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Abstract This paper is about a class of discrete-time dynamical systems
with competitive effects. The local stability of the positive equilibrium point
of the system and the conditions for the existence of flip bifurcation and
Neimark-Sacker bifurcation are discussed by using the center manifold theorem
and bifurcation theory. In addition, the direction of the flip bifurcation and
Neimark-Sacker bifurcation is given. Furthermore, a feedback control strategy
is employed to control bifurcation and chaos in the system. Finally, flip bi-
furcation, Neimark-Sacker bifurcation and chaos control strategy are verified
with the help of numerical simulations.
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1. Introduction

In nature, no species exists alone, but is closely related to and interdependent with
other species. There is not only cooperation but also competition between the var-
ious groups. If two populations live together in the same area and compete for
limited resources, space and other supplies, both sides of the competition are inhib-
ited. In most cases, only one party benefits while the other party is eliminated, and
one party replaces the other. This suggests that two different populations with the
same needs cannot live permanently in the same environment. Interspecific compe-
tition is one of the most common interactions in predator-prey system. Berryman [1]
studied the origin and evolution of predator-prey. Many researchers studied deter-
ministic mathematical models in ecology and the dynamic behavior of prey-predator
systems [2–11] . Furthermore, some authors studied the conditions, complexity and
stability of spatial pattern formation in prey-predator systems [12–14].

Numerous studies have demonstrated that, for small populations, the discrete-
time system is more appropriate than the continuous system. This has been effec-
tively explored and explained in references [15–19]. In addition, Cheng et al. [20]
conducted a study on a discrete-time prey-predator system with ratio-dependent
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and Allee effect, and found that the model with logistic growth function had simi-
lar bifurcation structures. Recent studies have demonstrated that the discrete-time
prey-predator systems have more colorful dynamic behaviors, including bifurcation
and chaos, than continuous systems. These dynamic behaviors between populations
have been explored and analyzed through numerical simulations (references [21–26]).
In [27–30], researchers not only studied the bifurcation phenomenon and dynamic
behavior in the prey-predator systems, but also discussed the chaos control strategy
for the chaos phenomenon at the unstable equilibrium point. Sarwardi et al. [31]
studied a competitive prey-predator system with a prey refuge and obtained the
relevant dynamic behaviors.

Interspecific competition is mainly reflected in the competition of different species
for resources in the ecosystem (such as food, living space, etc.); interspecific compe-
tition is more common among closely related species. In fact, up to now, ecologists
still have little understanding of the evolutionary significance of interspecific com-
petition. On the one hand, researchers pay more attention to the form and process
of competition, and on the other hand, it takes a long time for evolution to reflect
the evolutionary significance of a biological event.

In order to study the effects of competition on populations, in this paper we
consider the predator-prey system:un+1 = un + µ[r1un(1− un

K1
)− bunvn

un+vn
− ε1u

2
n],

vn+1 = vn + µ[r2vn(1− vn
K2

) + abunvn
un+vn

− ε2v
2
n],

(1.1)

where r1, r2,K1,K2, ε1, ε2, a and b are greater than zero, r1 and r2 are the intrinsic
growth rates of the prey u and predator v populations, respectively. b indicates
the ability of the predator to consume the prey. ε1 and ε2 denote the competition
among individuals (i.e., intraspecies interaction) of prey and predator species due
to resources. a denotes the conversion rate of the predator to the prey and K1,K2

denote environmental carrying capacity of the prey and predator in a particular
habitat. And µ expresses the integral step length.

This paper is organized as belows. In Section 2, the existence and stability of
the system at different equilibrium points are discussed. In Section 3, we discuss
the specific conditions for the existence of Neimark-Sacker bifurcation and flip bi-
furcation. In Section 4, chaos is controlled to an unstable equilibrium point by the
feedback control method. In Section 5, we carry out numerical simulations. Finally,
we conclude with a brief summary in the last section.

2. Qualitative study of system

In this section, we will investigate the existence and stability of fixed points in
the system. To determine the equilibrium points of equation (1.1), we solve the
following set of equations:u = u+ µ[r1u(1− u

K1
)− buv

u+v − ε1u
2],

v = v + µ[r2v(1− v
K2

) + abuv
u+v − ε2v

2].

By calculation, the following results can be gained directly.
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Lemma 2.1. (i) System (1.1) has two positive axial equilibrium points E1 =
( r1K1

r1+ε1K1
, 0), E2 = (0, r2K2

r2+ε2K2
);

(ii) Assume that system (1.1) has a unique positive equilibrium point E3 = (u∗, v∗),
where u∗ and v∗ satisfy r1(1− u∗

K1
)− bv∗

u∗+v∗ − ε1u
∗ = 0,

r2(1− v∗

K2
) + abu∗

u∗+v∗ − ε2v
∗ = 0.

(2.1)

The Jacobian matrix H(u, v) related to system (1.1) at (u, v) is given by:

H(u, v) =

1 + µ
(
r1 − 2r1u

K1
− bv2

(u+v)2 − 2ε1u
)

− µbu2

(u+v)2

µabv2

(u+v)2 1 + µ
(
r2 − 2r2v

K2
+ abu2

(u+v)2 − 2ε2v
)
 .

The characteristic equation of H(u, v) can be written as

λ2 +m(u, v)λ+ z(u, v) = 0, (2.2)

where

m(u, v) = − trH =− 2− µ

(
r1 −

2r1u

K1
− bv2

(u+ v)2
− 2ε1u+ r2 −

2r2v

K2
+

abu2

(u+ v)2

)
+2µε2v,

z(u, v) = detH =
µ2ab2u2v2

(u+ v)4
+

[
1 + µ

(
r1 −

2r1u

K1
− bv2

(u+ v)2
− 2ε1u

)]
·[

1 + µ

(
r2 −

2r2v

K2
+

abu2

(u+ v)2
− 2ε2v

)]
.

Suppose that λ1 and λ2 are two roots of the characteristic equation of the
Jacobian matrix H|(u,v), and we obtain the following definition and results.

Definition 2.1 ( [11] ). The equilibrium point (u, v) is called

(i) Sink if |λ1| < 1 and |λ2| < 1, and it’s locally asymptotically stable;

(ii) Source if |λ1| > 1 and |λ2| > 1, and it’s locally unstable;

(iii) Saddle if either (|λ1| < 1 and |λ2| > 1) or (|λ1| > 1 and |λ2| < 1);

(iv) Non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

The Jacobian matrix for equilibrium point E1 = ( r1K1

r1+ε1K1
, 0) is:

HE1 =

1− µr1 −b

0 1 + µ (r2 + ab)

 . (2.3)

Then, λ1 = 1−µr1 and λ2 = 1+µ (r2 + ab). Thus, the following propositions hold.

Lemma 2.2. The eigenvalues at the boundary equilibrium point E1 = ( r1K1

r1+ε1K1
, 0)

are λ1 = 1− µr1 and λ2 = 1 + µ (r2 + ab), then

(i) E1 = ( r1K1

r1+ε1K1
, 0) is a saddle, if 0 < µ < 2

r1
;



46 X. Du, X. Han & C. Lei

(ii) E1 = ( r1K1

r1+ε1K1
, 0) is non-hyperbolic, if µ = 2

r1
;

(iii) E1 = ( r1K1

r1+ε1K1
, 0) is a source, if µ > 2

r1
.

Proof. According to (2.3), the two eigenvalues of system (1.1) at the boundary
equilibrium point are λ1 = 1 − µr1 and λ2 = 1 + µ (r2 + ab). Since r1, r1, a and
b are greater than zero, then |λ2| > 1. Thus from Definition 2.1, when |λ1| < 1,
then 0 < µ < 2

r1
. Thus, E1 = ( r1K1

r1+ε1K1
, 0) is a saddle. Similarly, when |λ1| > 1,

then µ > 2
r1
, and E1 = ( r1K1

r1+ε1K1
, 0) is a source. When λ1 = −1, then µ = 2

r1
, and

E1 = ( r1K1

r1+ε1K1
, 0) is non-hyperbolic. This completes the proof.

The Jacobian matrix for E2 = (0, r2K2

r2+ε2K2
) is:

HE2 =

1− µ(b− r1) 0

ab 1− µr2

 . (2.4)

Then, λ1 = 1− µ(b− r1), λ2 = 1− µr2. Thus, the following results hold.

Lemma 2.3. The eigenvalues of HE2
are λ1 = 1 − µ(b − r1) and λ2 = 1 − µr2,

then

(i) E2 = (0, r2K2

r2+ε2K2
) is sink if b− r1 > 0 and 0 < µ < min

{
2
r2
, 2
b−r1

}
;

(ii) E2 = (0, r2K2

r2+ε2K2
) is a source if b− r1 > 0 and µ > max

{
2
r2
, 2
b−r1

}
;

(iii) E2 = (0, r2K2

r2+ε2K2
) is non-hyperbolic if µ = 2

r2
or µ = 2

b−r1
and b− r1 > 0;

(iv) E2 = (0, r2K2

r2+ε2K2
) is a saddle for all possible values of parameters except those

values which lies in (i) to (iii).

Proof. (i) According to (2.4), the two eigenvalues of system (1.1) at the boundary
equilibrium point E2 are λ1 = 1− µ(b− r1) and λ2 = 1− µr2. E2 = (0, r2K2

r2+ε2K2
) is

sink if and only if |λ1| < 1 and |λ2| < 1. When |λ1| < 1, then 0 < µ < 2
b−r1

, where

b − r1 > 0. When |λ2| < 1, then 0 < µ < 2
r2
. In conclusion, E2 = (0, r2K2

r2+ε2K2
) is

sink if b − r1 > 0 and 0 < µ < min
{

2
r2
, 2
b−r1

}
. The same can be proved for (ii),

(iii) and (iv). This completes the proof.

Lemma 2.4 ( [11] ). Suppose that F (λ) = λ2 +Mλ+N, and F (1) > 0, λ1 and λ2

are roots of F (λ) = 0. Then the following results hold true:

(i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and N < 1;

(ii) |λ1| < 1 and |λ2| > 1 ( or |λ1| > 1 and |λ2| < 1) if and only if F (−1) < 0;

(iii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and N > 1;

(iv) λ1 = −1 and |λ2| ≠ 1 if and only if F (−1) = 0 and N ̸= 0, 2;

(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if M2 − 4N < 0 and
N = 1.

By performing calculations, the characteristic equation for system (1.1) can be
obtained at the point E3(u

∗, v∗).

λ2 +m(u∗, v∗)λ+ z(u∗, v∗) = 0, (2.5)
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where
m(u∗, v∗) = −2−Bµ,
z(u∗, v∗) = Aµ2 +Bµ+ 1,

B = r1 − 2r1u
∗

K1
− bv∗2

(u∗+v∗)2 − 2ε1u
∗ + r2 − 2r2v

∗

K2
+ abu∗2

(u∗+v)2 − 2ε2v
∗,

A =
[
r1 − 2r1u

∗

K1
− bv∗2

(u∗+v∗)2 − 2ε1u
∗
] [

r2 − 2r2v
∗

K2
+ abu∗2

(u∗+v∗)2 − 2ε2v
∗
]
+ab2u∗2v∗2

(u∗+v∗)4 .

Thus

FE3
(λ) = λ2 − (2 +Bµ)λ+

(
Aµ2 +Bµ+ 1

)
.

And

F (1) = Aµ2, F (−1) = 4 + 2Bµ+Aµ2.

Using Lemma 2.4, we have the following results:

Lemma 2.5. System (1.1) has the following propositions at E3(u
∗, v∗).

(i) E3(u
∗, v∗) is a sink if one of the following conditions is true:

(1) B2 − 4A ≥ 0 and 0 < µ < −B−
√
B2−4A
A ,

(2) B2 − 4A < 0 and 0 < µ < −B
A .

(ii) E3(u
∗, v∗) is a source if one of the following conditions is true:

(1) B2 − 4A ≥ 0 and µ > −B+
√
B2−4A
A ,

(2) B2 − 4A < 0 and µ > −B
A .

(iii) E3(u
∗, v∗) is non-hyperbolic if one of the following conditions is true:

(1) B2 − 4A ≥ 0 and µ = −B±
√
B2−4A
A ,

(2) B2 − 4A < 0 and µ = −B
A .

(iv) E3(u
∗, v∗) is a saddle for all possible values of parameters except those values

which lies in (i) to (iii).

Proof. (i) According to Lemma 2.4, E3(u
∗, v∗) is a sink point if and only if F (1) >

0, F (−1) > 0 and N < 1. It can be obtained by calculation when B2−4A ≥ 0, then

0 < µ < −B−
√
B2−4A
A ; when B2 − 4A < 0 , then 0 < µ < −B

A . Therefore, Lemma
2.5 (i) holds. Similarly, Lemma 2.5 (ii), (iii) and (iv) can be established.

By the above analysis, we can obtain that when the parameters vary on sets
FE′

3 and FE′′
3 , system (1.1) will have a flip bifurcation at E3(u

∗, v∗), where

FE′
3 =

{
(r1, r2, a, b,K1,K2, ε1, ε2, µ) ∈ R9

+ : µ =
−B −

√
B2 − 4A

A
,B2 − 4A ⩾ 0

}
,

FE′′
3
=

{
(r1, r2, a, b,K1,K2, ε1, ε2, µ) ∈ R9

+ : µ =
−B +

√
B2 − 4A

A
,B2 − 4A ⩾ 0

}
.

When the parameters alter in set FE3
, system (1.1) will have a Neimark-Sacker

bifurcation at E3, where

FE3
=

{
(r1, r2, a, b,K1,K2, ε1, ε2, µ) ∈ R9

+ : µ = −B

A
,B2 − 4A < 0

}
.
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3. Bifurcation phenomenon

3.1. Flip bifurcation

Consider the following systemun+1 = un + µ1[r1un(1− un

K1
)− bunvn

un+vn
− ε1u

2
n],

vn+1 = vn + µ1[r2vn(1− vn
K2

) + abunvn
un+vn

− ε2v
2
n].

(3.1)

The eigenvalues of E3 are λ1 = −1 and λ2 = 3+Bµ1 with |λ2| ≠ 1 by Lemma 2.5.

Consider a perturbation corresponding to system (3.1) as follows:un+1 = un + (µ1 + µ∗)[r1un(1− un

K1
)− bunvn

un+vn
− ε1u

2
n],

vn+1 = vn + (µ1 + µ∗)[r2vn(1− vn

K2
) + abunvn

un+vn
− ε2v

2
n],

(3.2)

where µ∗ is a small perturbation parameter and |µ∗| ≪ 1.

Let p = u− u∗ and q = v − v∗. Then we obtain

pn+1

qn+1

 =


T11pn + T12qn + T13p

2
n + T14pnqn + T15q

2
n + S11µ

∗pn + S12µ
∗qn

+S13µ
∗p2n + S14µ

∗pnqn + S15µ
∗q2n +O((|pn|, |qn|, |µ∗|)4)

T21pn + T22qn + T23p
2
n + T24pnqn + T25q

2
n + S21µ

∗pn + S22µ
∗qn

+S23µ
∗p2n + S24µ

∗pnqn + S25µ
∗q2n +O((|pn|, |qn|, |µ∗|)4)

 ,

(3.3)

where

T11 = 1 + µ1[−
r1
K1

u∗ +
bu∗v∗

(u∗ + v∗)2
− ε1u

∗], T12 = − µ1bu
∗2

(u∗ + v∗)2
,

T13 = µ1[−
r1
K1

+
bv∗2

(u∗ + v∗)3
− ε1], T14 = − 2µ1bu

∗v∗

(u∗ + v∗)3
, T15 =

µ1bu
∗

(u∗ + v∗)3
,

S11 = − r1
K1

u∗ +
bu∗v∗

(u∗ + v∗)2
− ε1u

∗, S12 = − bu∗

u∗ + v∗
,

S13 = − r1
K1

+
bv∗2

(u∗ + v∗)3
− ε1, S14 = − 2bu∗v∗

(u∗ + v∗)3
, S15 =

bu∗2

(u∗ + v∗)3
,

T21 =
µ1abv

∗2

(u∗ + v∗)2
, T22 = 1 + µ1(−

r2v
∗

K2
− abu∗v∗

(u∗ + v∗)2
− ε2v

∗),

T23 = − µ1abv
∗2

(u∗ + v∗)3
, T24 =

2µ1abu
∗v∗

(u∗ + v∗)3
, T25 = µ1(−

r2
K2

− abu∗2

(u∗ + v∗)3
− ε2),

S21 =
abv∗2

(u∗ + v∗)2
, S22 = −r2v

∗

K2
− abu∗v∗

(u∗ + v∗)2
− ε2v

∗, S23 = − abv∗2

(u∗ + v∗)3
,

S24 =
2abu∗v∗

(u∗ + v∗)3
, S25 = − r2

K2
− abu∗2

(u∗ + v∗)3
− ε2.



Chaos Control and Behavior Analysis of a Discrete-Time Dynamical System 49

Construct a nonsingular matrix D1 and use the following translation:p

q

 = D1

 ũ

ṽ

 ,

where

D1 =

 T12 T12

−1− T11 λ2 − T11

 .

Taking D−1
1 on both sides of system (3.3), we obtain ũ

ṽ

 =

−1 0

0 λ2

 ũ

ṽ

+

 f (p, q, µ∗)

g (p, q, µ∗)

 , (3.4)

where

f(p, q, µ∗) =
[T13(λ2 − T11)− T12T23]p

2

T12(λ2 + 1)
+

[T14(λ2 − T11)− T12T24]pq

T12(λ2 + 1)

+
[T15(λ2 − T11)− T12T25]q

2

T12(λ2 + 1)
+

[S11(λ2 − T11)− T12S21]µ
∗p

T12(λ2 + 1)

+
[S12(λ2 − T11)− T12S22]µ

∗q

T12(λ2 + 1)
+

[S13(λ2 − T11)− T12S23]µ
∗p2

T12(λ2 + 1)

+
[S14(λ2 − T11)− T12S24]µ

∗pq

T12(λ2 + 1)
+

[S15(λ2 − T11)− T12S25]µ
∗q2

T12(λ2 + 1)

+O((|p|, |q|, |µ∗|)4),

g(p, q, µ∗) =
[T13(1 + T11) + T12T23]p

2

T12(1 + λ2)
+

[T14(1 + T11) + T12T24]pq

T12(1 + λ2)

+
[T15(1 + T11) + T12T25]q

2

T12(1 + λ2)
+

[S11(1 + T11) + T12S21]µ
∗p

T12(1 + λ2)

+
[S12(1 + T11) + T12S22]µ

∗q

T12(1 + λ2)
+

[S13(1 + T11) + T12S23]µ
∗p2

T12(1 + λ2)

+
[S14(1 + T11) + T12S24]µ

∗pq

T12(1 + λ2)
+

[S15(1 + T11) + T12S25]µ
∗q2

T12(1 + λ2)

+O((|p|, |q|, |µ∗|)4),
p = T12(ũ+ ṽ), q = (λ2 − T11)ṽ − (1 + T11)ũ.

Using the center manifold theorem related to system (3.4) at equilibrium point
(0, 0) in a limited region of µ∗ = 0. Then there exists a center manifold W c(0) as
follows:

W c(0) = {(ũ, ṽ, µ∗) ∈ R3 : ṽ(ũ, µ∗) = T0µ
∗+T1ũ

2+T2ũµ
∗+T3µ

∗2+O(|ũ|+ |µ∗|)3},

and it satisfies

H(ṽ(ũ, µ∗)) = ṽ(−ũ+ f(p, ṽ(ũ, µ∗))− λ2ṽ(ũ, µ
∗)− g(p, ṽ(ũ, µ∗), µ∗) = 0,
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and there exists

T0 = 0,

T1 =
[T13(1 + T11) + T12T23]T12 − [T14(1 + T11) + T12T24](1 + T11)

1− λ2
2

+
[T15(1 + T11)T12T25](1 + T11)

2

(1− λ2
2)T12

,

T2 =
−[S11(1 + T11) + T12S21]T12 + [S12(1 + T11) + T12S22](1 + T11)

T12(1 + λ2)2
,

T3 = 0.

Therefore, we consider the map restricted to the center manifold W c(0) as fol-
lows:

f : ũ → −ũ+ t1ũ
2 + t2ũµ

∗ + t3ũ
2µ∗ + t4ũµ

∗2 + t5ũ
3 +O((|ũ|+ |µ∗|)4),

where

t1 =
[T13(λ2 − T11)− T12T23]T12

1 + λ2
− [T14(λ2 − T11)− T12T24](1 + T11)

1 + λ2

+
[T15(λ2 − T11)− T12T25](1 + T11)

2

T12(1 + λ2)
,

t2 =
[S11(λ2 − T11)− T12S21]

1 + λ2
− [S12(λ2 − T11)− T12S22](1 + T11)

T12(1 + λ2)
,

t3 =
[T13(λ2 − T11)− T12T23]2T2T12

1 + λ2
+

[T14(λ2 − T11)− T12T24](λ2 − 2T11 − 1)T2

1 + λ2

− 2[T15(λ2 − T11)− T12T25](1 + T11)(λ2 − T11)T2

1 + λ2
+
[S11(λ2 − T11)− T12S21]T1

1 + λ2

+
[S12(λ2 − T11)− T12S22](λ2 − T11)T1

T12(1 + λ2)
+

[S13(λ2 − T11)− T12S23]T12

1 + λ2

− [S14(λ2 − T11)− T12S24](1 + T11)

1 + λ2
+

[S15(λ2 − T11)− T12S25](1 + T11)
2

(1 + λ2)T12
,

t4 =
[S11(λ2 − T11)− T12S21]T2

1 + λ2
+

[S12(λ2 − T11)− T12S22](λ2 − T11)T2

T12(λ2 + 1)
,

t5 =
[T13(λ2 − T11)− T12T23]2T12T1

1 + λ2
+

[T14(λ2 − T11)− T12T24](λ2 − 2T11 − 1)T1

λ2 + 1

− 2[T15(λ2 − T11)− T12T25](1 + T11)(λ2 − T11)T1

(1 + λ2)T12
.

For the flip bifurcation we define the following two nonzero real numbers δ1 and
δ2, where

δ1 =

(
∂2f

∂ũ∂µ∗ +
1

2

∂f

∂µ∗
∂2f

∂ũ2

)∣∣∣∣
(0,0)

= t2, δ2 =

(
1

6

∂3f

∂ũ3
+

(
1

2

∂2f

∂ũ2

)2
)∣∣∣∣∣

(0,0)

= t21 + t5.

From the above analysis, we get the following theorem:
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Theorem 3.1. If δ1 ̸= 0, δ2 ̸= 0, then system (1.1) passes through a flip bifurcation
at the interior equilibrium point E3 when the parameter µ∗ alters in the small region
of the point (0,0). In addition, if δ2 > 0 (resp., δ2 < 0), then the period-two orbits
that bifurcate from equilibrium point E3 are stable (resp., unstable).

3.2. Neimark-Sacker bifurcation

Consider a perturbation related to system (1.1) as follows:un+1 = un + (µ2 + µ)[r1un(1− un

K1
)− bunvn

un+vn
− ε1u

2
n],

vn+1 = vn + (µ2 + µ)[r2vn(1− vn
K2

) + abunvn
un+vn

− ε2v
2
n],

(3.5)

where µ is a limited perturbation parameter and |µ| ≪ 1.
The characteristic equation of system (3.5) at E3 is as follows:

λ2 +m(µ)λ+ z(µ) = 0,

where

m(µ) = −2−B(µ+ µ2), z(µ) = A(µ+ µ2)
2 +B(µ+ µ2) + 1.

Since parameters (r1, r2, a, b,K1,K2, ε1, ε2, µ2) ∈ FE3
, the characteristic values

of system (3.5) at the interior equilibrium point E3 are a pair of complex conjugate
numbers λ and λ̄ as follows.

λ, λ̄ =
−m(µ)± i

√
4z(µ)−m2(µ)

2
.

Therefore,

λ, λ̄ = 1 +
B(µ2 + µ)

2
± i(µ2 + µ)

√
4A−B2

2
,

and there exist

|λ| = |λ̄| = z(µ))1/2,
d|λ|
dµ

∣∣∣∣
µ=0

=
d|λ̄|
dµ

∣∣∣∣
µ=0

= −B

2
> 0.

When µ changes in a small region of µ = 0, then λ, λ̄ = c± id, where

c = 1 +
µ2B

2
, d =

µ2

√
4A−B2

2
.

Furthermore, the Neimark-Sacker bifurcation requires that µ = 0, λr, λ̄r ̸= 1
(r=1, 2, 3, 4) which is equivalent to m(0) ̸= -2, 0, 1, 2. Because parameter
(r1, r2, a, b,K1,K2, ε1, ε2, µ2) ∈ FE3 , consequently m(0) ̸= -2, 2. We only require
m(0) ̸= 0, 1, so that

B2 ̸= 2A, 3A. (3.6)

Let p = u−u∗ and q = v−v∗. After the transformation of the interior equilibrium
point E3 of system (3.6) to the origin, we havepn+1

qn+1

 =

T11pn + T12qn + T13p
2
n + T14pnqn + T15q

2
n +O((|pn|, |qn|)3)

T21pn + T22qn + T23p
2
n + T24pnqn + T25q

2
n +O((|pn|, |qn|)3)

 ,

(3.7)



52 X. Du, X. Han & C. Lei

where Tij(i = 1, 2, 1 ≤ j ≤ 5) are given in (3.3) by substituting µ2 for µ2 + µ.
Consider the translation as follows:p

q

 = D2

 ũ

ṽ

 ,

where

D2 =

 T12 0

c− T11 −d

 .

Taking D−1
2 on both sides of system (3.7), we obtain ũ

ṽ

 =

 c −d

d c

 ũ

ṽ

+

 f̃ (ũ, ṽ)

g̃ (ũ, ṽ)

 ,

where

f̃(ũ, ṽ) =
T13p

2

T12
+

T14pq

T12
+

T15q
2

T12
+O((|p|, |q|)3),

g̃(ũ, ṽ) =
[T13(c− T11)− T12T23]p

2

T12d
+

[T14(c− T11)− T12T24]pq

T12d

+
[T15(c− T11)− T12T25]q

2

T12d
+O((|p|, |q|)3),

p =T12ũ, q = (c− T11)ũ− dṽ.

Therefore,

f̃ūū = 2T12T13 + 2T14(c− T11) +
2T15(c− T11)

2

T12
, f̃ūv̄ = −T14d−

2T15(c− T11)d

T12
,

f̃v̄v̄ =
2T15d

2

T12
, f̃ūūū = f̃ūūv̄ = f̃ūv̄v̄ = f̃v̄v̄v̄ = 0,

g̃ūū =
2[T13(c− T11)− T12T23]T12

d
+

2[T14(c− T11)− T12T24](c− T11)

d

+
2[T15(c− T11)− T12T25](c− T11)

2

T12d
,

g̃ūv̄ = − [T15(c− T11)− T12T25]

T12
, g̃v̄v̄ = −2[T15(c− T11)− T12T25]d

T12
,

g̃ūūū = 0, g̃ūūv̄ = 0, g̃ūv̄v̄ = 0, g̃v̄v̄v̄ = 0.

The Neimark-Sacker bifurcation occurs in system (1.1) if the following quantity
Λ is not zero

Λ = −Re

[
(1− 2λ̄)λ̄2

1− λ
Υ11Υ20

]
− 1

2
|Υ11|2 − |Υ02|2 +Re(λ̄Υ21), (3.8)

where

Υ11 =
1

4

[
(f̃ūū + f̃v̄v̄) + i(g̃ūū + g̃v̄v̄)

]
,
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Υ20 =
1

8

[
(f̃ūū − f̃v̄v̄ + 2g̃ūv̄) + i(g̃ūū − g̃v̄v̄ − 2f̃ūv̄)

]
,

Υ02 =
1

8

[
(f̃ūū − f̃v̄v̄ − 2g̃ūv̄) + i(g̃ūū − g̃v̄v̄ + 2f̃ūv̄)

]
,

Υ21 =
1

16

[
(f̃ūūū + f̃ūv̄v̄ + g̃ūūv̄ + g̃v̄v̄v̄) + i(g̃ūūū + g̃ūv̄v̄ − f̃ūūv̄ − f̃v̄v̄v̄)

]
.

If Λ ̸= 0, Neimark-Sacker bifurcation will occur in system (1.1), and the following
theorem holds:

Theorem 3.2. If the condition (3.6) holds, Λ ̸= 0, then system (1.1) goes through
a Neimark-Sacker bifurcation at E3 when the parameter µ alters in the small region
of the point (0,0). In addition, if Λ > 0 (resp., Λ < 0), then a repelling (resp.,
attracting) invariant closed curve bifurcates from equilibrium point E3 for µ < 0
(resp., µ > 0).

4. Chaos control

In this section, we will utilize the feedback control method [27–29] to stabilize the
chaotic orbit at an unstable equilibrium point. This will be achieved by adding a
feedback control term to system (1.1), which will result in system (1.1) taking the
following form:un+1 = un + µ[r1un(1− un

K1
)− bunvn

un+vn
− ε1u

2
n]− x(un, vn) = f(un, vn),

vn+1 = vn + µ[r2vn(1− vn
K2

) + abunvn
un+vn

− ε2v
2
n] = g(un, vn),

(4.1)

where x(un, vn) = h1(un−u∗)+h2(vn−v∗) is the feedback controlling force, h1 and
h2 are feedback gains, and (u∗, v∗) the unique interior equilibrium point of system
(1.1). Furthermore, f(u∗, v∗) = u∗, and g(u∗, v∗) = v∗.

The Jacobian matrix corresponding to system (4.1) at (u∗, v∗) is as follows:

J(u∗, v∗) =

T11 − h1 T12 − h2

T21 T22

 ,

where

T11 = 1 + µ[− r1
K1

u∗ +
bu∗v∗

(u∗ + v∗)2
− ε1u

∗], T12 = − µu∗2

u∗ + v∗
,

T21 =
µabv∗2

(u∗ + v∗)2
, T22 = 1 + µ(−r2v

∗

K2
− abu∗v∗

(u∗ + v∗)2
− ε2v

∗).

Thus, the characteristic equation related to J(u∗, v∗) is:

λ2 − (T11 + T22 − h1)λ+ (T11 − h1)T22 − (T12 − h2)T21 = 0. (4.2)

Let λ1 and λ2 be the eigenvalues of characteristic equation (4.2). Then

λ1 + λ2 = T11 + T22 − h1, λ1λ2 = (T11 − h1)T22 − (T12 − h2)T21. (4.3)
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Next, we must solve equations λ1 = ±1 and λ1λ2 = 1 to gain the critical stability
line. At the same time, it also ensures that the absolute value λ1 and λ2 are less
than one.

Suppose that λ1λ2 = 1. Then we gain

L1 : T11T22 − T12T21 − 1 = T22h1 − T21h2.

Assume that λ1 = 1. Then we have

L2 : T11 + T22 − T11T22 + T12T21 − 1 = (1− T22)h1 + T21h2.

Assume that λ1 = −1. Then we obtain

L3 : T11 + T22 + T11T22 − T12T21 + 1 = (1 + T22)h1 − T21h2.

Thus, the stable eigenvalues lie within the triangular region with the boundaries
of the straight lines L1, L2, L3. In addition, when the control parameters h1 and h2

take values in the triangular region, system (4.1) will not generate chaos.

5. Numerical simulations

In this section, we draw the bifurcation diagrams, phase portraits, solution of the
figures and maximum Lyapunov exponents for system (1.1) to verify the above
theoretical analysis.

(a) (b) (c)

Figure 1. (a,b) Bifurcation diagram corresponding to system (1.1) with µ ∈ [2, 3.5], r1 = 0.8, r2 =
0.8, a = 0.1, b = 0.5, K1 = 6, K2 = 3, ε1 = ε2 = 0, and the initial value is (u0, v0)=(3, 2). (c) Maximum
Lyapunov exponents corresponding to (a,b).

In Figure 1, we consider that the competitive rates of prey and predator ε1 =
ε2 = 0 and take µ as the bifurcation parameter to analyze the dynamic behav-
ior of system (1.1) at the interior equilibrium point. Take the parameter values
as (r1, r2, a, b, c,K1,K2, ε1, ε2) = (0.8, 0.8, 0.1, 0.5, 6, 3, 0, 0) ∈ FE′

3
with the initial

value of (u0, v0)=(3, 2) and µ ∈ [2, 3.5]. Flip bifurcation appears from the critical
value point (4.45905, 3.11045) at µ = 2.3880, and it is stable when µ < 2.3880,
and when µ > 2.3880, system (1.1) oscillates with periods of 2, 22, 23, · · · . It can be
acquired from Figure 1(c) that chaos will happen in system (1.1) as the bifurcation
parameter µ continues to increase.

In Figure 2, we will consider that the competitive rates of prey and predator ε1 =
0.1, ε2 = 0, respectively. Take (r1, r2, a, b,K1K2, ε1, ε2) = (1, 0.8, 0.1, 0.5, 6, 3, 0.1, 0)
∈ FE′

3 with the initial value of (u0, v0)=(3, 2) and µ ∈ [2.2, 3.4]. Flip bifurcation
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(a) (b) (c)

Figure 2. (a,b) Bifurcation diagram corresponding to system (1.1) with µ ∈ [2.2, 3.4], r1 = 1, r2 =
0.8, a = 0.1, b = 0.5, K1 = 6, K2 = 3, ε1 = 0.1, ε2 = 0, and the initial value is (u0, v0)=(3, 2). (c)
Maximum Lyapunov exponents related to (a,b).

appears from the critical value point (2.75981, 3.088) at µ = 2.412, and it is stable
when µ < 2.412 and when µ > 2.412, system (1.1) oscillates with periods-two orbits.
It can be known from Figure 2(a-c) that the bifurcation at the interior equilibrium
point also changes from flip bifurcation to Neimark-Sacker bifurcation and chaos
will occur in system (1.1) as the bifurcation parameter µ continues to increase.
At the same time, if only the prey is properly competed, it’s population density
decreases, and the predator population density decreases.

(a) (b) (c)

Figure 3. (a,b) Bifurcation diagram of system (1.1) with µ ∈ [2.3, 3.1], r1 = 1, r2 = 0.8, a = 0.1, b =
0.45, K1 = 6, K2 = 3, ε1 = 0, ε2 = 0.31, and the initial value is (u0, v0)=(3, 2). (c) Maximum Lyapunov
exponents related to (a,b).

In Figure 3, we consider that the competitive rates of prey and predator ε1 =
0, ε2 = 0.31, respectively. Take (r1, r2, a, b,K1,K2, ε1, ε2) = (1, 0.8, 0.1, 0.45, 6, 3, 0,
0.31) ∈ FE′

3 with the initial value of (u0, v0)=(3, 2) and µ ∈ [2.3, 3.1]. Neimark-
Sacker bifurcation appears from the critical value point (5.43, 1.45) at µ = 2.388,
and it is stable when µ < 2.388 and when µ > 2.388, system (1.1) will change from
a Neimark-Sacker bifurcation to a flip bifurcation and finally a chaos phenomenon
will occur as the bifurcation parameter µ continues to increase. At the same time,
if only the predator is properly competed, it’s population density decreases, and the
prey population density increases.

In Figure 5, we consider that the competitive effect of prey and predator ε1 =
0.1, ε2 = 0.2, respectively. Take (r1, r2, a, b,K1,K2, ε1, ε2) = (0.8, 0.8, 0.1, 0.5, 6, 3,
0.1, 0.2) ∈ FE′

3
with the initial value of (u0, v0)=(3, 2) and µ ∈ [2, 3.5]. Flip

bifurcation appears from the critical value point (2.54803, 1.7774) at µ = 2.3880,
and it is stable when µ < 2.3880 and when µ > 2.3880, system (1.1) oscillates with
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(a) µ = 2.35 (b) µ = 2.35

(c) µ = 2.42 (d) µ = 2.42

(e) µ = 2.75 (f) µ = 2.75

(g) µ = 2.85 (h) µ = 2.85
Figure 4. Phase portraits and solution portraits for various values of µ corresponding to Fig. 3.

periods of 2, 22, 23, · · · . It can be known from Figure 6(c) that chaos will occur in
system (1.1) as the bifurcation parameter µ continues to increase. At the same
time, when ε1 = 0.1, ε2 = 0.2, system (1.1) will occur not only flip bifurcation and
chaos, but also the equilibrium point be lowered, and the prey and the predator
population density decreases.
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(a) (b) (c)

Figure 5. (a,b) Bifurcation diagram corresponding to system (1.1) with µ ∈ [2, 3.5], r1 = 0.8, r2 =
0.8, a = 0.1, b = 0.5, K1 = 6, K2 = 3, ε1 = 0.1, ε2 = 0.2, and the initial value is (u0, v0)=(3, 2). (c)
Maximum Lyapunov exponents related to (a,b).

(a) µ = 2.2 (b) µ = 3 (c) µ = 3.3

(d) µ = 2.2 (e) µ = 3 (f) µ = 3.3

(g) µ = 2.2 (h) µ = 3 (i) µ = 3.3

Figure 6. Phase portraits and solution portraits for various values of µ corresponding to Fig. 5.

In Figure 7, when the parameter value is (r1, r2, a, b,K1,K2, µ, ε2) = (0.8, 0.8, 0.1,
0.5, 6, 3, 2.3880, 0) with the initial value of (u0, v0)=(3, 2) and ε1 ∈ [0, 0.2], ε1 is bi-
furcation parameter. At this time, the bifurcation phenomenon of system (1.1) will
not occur. The population density of prey and predator will continue to decrease
with the increasing of prey competitive effect ε1.

In Figure 8, when the parameter value is (r1, r2, a, b,K1,K2, µ, ε1) = (0.8, 0.8, 0.1,
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(a) Bifurcation diagram for u (b) Bifurcation diagram for v

Figure 7. Bifurcation diagram of system (1.1) with ε1 ∈ [0, 0.2], r1 = 0.8, r2 = 0.8, a = 0.1, b =
0.5, K1 = 6, K2 = 3, ε2 = 0, µ = 2.3880, and the initial value is (u0, v0)=(3, 2).

(a) Bifurcation diagram for u (b) Bifurcation diagram for v

Figure 8. Bifurcation diagram of system (1.1) with ε2 ∈ [0, 0.2], r1 = 0.8, r2 = 0.8, a = 0.1, b =
0.5, K1 = 6, K2 = 3, µ = 2.3880, ε1 = 0, and the initial value is (u0, v0)=(3, 2).

0.5, 6, 3, 2.388, 0) with the initial value of (u0, v0)=(3, 2) and ε2 ∈ [0, 0.2], ε2 is bi-
furcation parameter. Figure 8 shows the occurrence of period-2 flip bifurcation in
system (1.1), the bifurcation graph does not exhibit chaos as the value of parameter
ε2 increases. In addition, the population density of prey and predator will increase
and decrease with the increase of predator competitive effect ε2.

(a)

Figure 9. The bounded region for the eigenvalues of the controlled system (4.1) in the (h1, h2) plane.
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In Figure 9, take (r1, r2, a, b,K1,K2, ε1, ε2) = (0.8, 0.8, 0.1, 0.5, 6, 3, 0.1, 0.2) with
the initial value of (u0, v0)=(3, 2). In Figure 5(c), when the bifurcation parameter
µ = 3.3, system (1.1) will produce chaos. When the h1 and h2 are controlled
in the triangular region surrounded by three straight lines L1, L2, and L3, the
chaos generated by system (4.1) will be controlled near the fixed point and become
asymptotically stable state.

6. Conclusions

On the basis of previous study work, this paper studies the stability and bifurca-
tion analysis and chaos control for a class of discrete-time dynamical system with
competitive effect. According to the research results, we can have the following
results:

(a) System (1.1) has two non-trivial solutions E1, E2, in which the stable equi-
librium point is positive, reflecting the stable coexistence of prey and predator.

(b) System (1.1) has flip bifurcation and Neimark-Sacker bifurcation at the
positive equilibrium point when µ changes in FE′

3
or FE′′

3
and FE3

small fields. It
can be seen from Figures 1, 2, 3, 5. We can also find the orbits of periods 2, 4, and
8 periodic windows of flip bifurcation.

(c) When ε1 = 0, ε2 ̸= 0, the equilibrium point of system (1.1) changes compared
to Figure 1, where u∗ goes up and v∗ goes down. The number of predators goes
down and the number of prey goes up. In addition, the bifurcation phenomenon at
the positive equilibrium point also changes from flip bifurcation to Neimark-Sacker
bifurcation (see Figures 1, 3).

(d) When ε1 ̸= 0, ε2 = 0, the equilibrium point of system (1.1) changes compared
to Figure 1, where u∗ and v∗ both go down. The numbers of predators and prey
go down. In addition, the bifurcation phenomenon of system (1.1) at the positive
equilibrium point does not change (see Figures 1, 2).

(e) When ε1 ̸= 0, ε2 ̸= 0, the equilibrium point of system (1.1) changes compared
to Figures 1, where u∗ and v∗ both go down. The density of both predators and
prey populations decrease. In addition, the bifurcation phenomenon of system (1.1)
at the positive equilibrium point does not change (see Figures 1, 5).
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