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Stability of Phase Locking for Bidirectionally
Non-symmetric Coupled Kuramoto Oscillators in a

Ring∗

Xiaoxue Zhao1,†

Abstract This paper deals with the stability of phase locking for the identical
Kuramoto model, where each oscillator is influenced sinusoidally by two neigh-
boring oscillators. By studying the model with bidirectionally non-symmetric
coupling in a ring configuration, all phase-locked solutions are comprehensively
delineated, and the basin of attraction for the stable phase-locked state is es-
timated. The stability of these phase-locked solutions is clearly established,
highlighting that only the synchronized state and splay-state are stable equi-
libria. The crucial tools in this work are the standard linearization technique
and the nonlinear analysis arguments.
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1. Introduction

Background.- The synchronization (in short, sync) process of large populations
of weakly coupled oscillators often appears in natural systems and it has received
considerable attention because of its application in diverse areas such as biology,
neuroscience, engineering, computer science, economy and sociology [1, 2, 5, 12, 19].
Among the many mathematical models of sync, our interest in this paper lies in
the Kuramoto model for identical oscillators with a bidirectionally non-symmetric
topology. For identical Kuramoto oscillators with all-to-all coupling, a lot of studies
have been done for this model, see [3,6,9,17,22]. It is well known that the phase sync
is the only stable phase-locked state, which denotes the collapse of all phases into a
single phase, see [14]. Hence, almost all initial configurations of phases converge to
the phase sync asymptotically. It is reasonable to guess that different asymptotic
patterns for Kuramoto oscillators can emerge depending on different network topolo-
gies. For example, in [21], Wei et al. consider the periodic sampled-data coupling
in the scenario with a generally connected and undirected communication topology,
where the connected communication topology means that no isolated oscillator ex-
ists in the Kuramoto oscillator network. In [7], Ferguson studies bifurcations in the
Kuramoto model on a ring network using a novel vector flow and derives criteria for
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certain bifurcations. As network topologies are varied, different stable phase-locked
states will emerge asymptotically, and hence it would be an interesting problem to
classify all possible stable asymptotic states and initial configurations converging to
a given stable equilibrium. This kind of question comes down to the identification
of the basin of attractions in dynamical systems theory. There is some literature
addressing this issue for the locally coupled Kuramoto model. The literature [14]
studies the stability properties of the Kuramoto model with identical oscillators by
linear stability analysis and the authors present a six-node example to point out
that a stable non-sync equilibrium arises for oscillators bidirectionally coupled in a
ring. In [20], Wiley et al. address the problem of “the size of the sync basin” for the
locally coupled Kuramoto model with symmetric forward and backward k-neighbor
coupling. They have found that when N is the number of oscillators and k

N is
greater than a critical value, then the phase sync is the only stable phase-locked
state; as k

N passes below this critical value, other stable phase-locked states are
born, which takes the form of the splay-state. In [10, 15], the stability of phase-
locking is considered for identical Kuramoto oscillators unidirectionally coupled in
a ring. In [23], Zhao et al. consider the Kuramoto model with bidirectionally
symmetric coupling network and use  Lojasiewicz theory to prove the stability of
phase-locked solutions. Dong et al. [4] study the interplay of time-delayed inter-
actions and network structure on the collective behaviors of Kuramoto oscillators.
In [11], an adaptive control law for inducing in- and antiphase sync in a pair of
relaxation oscillators is proposed. Ito et al. show that the phase dynamics of the
oscillators coupled by the control law can be reduced to the dynamics of Kuramoto
phase oscillators, and they choose a ring topology to show the time series data of
states and controlled thresholds for differential initial conditions.

In this work, we study the dynamical behavior of a finite group of Kuramoto
oscillators bidirectionally non-symmetric coupled in a ring by performing nonlinear
stability analysis. We consider the oscillators labeled as 1, 2, . . . , N , with each i-th
oscillator coupled by the (i+1)-th and (i−1)-th oscillators sinusoidally, in which the
first oscillator is coupled by the second and N -th oscillators; the last N -th oscillator
is influenced by the 1-th and (N −1)-th oscillators. This situation appears in many
engineering applications and biological modeling of animal locations [8,13,18]. For
non-symmetric coupling, the total phase is not conserved quantities which causes
considerable mathematical difficulty. Of course this lack of symmetry in the coupling
makes the asymptotic dynamics of Kuramoto oscillators richer than that of the
mean-field case, because there is room for the emergence of other stable phase-
locked states other than sync.

Contributions.- The bidirectionally non-symmetric coupling strength makes
it difficult to study the phase-locked states for the Kuramoto oscillators in a ring.
The contributions of this paper are threefold. First, we identify the formation of
all phase-locked states for system (2.3) (see Theorem 2.1). This will enable us to
count and classify the phase-locked states. Second, we prove that the sync and
splay-state are the only stable phase-locked state (see Theorem 2.2 and Section 3).
Third, we present proper subsets of basins of sync and splay-state using nonlinear
analysis arguments asymptotically, which says that a given initial configuration will
converge to sync or splay-state (see Theorem 3.1).

Organization of paper.- In Section 2, we present the model system and list
the formation of all phase-locked states and their stability properties. In Section
3, based on linearization technique and nonlinear analysis arguments, we strictly
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prove the stability and instability of all phase-locked states. Finally, Section 4 is
devoted to providing a brief summary of this paper.

2. Description of model and main results

In this section, we consider N(N ≥ 3) coupled oscillators. First, we discuss the
model and its deformation written by phase difference. Second, the definition of
phase-locked solutions is given, and then the formation of all phase-locked solutions
and their stability are listed.

2.1. Model

In this subsection, we present a sinusoidal coupling system in a ring with a bidi-
rectionally non-symmetric structure. For i = 1, 2, . . . , N , let θi = θi(t) ∈ R be
the phase of the i-th oscillator. Assume that the i-th oscillator is influenced by
the (i + 1)-th and (i − 1)-th oscillators only, and θ0 := θN , θN+1 := θ1. In this
circumstance, our governing system with identical oscillators for θi reads as

θ̇i = Ω + K sin(θi+1 − θi) + K
′
sin(θi−1 − θi),

θi(0) = θi0, i = 1, 2, . . . , N, t ≥ 0,

where θ̇i := dθi
dt , Ω represents the intrinsic natural frequency and parameters K,K

′

are two nonnegative coupling strengths. Throughout this paper, without loss of
generality, we may assume that

Ω = 0, t ≥ 0.

If necessary, we may consider the shifted frame θi → θi + Ωt. Then the time
evolution of θ = (θi, θ2, . . . , θN ) ∈ RN is governed by the following system:

θ̇i = K sin(θi+1 − θi) + K
′
sin(θi−1 − θi),

θi(0) = θi0, i = 1, 2, . . . , N, t ≥ 0.
(2.1)

Note that if θi(t), i = 1, 2, . . . , N is the solution to the system (2.1), then its trans-
lation θi(t) + a, a ∈ R, i = 1, 2, . . . , N , is also a solution, which shows that system
(2.1) induces a dynamical system on N -tori TN .

As a simple case of (2.1), when K = K
′

= 0, then θ(t) = θ(0), t ≥ 0. Most
aforementioned works focused on the unidirectionally coupled or the bidirectionally
symmetric coupled. Ha et al. [10] and Rogge et al. [15] presented the long-time
dynamics of unidirectionally coupled identical Kuramoto oscillators in a ring, when
each oscillator is influenced sinusoidally by a single preassigned oscillator, i.e., K >
K

′
= 0. In [23], combining a nice theory for  Lojasiewicz inequality with the gradient

system, Zhao et al. studied the dynamics of bidirectionally coupled with K =
K

′
> 0. In the above two cases, the authors identified all the phase-locked states

with stability or instability, estimated the basins for stable phase-locked states and
showed the convergence rate towards phase-locked states. But these studies did not
involve the bidirectionally non-symmetric coupled, i.e.,

K > K
′
> 0 or K

′
> K > 0.
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In this paper, we consider the case of K > K
′
> 0. The analysis for K

′
> K > 0 is

similar. In order to highlight that K is larger than K
′
, it is advisable to set

K = K1 + K2, K
′

= K2 and K1,K2 > 0.

Then system (2.1) takes the form of

θ̇i = (K1 + K2) sin(θi+1 − θi) + K2 sin(θi−1 − θi),

θi(0) = θi0, i = 1, 2, . . . , N. t ≥ 0.
(2.2)

For any i = 1, 2, . . . , N , we denote the phase differences by

ϕi := (θi+1 − θi) mod 2π,

then there exists ki ∈ Z such that θi+1 − θi = ϕi + 2kiπ. Without loss of generality,
we may set

ϕi ∈
(
−π

2
,

3π

2

]
.

Hence ϕi = 3π
2 and ϕi = −π

2 are the same, which will be encountered later. From
(2.2), the variable ϕ = (ϕ1, ϕ2, . . . , ϕN ) satisfies

ϕ̇i = (K1 + K2)(sinϕi+1 − sinϕi) −K2(sinϕi − sinϕi−1),

ϕi(0) = ϕi0, i = 1, 2, . . . , N. t ≥ 0.
(2.3)

Next we recall the definitions of phase-locked solutions to system (2.2).

Definition 2.1. Let θ and ϕ be the solutions to systems (2.2) and (2.3), respec-
tively.
(1) θ is a synchronized state to (2.2) if and only if ϕ satisfies

ϕ = 0N .

(2) θ is the splay-state to (2.2) if and only if ϕ satisfies

ϕ =
2kπ

N
1N , k = 1, 2, . . . , N − 1.

Here, 0N and 1N denote constant vectors in TN defined by

0N = (0, 0, . . . , 0) and 1N = (1, 1, . . . , 1).

2.2. Formation and stability of phase-locked states

In this part, we first show the equilibria of (2.3) which also gives the formation
of phase-locked states for system (2.2). More specifically, each phase difference of
(2.2) is one of the values β or π − β with the value β ∈ S1.

Theorem 2.1. Every equilibrium ϕ∗ = (ϕ∗
1, ϕ

∗
2, . . . , ϕ

∗
N ) to system (2.3) corresponds

to a permutation of the vector

(β, . . . , β︸ ︷︷ ︸
m

, π − β, . . . , π − β︸ ︷︷ ︸
N−m

), (2.4)

where β ∈ (−π
2 ,

3π
2 ] and m ∈ {0, 1, . . . , N} satisfy mβ + (N −m)(π − β) = 2πk for

some k ∈ Z.
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Proof. For any equilibrium ϕ∗ = (ϕ∗
1, ϕ

∗
2, . . . , ϕ

∗
N ) of the system (2.3), we see that

sinϕ∗
3 − sinϕ∗

2 =
K2

K1 +K2
(sinϕ∗

2 − sinϕ∗
1),

sinϕ∗
4 − sinϕ∗

3 =
K2

K1 +K2
(sinϕ∗

3 − sinϕ∗
2) = (

K2

K1 +K2
)2(sinϕ∗

2 − sinϕ∗
1),

sinϕ∗
5 − sinϕ∗

4 =
K2

K1 +K2
(sinϕ∗

4 − sinϕ∗
3) = (

K2

K1 +K2
)3(sinϕ∗

2 − sinϕ∗
1),

...

sinϕ∗
1 − sinϕ∗

N =
K2

K1 +K2
(sinϕ∗

N − sinϕ∗
N−1) = (

K2

K1 +K2
)N−1(sinϕ∗

2 − sinϕ∗
1),

sinϕ∗
2 − sinϕ∗

1 =
K2

K1 +K2
(sinϕ∗

1 − sinϕ∗
N ) = (

K2

K1 +K2
)N (sinϕ∗

2 − sinϕ∗
1).

(2.5)

It follows from the last formula that[
1 − (

K2

K1 + K2
)N

]
(sinϕ∗

2 − sinϕ∗
1) = 0.

From K1 > 0,K2 > 0, we obtain sinϕ∗
1 = sinϕ∗

2. Plug this relation to (2.5) to find
that

sinϕ∗
1 = sinϕ∗

2 = · · · = sinϕ∗
N .

ϕ∗
i ∈

(
−π

2 ,
3π
2

]
implies that ϕ∗ is a permutation of configuration (2.4). As

∑N
j=1(θj+1−

θj) = 0, we see that

0 =

N∑
j=1

(ϕ∗
j +2kjπ) =

N∑
j=1

ϕ∗
j +2π

N∑
j=1

kj = mβ+(N −m)(π−β)+2π

N∑
j=1

kj , kj ∈ Z.

Therefore, mβ + (N −m)(π − β) = 2πk for some k ∈ Z.
For symbol simplicity, denote

ϕ∗(β,m) := (β, . . . , β︸ ︷︷ ︸
m

, π − β, . . . , π − β︸ ︷︷ ︸
N−m

), with β ∈
(
−π

2
,

3π

2

]
, m ∈ {0, 1, . . . , N}.

It is easy to see that when β = π
2 , for any m, ϕ∗(β,m) can only be

(
π

2
,
π

2
, . . . ,

π

2
);

when β = 3π
2 , for any m, ϕ∗(β,m) can only be

(
3π

2
,

3π

2
, . . . ,

3π

2
).

Next, the main stability result is listed in Theorem 2.2.

Theorem 2.2. The stability of the equilibrium ϕ∗(β,m) in system (2.3) is as fol-
lows.
(1) If β ∈ (−π

2 ,
π
2 ), then

• when m = N , ϕ∗(β,m) is asymptotocally stable;



Bidirectionally Non-symmetric Coupled 67

• when m ∈ {0, 1, . . . , N − 1}, ϕ∗(β,m) is unstable;

(2) If β ∈ (π
2 ,

3π
2 ), then

• when m = 0, ϕ∗(β,m) is asymptotocally stable;

• when m ∈ {1, . . . , N}, ϕ∗(β,m) is unstable;

(3) If β = π
2 or 3π

2 , that is, ϕ∗(β,m) is

(
π

2
,
π

2
, . . . ,

π

2
) or (

3π

2
,

3π

2
, . . . ,

3π

2
),

then ϕ∗(β,m) is unstable.

3. Stability analysis

In this section, we aim at providing a rigorous proof of Theorem 2.2. First of all, we
prove Theorem 2.2 (1) and (2) by using standard linearization technique; and then
for Theorem 2.2 (3), we will prove that the initial value ϕ(0) near (π

2 ,
π
2 , . . . ,

π
2 ) or

( 3π
2 , 3π

2 , . . . , 3π
2 ) does not converge to (π

2 ,
π
2 , . . . ,

π
2 ) or ( 3π

2 , 3π
2 , . . . , 3π

2 ).

3.1. Linearization

The linearization about an equilibrium ϕ∗ of system (2.3) is the Jacobian matrix

Jϕ∗ =



−(K1 + 2K2) cosϕ
∗
1 (K1 +K2) cosϕ

∗
2 . . . K2 cosϕ

∗
N

K2 cosϕ
∗
1 −(K1 + 2K2) cosϕ

∗
2 . . . 0

0 K2 cosϕ
∗
2 . . . 0

. . . . . . . . . . . .

0 0 . . . (K1 +K2) cosϕ
∗
N

(K1 +K2) cosϕ
∗
1 0 . . . −(K1 + 2K2) cosϕ

∗
N


.

One can observe that Jϕ∗ is an non-symmetric real matrix. Proposition 3.1
below indicates that, when ϕ∗ = (β, β, . . . , β) with β ∈ (−π

2 ,
π
2 ), Jϕ∗ is a specific

Toeplitz matrix and ϕ∗ is an asymptotically stable equilibrium of system (2.3).

Proposition 3.1. If β ∈ (−π
2 ,

π
2 ) and m = N , then the equilibrium ϕ∗(β,m) is

asymptotically stable of system (2.3).

Proof. For m = N , the Jacobian matrix Jϕ∗(β,N) is

cosβ



−(K1 + 2K2) (K1 +K2) 0 0 . . . K2

K2 −(K1 + 2K2) (K1 +K2) 0 . . . 0

0 K2 −(K1 + 2K2) (K1 +K2) . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . (K1 +K2)

(K1 +K2) 0 0 0 . . . −(K1 + 2K2)


.
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The desired conclusion is proved by calculating eigenvalues of matrix Jϕ∗(β,N).

Set an N ×N matrix as follows

A :=



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

1 0 0 0 . . . 0


.

It is easy to verify that the characteristic polynomial of A is |λE −A| = λN − 1, so
the eigenvalue λk and eigenvector xk are

λk = cos
2kπ

N
+ j sin

2kπ

N
, xk = (1, λk, λ

2
k, . . . , λ

N−1
k )T, k = 0, 1, . . . , N − 1.

Observing that Jϕ∗(β,N) is a special Toeplitz matrix and can be represented by

Jϕ∗(β,N) = cosβ[−(K1 + 2K2)E + (K1 + K2)A + K2A
N−1].

Hence, we have that

λ0(Jϕ∗(β,N)) = 0, Reλk(Jϕ∗(β,N)) = − cosβ(K1+2K2)(1−cos
2kπ

N
), k = 1, . . . , N−1.

The eigenvalue 0 is simple and it has an eigenvector 1N , which is due to the global
phase shift invariance of system (2.2). β ∈ (−π

2 ,
π
2 ) implies Reλk(Jϕ∗(β,N)) < 0, k =

1, . . . , N − 1, and hence the asymptotic stability of ϕ∗(β,m) is obtained.

Proposition 3.2. If β ∈ (−π
2 ,

π
2 ) and m ∈ {0, 1, . . . , N − 1}, then the equilibrium

ϕ∗(β,m) is unstable of system (2.3).

Proof. The proof is divided into three parts. First, we show that the result holds
when m = N

2 . Second, a proof is given for m ∈ {0, 1, . . . , N − 2} and m ̸= N
2 .

Finally, we consider the result of m = N − 1.

(1) Owing to m = N
2 , it is possible to perform a permutation of the phase

differences such that Jϕ∗(β,m) transforms into −Jϕ∗(β,m). It has been shown that
the eigenvalues of linearization are invariant under such a permutation, implying
that the set of eigenvalues of Jϕ∗(β,m) is equal to that of −Jϕ∗(β,m). Hence, if λ is
an eigenvalue of Jϕ∗(β,m), then so is −Jϕ∗(β,m).

Jϕ∗(β,m) has some nonzero eigenvalues, since it is different from the null matrix
(β ̸= π

2 ). Gershgorin’s theorem [16, Theorem 6.1.1] shows that these nonzero eigen-
values are not located on the imaginary axis. From this it can be concluded that at
least one of the eigenvalues of Jϕ∗(β,m) has a strictly positive real part. This proves
the stability of the corresponding phase locking solution.

(2) In order to prove the case of m ̸= N
2 , we consider the characteristic polyno-

mial of matrix Jϕ∗(β,m):

|λE − Jϕ∗(β,m)|
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ (K1 + 2K2) cosϕ
∗
1 −(K1 +K2) cosϕ

∗
2 . . . −K2 cosϕ

∗
N

−K2 cosϕ
∗
1 λ+ (K1 + 2K2) cosϕ

∗
2 . . . 0

0 −K2 cosϕ
∗
2 . . . 0

. . . . . . . . . . . .

0 0 . . . −(K1 +K2) cosϕ
∗
N

−(K1 +K2) cosϕ
∗
1 0 . . . λ+ (K1 + 2K2) cosϕ

∗
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By adding all the other rows to the first row, and then extracting the common
factor λ from the new first row, we obatin that

|λE − Jϕ∗(β,m)|

= λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

−K2 cosϕ
∗
1 λ+ (K1 + 2K2) cosϕ

∗
2 . . . 0

0 −K2 cosϕ
∗
2 . . . 0

. . . . . . . . . . . .

0 0 . . . −(K1 +K2) cosϕ
∗
N

−(K1 +K2) cosϕ
∗
1 0 . . . λ+ (K1 + 2K2) cosϕ

∗
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=:D(λ)

. (3.1)

From (3.1), 0 is an eigenvalue of Jϕ∗(β,m). Define other eigenvalues as λ1, λ2, . . . , λN−1.
Then

|λE − Jϕ∗(β,m)| = λ(λ− λ1) · · · (λ− λN−1) = λ

[
λN−1 + · · · + (−1)N−1

N−1∏
i=1

λi

]
,

which enables us to see that

D(λ) = λN−1 + · · · + (−1)N−1
N−1∏
i=1

λi.

In particular, D(0) = (−1)N−1
N−1∏
i=1

λi.

For m ∈ {0, 1, . . . , N − 2} and β ∈ (−π
2 ,

π
2 ), we claim that when D(0) ̸= 0,

ϕ∗(β,m) is unstable. In fact, If there exist two or more phase differences belonging
to (π

2 ,
3π
2 ), two or more Gershgorin discs lie in the closed right half plane. By [15,

Theorem 4], two or more eigenvalues are located in the closed right half plane. Since
D(0) ̸= 0, exactly one eigenvalue is zero, which implies that one or more eigenvalues
have a strictly positive real part. So ϕ∗(β,m) is unstable.

For m ∈ {0, 1, . . . , N − 2} and m ̸= N
2 , we note that D(0) in (3.1) is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1

−K2 cosϕ
∗
1 (K1 + 2K2) cosϕ

∗
2 . . . 0 0

0 −K2 cosϕ
∗
2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . (K1 + 2K2) cosϕ
∗
N−1 −(K1 +K2) cosϕ

∗
N

−(K1 +K2) cosϕ
∗
1 0 . . . −K2 cosϕ

∗
N−1 (K1 + 2K2) cosϕ

∗
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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For any i = 1, 2, . . . , N , extract the common factor cosϕ∗
i from the i-th column,

and bring ϕ∗(β,m) into it to get

D(0) =

N∏
i=1

cosϕ∗
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
cosϕ∗

1

1
cosϕ∗

2
. . . 1

cosϕ∗
N−1

1
cosϕ∗

N

−K2 (K1 + 2K2) . . . 0 0

0 −K2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . (K1 + 2K2) −(K1 + K2)

−(K1 + K2) 0 . . . −K2 (K1 + 2K2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (cosβ)m(− cosβ)N−m 1

cosβ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . −1 −1

−K2 (K1 + 2K2) . . . 0 0

0 −K2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . (K1 + 2K2) −(K1 +K2)

−(K1 +K2) 0 . . . −K2 (K1 + 2K2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By adding all the other columns to the first column, and then applying the Laplace
expansion theorem (also known as the determinant expansion theorem) to the first
column, we obtain that

D(0) = (−1)N−m(cosβ)N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2m−N 1 . . . −1 −1

0 (K1 + 2K2) . . . 0 0

0 −K2 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . (K1 + 2K2) −(K1 +K2)

0 0 . . . −K2 (K1 + 2K2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)N−m(2m−N)(cosβ)N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(K1 + 2K2) −(K1 +K2) . . . 0

−K2 (K1 + 2K2) . . . 0

0 −K2 . . . 0

. . . . . . . . . . . .

0 0 . . . −(K1 +K2)

0 0 . . . (K1 + 2K2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)N−m(2m−N)(cosβ)N−1x

N
1 − xN

2

x1 − x2
, (3.2)

where the final determinant is of order (N − 1), and x1, x2 (x1 > x2 > 0) are the
two different roots of x2 − (K1 + 2K2)x + K2(K1 + K2) = 0. Thus, m ̸= N

2 and
β ∈ (−π

2 ,
π
2 ) show D(0) ̸= 0, leading to the conclusion.
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(3) For m = N − 1, equation (3.2) enables us to see that

D(0) = −(N − 2)(cosβ)N−1x
N
1 − xN

2

x1 − x2
,

in which x1, x2 are the same as in (3.2). Then we have D(0) < 0. Due to m =
N−1, the phase locking solution possesses exactly one phase difference ϕi ∈ (π

2 ,
3π
2 ),

exactly one Gershgorin disc lies in the closed half plane. At most one eigenvalue is
positive. Recalling

D(0) = (−1)N−1
N−1∏
i=1

λi < 0,

it follows

Re(λi) ̸= 0, i = 1, 2, . . . , N − 1 and ∃!λi0 , s.t.Re(λi0) > 0.

If not, we have Re(λi) < 0, i = 1, 2, . . . , N − 1, which contradicts D(0) < 0.
Therefore, ϕ∗(β,m) is unstable.

Remark 3.1. It can be seen from Proposition 3.2 that in order to fully consider
the possible value of N , a separate proof is provided for m = N

2 . However, if N is

an odd number, then N
2 is not an integer. At this point, the proof of Proposition

3.2 (1) is omitted.

We next complete the proof of Theorem 2.2 (1) − (2).

Proof of Theorem 2.2 (1). The result can be obtained directly from Propo-
sition 3.1 and Proposition 3.2.

Proof of Theorem 2.2 (2). The result of β ∈ (π
2 ,

3π
2 ) and m = 0 can be

directly obtained by that of β ∈ (−π
2 ,

π
2 ) and m = N . Similarly, the result of

β ∈ (−π
2 ,

π
2 ) and m ∈ {0, 1, . . . , N − 1} enable us to conclude that of β ∈ (π

2 ,
3π
2 )

and m ∈ {1, 2, . . . , N}.

3.2. Global dynamics

In this subsection, we prove Theorem 2.2 (3) and consider the global dynamics
of system (2.3). Also, we present a non-trivial subset of the basin for the stable

phase-locked state in (2.2). Define U(ϕ) = N −
∑N

i=1 cosϕi. The equation (2.3)
means

dU(ϕ)

dt
=

N∑
i=1

sinϕiϕ̇i

=

N∑
i=1

sinϕi [(K1 + K2)(sinϕi+1 − sinϕi) −K2(sinϕi − sinϕi−1)]

= (K1 + K2)

N∑
i=1

(sinϕi sinϕi+1 − sin2 ϕi) + K2

N∑
i=1

(sinϕi sinϕi−1 − sin2 ϕi)

= −K1 + K2

2

N∑
i=1

(sin2 ϕi+1 + sin2 ϕi − 2 sinϕi+1 sinϕi)
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− K2

2

N∑
i=1

(sin2 ϕi + sin2 ϕi−1 − 2 sinϕi sinϕi−1)

= −K1 + K2

2

N∑
i=1

(sinϕi+1 − sinϕi)
2 − K2

2

N∑
i=1

(sinϕi − sinϕi−1)2,

where we use
∑N

i=1 sin2 ϕi+1 =
∑N

i=1 sin2 ϕi =
∑N

i=1 sin2 ϕi−1 and ϕN+1 = ϕ1, ϕ0 =

ϕN . It can be noted that dU(ϕ)
dt ≤ 0 in the torus and every trajectory goes to the

set

C = {dU(ϕ)

dt
= 0} = {sinϕi+1 = sinϕi, i = 1, 2, . . . , N}, (3.3)

which contains the phase-locking solutions as its only invariants. Similar to the
analysis in [14], we see that almost all the trajectories in the torus converge to one
of the stable phase-locking solutions.

Let ϕ(t) be the smooth solution of system (2.3). For ϕ = (ϕ1, ϕ2, . . . , ϕN ), we
introduce the indices

M ∈ arg min
i=1,2,...,N

ϕi and m ∈ arg max
i=1,2,...,N

ϕi,

which indicate ϕM = max{ϕ1, ϕ2, . . . , ϕN} and ϕm = min{ϕ1, ϕ2, . . . , ϕN}. For
time-varying configuration ϕ(t), the indices M and m depend on t and the extremal
phase differences ϕM − ϕm are Lipschitz continuous and piecewise differentiable.

Lemma 3.1. Let ϕ be the smooth solution of system (2.3) with initial condition

ϕ(0) ∈ Bsp :=
{
ϕ ∈ RN : −π

2
< ϕm ≤ ϕM <

π

2

}
.

Then ϕM is noninceasing and ϕm is nondecreasing for t ≥ 0.

Proof. • Step 1: Show that for some T ∈ (0,∞], if

−π

2
< ϕm(t) ≤ ϕM (t) <

π

2
, t ∈ [0, T ),

then ϕM is noninceasing and ϕm is nondecreasing.
For t ∈ [0, T ), we see

− π

2
<

ϕM+1 − ϕM

2
≤ 0, 0 ≤ ϕm+1 − ϕm

2
<

π

2
,

0 ≤ ϕM − ϕM−1

2
<

π

2
, −π

2
<

ϕm − ϕm−1

2
≤ 0,

and

−π

2
<

ϕi+1 + ϕi

2
<

π

2
, i = 1, 2, . . . , N.

These inequalities indicate

ϕ̇M (t) = (K1 + K2)(sinϕM+1 − sinϕM ) −K2(sinϕM − sinϕM−1)

= 2(K1 + K2) cos

(
ϕM+1 + ϕM

2

)
sin

(
ϕM+1 − ϕM

2

)
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− 2K2 cos

(
ϕM + ϕM−1

2

)
sin

(
ϕM − ϕM−1

2

)
≤ 0, t ∈ [0, T ),

and

ϕ̇m(t) = (K1 + K2) (sinϕm+1 − sinϕm) −K2 (sinϕm − sinϕm−1)

= 2(K1 + K2) cos

(
ϕm+1 + ϕm

2

)
sin

(
ϕm+1 − ϕm

2

)
− 2K2 cos

(
ϕm + ϕm−1

2

)
sin

(
ϕm − ϕm−1

2

)
≥ 0, t ∈ [0, T ).

Therefore, the function ϕM is nonincreasing and ϕm is nondecreasing for all t ∈
[0, T ).

• Step 2: Show that the maximal time interval with the aforementioned mono-
tonicity property is in fact T = ∞.

Define the following set

T :=
{
T > 0

∣∣∣ − π

2
< ϕm(t) ≤ ϕM (t) <

π

2
, ∀ t ∈ [0, T )

}
.

Since ϕ(0) ∈ Bsp and the continuity of ϕi(t), there exists a sufficiently small δ > 0
such that

−π

2
< ϕm(t) ≤ ϕM (t) <

π

2
, t ∈ [0, δ).

Hence, T ̸= ∅ and T0 := sup T can be well defined. Next we claim that T0 = ∞.
Suppose not, i.e., T0 < ∞. Then

−π

2
< ϕm(t) ≤ ϕM (t) <

π

2
, t ∈ [0, T0).

Step 1 tells us that

ϕm(0) ≤ ϕm(t) ≤ ϕM (t) ≤ ϕM (0), t ∈ [0, T0),

and

lim
t→T−

0

ϕm(t), lim
t→T−

0

ϕM (t) exist.

The definition of T0 implies

either lim
t→T−

0

ϕm(t) = −π

2
or lim

t→T−
0

ϕM (t) =
π

2
,

which is contradictory to

lim
t→T−

0

ϕm(t) ≥ ϕm(0) > −π

2
, lim

t→T−
0

ϕM (t) ≤ ϕM (0) <
π

2
.

This leads to T0 = ∞, showing the desired result.
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Theorem 3.1. Let ϕ be the smooth solution of system (2.3) with initial condition
ϕ(0) ∈ Bsp which satisfies

N∑
i=1

ϕi(0) = 2kπ for some k ∈ Z with− N

4
< k <

N

4
.

Then

lim
t→∞

ϕ(t) =
2kπ

N
1N .

Proof. • Step 1: We refine the estimate in Lemma 3.1 and claim that ϕm is
strictly increasing and ϕM is strictly decreasing.

Note that

ϕ̇m(t) = (K1 + K2)(sinϕm+1 − sinϕm) −K2(sinϕm − sinϕm−1) ≥ 0, t ∈ [0,∞).

If ϕm is not strictly increasing, then we can find some open interval I such that

(K1 + K2)(sinϕm+1 − sinϕm) −K2(sinϕm − sinϕm−1) = 0, t ∈ I.

Then it follows from the graph of sinusoidal function on
(
−π

2 ,
π
2

)
that we should

have
either ϕm = ϕm−1 = ϕm+1 or ϕm+1 < ϕm < ϕm−1.

The second case certainly contradicts the definition of ϕm. So we have

ϕm = ϕm−1 = ϕm+1, t ∈ I.

This implies that for t ∈ I,

0 = ϕ̇m = ϕ̇m+1

= (K1 + K2)(sinϕm+2 − sinϕm+1) −K2(sinϕm+1 − sinϕm)

= (K1 + K2)(sinϕm+2 − sinϕm+1),

and ϕm+2 = ϕm+1. Using the similar argument we can obtain

ϕl = ϕm, for any t ∈ I and l = 1, 2, . . . , N,

which implies that ϕ is an equilibrium. However, this contradicts the initial condi-
tion which is not an equilibrium. Thus, ϕm is strictly increasing. The strict decrease
of ϕM can be proved by the similar argument.

• Step 2: Following Step 1, we have

−π

2
< ϕm(0) < ϕm(t) ≤ ϕM (t) < ϕM (0) <

π

2
, t ∈ [0,∞).

This implies that ϕm(t) and ϕM (t) converge as t → ∞ and

−π

2
< ϕm(0) < lim

t→∞
ϕm(t) ≤ lim

t→∞
ϕM (t) < ϕM (0) <

π

2
. (3.4)

Combining (3.3) and Theorem 2.1, we see that the solution of (2.3) converges to
some phase-locking with ϕi being β or π − β for some β ∈

(
−π

2 ,
3π
2

]
. Hence,

lim
t→∞

ϕm(t), lim
t→∞

ϕM (t) ∈ {β, π − β}.
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Due to

β ∈
(
−π

2
,
π

2

)
⇔ π − β ∈

(
π

2
,

3π

2

)
,

we invoke the relation (3.4) and use the Squeeze theorem to find that

lim
t→∞

ϕi(t) = β ∈
(
−π

2
,
π

2

)
, i = 1, 2, . . . , N.

It follows from the conservation law

N∑
i=1

ϕi(t) =

N∑
i=1

ϕi(0) = 2kπ, t ≥ 0, k ∈ Z

that

Nβ = lim
t→∞

N∑
i=1

ϕi(t) = 2kπ, k ∈ Z i.e., β =
2kπ

N
, k ∈ Z.

Therefore, the desired result is obtained.
Proof of Theorem 2.2 (3). From Theorem 3.1, the initial value ϕ(0) near

(π
2 ,

π
2 , . . . ,

π
2 ) converges to 2kπ

N 1N , so the equilibrium (π
2 ,

π
2 , . . . ,

π
2 ) is unstable.

From ϕi ∈
(
−π

2 ,
3π
2

]
, ϕi = 3π

2 and ϕi = −π
2 are the same. By Theorem 3.1, the

initial value ϕ(0) near (−π
2 ,−

π
2 , . . . ,−

π
2 ) converges to 2kπ

N 1N , so the equilibrium
( 3π

2 , 3π
2 , . . . , 3π

2 ) is also unstable.

Remark 3.2. (1) Suppose that the initial configuration ϕ(0) satisfies the conditions
in Theorem 3.1 with k ̸= 0. Then the trajectory θ(t) of system (2.2) converges to a
splay-state.
(2) If the initial configuration ϕ(0) satisfies

ϕi(0) ∈
(
−π

2
,
π

2

)
, i = 1, 2, . . . , N and

N∑
i=1

ϕi(0) = 0,

then we have k = 0 in Theorem 3.1, which indicates

Nβ = lim
t→∞

N∑
i=1

ϕi(t) = 0.

Then β = 0 means that the trajectory θ(t) of system (2.2) converges to a phase
sync state.

Remark 3.3. Let θ(t) be the smooth solution of system (2.2) with initial condition

−π

2
< min

i=1,2,...,N
(θi+1(0)−θi(0)) mod 2π ≤ max

i=1,2,...,N
(θi+1(0)−θi(0)) mod 2π <

π

2
,

then

lim
t→∞

θ̇i(t) = lim
t→∞

[(K1 + K2) sin(θi+1 − θi) + K2 sin(θi−1 − θi)]

= lim
t→∞

[(K1 + K2) sinϕi −K2 sinϕi−1]

= K1 sin
2kπ

N
,

where the constant k =
∑N

i=1 ki and ϕi = θi+1 − θi + 2kiπ.
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4. Conclusion

This work introduces the dynamical properties of identical Kuramoto oscillators
that are bidirectionally non-symmetric coupled in a ring configuration. Through the
definition of phase difference, the formation of all phase-locked states is described,
and the almost global stability of the stable phase-locking solution is shown. Addi-
tionally, estimations for the basins of attraction for these stable phase-locked states
are provided. These results enrich the study of the non-symmetric coupled, and in
addition, k-nearest-neighbor couplings will be an interesting problem to be invested
in future work.
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