Φ(.+ w) : V → R is convex,

but we suppose that

Φ0(., .) is weakly upper semi-continuous

instead of

Φ0(., x) is weakly upper semi-continuous for all x ∈ E,

which is a necessary assymption for Theorem 3.3 when Φ(. + w) is strictly convex
on V.

Theorem 3.4. Let E be a reflexive Banach space such that E = V ⊕W , where V
and W are two closed subspaces of E. Suppose that Φ : E → R is a locally Lipschitz
continuous function, Φ is weakly upper semi-continuous on W +v for all v ∈ V and
Φ is anti-coercive on W, that is,

Φ(w) → −∞ as ∥w∥ → +∞.

Assume that Φ(. + w) is convex for all w ∈ W , Φ0(., .) is weakly upper semi-
continuous. Moreover

Φ(v + w) → +∞ as ∥v∥ → +∞,

and the convergence is uniform on bounded subsets of W.

Then Φ has at least one critical point.
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Theorem 3.4 generalizes Theorem 1.1 in [24] and our Theorem 3.1 in [7] by
assuming that Φ : V ⊕W → R is a locally Lipschitz continuous functional instead
of being of class C1. Also, Theorem 3.4 deals with a more general functional Φ, but
in our Theorem 3.1 in [7], we proved the existence of a critical point for a particular
class of functionals Φ, which should satisfy the following condition:

Φ = Φ1 +Φ2,

such that Φ1(v+w) = Φ1(v)+Φ1(w), for v ∈ V,w ∈ W and Φ2 is weakly continuous
on E.
Proof of Theorem 3.4. For n ∈ N, we define φn as follows:

φn(v + w) = Φ(v + w) +
1

2n
∥v∥2. (3.8)

Since Φ(.+w) is convex for all w ∈ W , ∂φn(.+w) is 1
n strongly monotone on

V. Since Φ and v → ∥v∥2 are locally Lipschitz functions, φn is a locally Lipschitz
function. For all v ∈ V , φn is weakly upper semi-continuous on W + v, and it is
anticoercive on W. Hence by Theorem 3.2 , φn has at least one critical point vn+wn

such that:

φn(vn + wn) = min
v∈V

φn(v + wn) = max
w∈W

min
v∈V

φn(v + w). (3.9)

By (3.8) and (3.9), we deduce that

Φ(wn) = φn(wn) ≥ φn(vn + wn),

and
φn(vn + wn) ≥ min

v∈V
φn(v) ≥ min

v∈V
Φ(v).

Since minv∈V Φ(v) is finite and Φ is anticoercive on W, we conclude that (wn) is
bounded. Let’s prove that (vn) is bounded too. It follows from (3.8) and (3.9) that

Φ(vn + wn) ≤ φn(vn + wn) ≤ φn(wn)

and
φn(wn) = Φ(wn) ≤ sup

n
Φ(wn).

Moreover, supn Φ(wn) < +∞. Otherwise, wn has a subsequence which is denoted
by wn such that

Φ(wn) → +∞ as n → +∞.

Since wn is bounded in the reflexive space W, there exists a subsequence which is
denoted by wn such that wn ⇀ w0. Hence,

lim sup
n→∞

Φ(wn) ≤ Φ(w0).

So Φ(vn + wn) < +∞ and by the coercivity of Φ(. + w) on V with uniform con-
vergence on bounded subsets of W, we conclude that vn is bounded. Since X is
reflexive, there exists a subsequence of vn + wn, still denoted by vn + wn, which
weakly converges to some v0 + w0.
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Let g(vn + wn) =
1
2∥vn∥

2 . So it follows that

φ0
n(vn + wn, u) ≤ Φ0(vn + wn, u) +

1

n
g0(vn + wn, u).

For all u ∈ E, there exists k > 0 such that g0(vn + wn, u) ≤ K∥u∥, so

φ0
n(vn + wn, u) ≤ Φ0(vn + wn, u) +

1

n
K∥u∥.

As φ0
n(vn + wn, u) ≥ 0, ∀u ∈ E, and Φ0(., .) is weakly upper semicontinuous on

E, we conclude that

Φ0(v0 + w0, u) ≥ 0, ∀u ∈ X.

Therefore, 0 ∈ ∂Φ(0) and v0 + w0 is a critical point of Φ.

4. Conclusion

In this paper, we state new abstract nature critical point theorems for locally Lips-
chitz continuous functionals defined on reflexive Banach spaces. We formulate new
variants in this respect in order to avoid the traditional compactness condition of
the Palais-Smale type. The scope of the critical point theory has been enlarged to a
much wider class of functionals, including non-smooth and non-convex ones, by the
use of techniques such as the least action principle, perturbation arguments, the re-
duction approach, the properties of sub-differentials, and the generalized gradients
in the sense of F.H. Clarke.

The results are of paramount importance to various branches, including opti-
mization, control theory, and partial differential equations. There are several open
problems and further directions for investigations.

• Applications to specific class of PDEs:
Application of such theorems to that particular class of partial differential
equations, namely, elliptic, parabolic, or hyperbolic equations, can result in
valuable information and a solution to the boundary and initial value prob-
lems.

• Exploration of other variational principles:
It seems likely that similar research on other variational principles, for exam-
ple, the Ekeland variational principle or the mountain pass theorem in the
context of functionals which are not smooth and do not satisfy the Palais-
Smale condition, may spark new theoretical advances in the future.

• Higher-order critical point theorems: More rigorous is the process of de-
veloping higher-order critical point theorems, resulting in the aforementioned
conditions for the existence of not only critical points but also higher-order
critical points through further sophisticated mathematical techniques.

Generalizations and novel perspectives presented here establish a firm foun-
dation for current research and possible future advances of this vibrant area of
mathematical analysis.
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