
Journal of Nonlinear Modeling and Analysis https://journal.global-sci.org/jnma

Volume 7, Number 1, February 2025, 78–90 DOI:10.12150/jnma.2025.78

Analytical Method of Nitrogen Uptake Model for
Plant Roots*

Quanbiao Gong1, Yue Wang1, and Zhonghui Ou2,†,∗

Abstract The nitrogen uptake model for plant roots is an advection-diffusion
equation subject to double Robin boundary conditions in Cartesian coordi-
nates and its analytical method is expected to accurately estimate the quan-
tity of nutrient uptake and fertilization. Firstly, the Michaelis-Menten (MM)
kinetics function in the left boundary condition is changed into a function
of time by numerical fitting and the nonlinear left Robin boundary condi-
tion then becomes a linear one in order to use traditional analytical methods.
Based on the eigenfunction expansion method originally built by Golz and
Dorroh, the nitrogen uptake model is homogenized and its eigenvalues are
obtained from the Sturm-Liouville problem. Because the convergence of this
eigenfunction expansion method is slow around the left boundary, i.e., root
surface, we additionally consider the Laplace transform to solve the nitrogen
uptake model. However, the solution after Laplace transform involves com-
posite functions and numerical inverse Laplace transforms are introduced to
obtain the final solutions. The analytical and numerical solutions show that
the nitrogen concentration profiles along the distance from the root surface are
convex upward and almost horizontal in the middle part with large gradients
at both ends. The numerical simulation demonstrates that the eigenfunction
expansion method can reach a satisfactory accuracy and the Laplace transform
method with Stehfest inversion has higher calculation efficiency.
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Golz and Dorroh’s method, numerical inverse Laplace transform
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1. Introduction

Sufficient nutrient supply is important for the growth and harvest of crops [1].
Nitrogen is one of the most important nutrients for plants, and the main form of
nitrogen absorbed by plant roots is inorganic [2]. On the contrary, excess nitrogen
supply is detrimental to crops and wreaks havoc to N farmland [3, 4]. Hence, a
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thorough understanding of the nutrient absorption mechanism is of economic and
scientific significance for the efficient use of chemical fertilizers and the increase of
crop yields.

The movement of solutes from the surrounding soil into the roots can be effec-
tively described by the advection-diffusion model (ADM) [5, 6, 7, 8, 9, 10]. Nu-
trient models of most plants took the root geometry into account and were built
in cylindrical coordinates, otherwise in Cartesian coordinates, e.g., phytoplankton
[11, 12, 13, 14]. Besides, most nutrient uptake models use Dirichlet or Neumann
boundary conditions rather than Robin boundary condition which is in flux form
and abided by mass conservation [15, 16, 17]. Therefore, it is still expected to build
the analytical method for nutrient uptake models with double Robin boundary con-
ditions in Cartesian coordinates.

Nutrient uptake models belong to the parabolic problem, more precisely to the
advection-dispersion problem (ADP). Classical methods for solving one-dimensional
ADE includes integral transforms, Green’s function, variable separation, homotopy
analysis, etc. [18, 19, 20, 21, 22, 23, 24]. Most analytical methods focused on
ADE subject to the first or second type of boundary conditions [25, 26, 27, 28, 29].
There are fewer systematical results for ADE subject to double Robin boundary
conditions in finite domain because of the mathematical and computational diffi-
culty. Some researchers used the eigenfunction expansion method, and generalized
integral transform technique to obtain the analytical solution of ADE with Robin
boundary condition in finite domain [30, 31, 32, 33, 34, 35]. The nitrogen uptake
model in this paper is an ADE subject to double Robin boundary conditions, but
the right-hand side of left boundary condition is the Michaelis-Menten function of
dependent variable. Golz and Dorroh [31] originally built an analytical method
for the convection-diffusion equation with double Robin boundary conditions in
Cartesian coordinates, which has been cited in [36, 37, 38], but none of them fully
accomplished the application of this method. The nutrient uptake models conform
to the general form proposed by Golz and Dorroh [31]. However, we still need to
cope with the Michaelis-Menten function and the calculation. Because of the dif-
ficulty of this method, we will attempt to build another method with Laplace and
inverse Laplace transforms for broader interest. [39, 40, 41].

The paper is organized as follows. Analytical methods are built to solve the
nitrogen uptake model in Section 2. Analytical solutions and simulations are com-
pared in Section 3. Finally, the conclusion of this paper is given in Section 4, and
the numerical scheme is given respectively in Appendix A.

2. Model and analytical methods

2.1. Nitrogen uptake model

McMurtrie and Näsholm built a nitrogen uptake model that simulated the balance
between the supply of plant available nitrogen and losses associated with its uptake
by plant roots, soil microbes and other mechanisms [9]. It takes the forms in
Cartesian coordinates as

b
∂CN

∂t
= Db

∂2CN

∂x2
+ v0

∂CN

∂x
−mCN + SN , 0 ≤ x ≤ l, t ≥ 0, (2.1)

v0CN (0, t) + Db
∂CN (0, t)

∂x
=

jrmaxkNCs0

kNCs0 + jrmax
, t ≥ 0, (2.2)
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v0CN (l, t) + Db
∂CN (l, t)

∂x
= 0, t ≥ 0, (2.3)

CN (x, 0) =
SN

m
, (2.4)

where CN (x, t) is the concentration of soil N solution, b is the buffer power of soil,
D is the effective diffusion coefficient of nutrient in soil, v0 is the radial velocity
of water at the root surface, m is the rate of solute loss through immobilization
by soil microbes, SN is the rate of supply of diffusible solute per unit soil volume,
x is the distance from the root axis, jrmax is the the maximum root-N influx, kN
is the root absorbing power for nutrient, and Cs0 is the solute concentration of
root surface [9]. Model (2.1)-(2.4) possesses complete and representative structure
for nutrient uptake and we attempt to solve it by Golz and Dorroh’s method, and
Laplace transform method.

2.2. Golz and Dorroh’s method

The heat transfer problem that Golz and Dorroh considered [31] is

R
∂u(x, t)

∂t
= Dg

∂2u(x, t)

∂x2
− vg

∂u(x, t)

∂x
− µu(x, t) + δ, 0 ≤ x ≤ a, (2.5)

vgu(0, t) −Dg
∂u(0, t)

∂x
= vgf(t), t > t0, (2.6)

vgu(l, t) −Dg
∂u(a, t)

∂x
= vgCE , t > t0, (2.7)

u(x, t0) = ϕ(x), (2.8)

where the parameters and functions in model (2.5)-(2.8) are referred to in [31].
The solution of model (2.5)-(2.8) is

u(x, t) =

∞∑
n=0

φn(x)erx−(p+(Dg/R)λn)t∫ a

0
φ2
n(x)dx

[
e(p−(Dg/R)λn)t0

∫ a

0

φn(x)

(
ϕ(x)e−rx

−H(t0)

)
dx +

∫ t

t0

e(p+(Dg/R)λn)τ

∫ a

0

φn(x)G(x, τ)dxdτ

]
+ erxH(x, t),

(2.9)

where

G(x, t) =
δ

R
e−rx − pH −Ht +

Dg

R
Hxx, (2.10)

and
H(x, t) = (1 + cos

πx

a
)f(t) + (1 − cos

πx

a
)e−arCE . (2.11)

Compared with Eqs. (2.10) and (2.11), Eq. (2.7) in [31] lacks one term −pH
and e−ax in Eq. (2.9) in [31] should be e−ar.

In order to apply the Golz and Dorroh’s method to model (2.1)-(2.4), we tem-
porarily take the nonlinear right-hand side of Eq.(2.2) as a function form of time
F (t),

v0CN (0, t) + Db
∂CN (0, t)

∂x
= v0F (t), t ≥ 0, (2.12)
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where

F (t) =
jrmaxkNCs0

v0(kNCs0 + jrmax)
. (2.13)

The left boundary condition (2.12) is a linear one, and we will explain how to
get F (t) later. Models (2.1), (2.3), (2.4) and (2.12) conform to the general form
(2.5)-(2.8) and the former’s solution can be expressed by Eq. (2.9),

CN (x, t) = A1(x, t) + A2(x, t) + A3(x, t), (2.14)

where

A1(x, t) =

∞∑
n=0

φn(x) e−(q1+Dλn)t∫ l

0
φ2
n(x)dx

∫ l

0

φn(x)

[
SN

m
e−q2x −(1 + cos

πx

l
)F (0)

]
dx,

(2.15)

A2(x, t) =
∞∑

n=0

φn(x)∫ l

0
φ2
ndx

∫ t

0

e−(q1+Dλn)(τ−t)

∫ l

0

φn(x)

[
SN

b
e−q2x +...

q1(1 + cos
πx

l
)F (τ) − Dπ2

l2
cos

πx

l
F (τ) − (1 + cos

πx

l
)F ′(τ)

]
dxdτ,

(2.16)

A3(x, t) = (1 + cos
πx

l
)F (t), (2.17)

where

q1 = − v0
2Db

, q2 =
1

b
(
v20

4Db
+ m).

Solutions (2.14)-(2.17) can be applied to other simpler models [42, 43]. However,
the calculation of solutions (2.14)-(2.17) involves eigenfunctions, integration, series,
and iteration in time and space. Moreover, MM function (2.13) will be fitted by
numerical concentration at the root surface. Laplace transform is more acceptable
in many fields. We attempt to build another analog with Laplace transform, and
compare their efficiency and precision.

2.3. Laplace transform method

The Laplace transform of nitrogen uptake models (2.1), (2.3) and (2.12) is

SN

s
+ b

SN

m
+ Db

∂2CN (x, s)

∂2x
+ v0

∂CN (x, s)

∂x
− (m + bs)CN (x, s) = 0, (2.18)

Db
∂CN (0, s)

∂x
+ v0CN (0, s) = v0F̄ (s), (2.19)

Db
∂CN (l, s)

∂x
+ v0CN (l, s) = 0, (2.20)

where s and CN (x, s) are the Laplace transforms of t and CN (x, t). The solution of
model (2.18)-(2.20) is

CN (x, s) =
SN

ms
+ c1(x, s)n1(x, s) + c2(x, s)n2(x, s), (2.21)
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where

c1(x, s) =
2[e(s)(d2(x, s) − 1) − d2(x, s)F̄ (s)]

β1(s)(d1(x, s) − d2(x, s))
,

c2(x, s) =
2[e(1 − d1(x, s)) + d1(x, s)F̄ (s)]

β2(s)(d1(x, s) − d2(x, s))
,

n1(x, s) = exp

(
−v0 + x

√
4Dbm + 4b2Ds + v20

2Db

)
,

n2(x, s) = exp

(
−v0 + x

√
4Dbm + 4b2Ds + v20

2Db

)
,

d1(x, s) = exp

(
−v0l − l

√
4Dbm + 4b2Ds + v20

2Db

)
,

d2(x, s) = exp

(
−v0x + x

√
4Dbm + 4b2Ds + v20

2Db

)
,

β1(s) = v0 −
√

4Dbm + 4b2Ds + v20 ,

β2(s) = v0 +
√

4Dbm + 4b2Ds + v20 , e(s) =
v0SN

ms
.

Eq. (2.21) has a complicated structure and it is difficult to directly take the in-
verse Laplace transform using the Residue theorem and complex integration. Thus,
we plan to adopt numerical inverse Laplace transform to get the final solution.
Because of the uncertainty of the numerical inverse transform, we will consider
three inversion algorithms. i.e., Zakain, Stehfest and Weeks inversions and find an
appropriate one.

The Zakain inverse Laplace transform of Eq.(2.21) is

CN (x, t) =
2

t

n∑
j=1

Re

[
Kj

(
SN t

mαj
+ c1

(
x,

αj

t

)
n1

(
x,

αj

t

)
+ c2

(
x,

αj

t

)
n2

(
x,

αj

t

))]
, (2.22)

where the coefficients Kj , αj and n are referred to [44].
The Stehfest inverse Laplace transform of Eq.(2.21) is

CN (x, t) =
ln 2

t

N∑
j=1

Vj

[
SN t

mj ln 2
+ c1

(
x,

ln 2

t
j

)
n1

(
x,

ln 2

t
j
)

+ c2

(
x,

ln 2

t
j

)
n2

(
x,

ln 2

t
j
)]
, (2.23)

where

Vj = (−1)(
N
2 +j)

min(j,N2 )∑
k=[ j+1

2 ]

k
N
2 2k!

(N
2 − k)!k!(k − 1)!(j − k)!(2k − j)!

.

The Weeks inverse Laplace transform of Eq.(2.21) is

CN (x, t) = eσt
∞∑
j=0

ajLj

( t

w

)
, (2.24)
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where Lj is the Laguerre polynomial, aj is the Taylor coefficient, w is a scale factor,

σ = Ψ − 1

2w
, w =

tmax

N
, Ψ = 1 +

1

tmax
, θk =

π

2

2k + 1

N + 1
,

a0 =
1

N + 1

N∑
k=0

h(θk), aj =
2

N + 1

N∑
k=0

h(θk) cos(jθk),

h(θk) =
1

Tn

{
Re

[
CN

(
x, Ψ +

i cot θk
2

2w

)]
− cot

θk
2
Im

[
CN

(
x, Ψ +

i cot θk
2

2w

)]}
,

and the other parameters are referred to [39].
We have hitherto given the solution expressions for two methods, i.e., solutions

(2.14)-(2.17), solutions (2.22)-(2.24) for models (2.1), (2.3), (2.4) and (2.12). Even if
solutions (2.14)-(2.17) are exact, its calculation is approximate because of the trun-
cation of series and the fitting of MM function F (t). The performance of numerical
inverse Laplace transforms closely depends on the preceding Laplace transform and
their adaptions are not universal. We have to discuss their precision and efficiency.

3. Precision and efficiency of solutions

Models (2.1)-(2.4) are a typical parabolic problem, its numerical scheme is reliable
and highly accurate, and then it can be taken as the precision benchmark. The
numerical scheme adopts the first-order forward difference for time, the first-order
forward difference for the first derivative in space, and the second-order central
difference for the second derivative in space (Appendix A). We set the space step
∆x = l/1000 and time step ∆t = 0.1(∆x)2 for satisfying the consistency and
convergence conditions. The parametric values can be found in [9], i.e., b = 1,
D = 0.05 cm2 d−1, v0 = 1 cmd−1, m = 0.05 cmd−1, SN = 1.4 × 10−8 g N cm−3 d−1

and l = 1.98 cm. F (t) is fitted by the numerical concentration on the root surface
of model (2.1)-(2.4) in MALTAB.

The mean absolute percent error (MAPE) is used to evaluate the deviation
between the numerical solution Cn

i and the analytical solutions CN , i.e., (2.14),
(2.22), (2.23) and (2.24) [45]:

MAPE =
1

M

M∑
i=1

∣∣∣∣Cn
i − CN (xi, tn)

CN (xi, tn)

∣∣∣∣× 100%.

CN (x, t) will be statistically approximate enough to numerical solution if MAPE is
less than or equal to 10%.

The profiles of numerical and analytical solutions are displayed in Fig. 1. The
overall trends of solutions increase monotonically near the root surface, level off in
the middle, and decrease steeply at the right end. The trends primarily result from
the advection effect and Robin boundary conditions. At three moments 0.1 day,
0.5 day and 1 day, all solutions are close except for solution (2.24) in Fig. 1(c).
The subtle divergence of solution near the root surface should be rechecked in Tab.
1, where the solutions of Golz and Dorroh’s method and the Laplace transform
with Stehfest inversion are more approximate to numerical solution. However, the
computation efficiency of Golz and Dorroh’s method falls behind that of the Laplace
transform method because the former contains a lot of integrations and iteration.
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(a) t = 0.1 day
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(b) t = 0.5 day
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(c) t = 1 day

Figure 1. The profiles of numerical solution and analytical soltions of N concentration distributions vs.
distance in t = 0.1 day, 0.5 day, and 1 day.

The convergence between numerical solution of original model (2.1)-(2.4) and the
analytical solution of models (2.1), (2.3), (2.8) and (2.12) demonstrates that the
linearization of MM function does not alter the quality of solution.

In Tab. 1, the convergence speed of the eigenfunction expansion method is far
behind that of the Laplace methods because its solution (2.14) is a series with inte-
grations and the series needs more than thousands of eigenfunctions to be convergent
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Table 1. The comparison of accuracy and efficiency between Golz and Dorroh’s method and the Laplace
transform methods with different numerical inversions.

T = 0.1 T = 0.5 T = 1

Golz and Dorroh’s method
MAPE(%) = 0.27
CPU t = 4307 s

MAPE(%) = 0.25
CPU t = 44207 s

MAPE(%) = 0.42
CPU t = 44241 s

Zakain inversion
MAPE(%) = 0.3
CPU t = 0.09 s

MAPE(%) = 0.83
CPU t = 0.92 s

MAPE(%) = 9.20
CPU t = 0.18 s

Stehfest inversion
MAPE(%) = 0.30
CPU t = 0.18 s

MAPE(%) = 0.29
CPU t = 0.21 s

MAPE(%) = 0.38
CPU t = 0.19 s

Weeks inversion
MAPE(%) = 0.34
CPU t = 1.01 s

MAPE(%) = 0.36
CPU t = 1.03 s

MAPE(%) = 25.09
CPU t = 1.03 s

near the nonlinear left boundary. The Laplace transform method with the Stehfest
inversion has satisfactory performance in convergence and efficiency compared with
the Zakain and Weeks inversions.

4. Conclusion

In this paper, we have proposed two analytical methods to solve the nitrogen uptake
model. The nonlinear nitrogen uptake model is linearized by replacing the MM
function of concentration with the MM function of time, making it suitable for
traditional analytical methods. The Golz and Dorroh’s method has been rectified
and examined by the investigated plant nutrient uptake model. The Golz and
Dorroh’s method and the Laplace transform method with Stehfest inversion both
perform best in terms of accuracy, and the latter also has the fastest efficiency. The
analytical procedures for solving the plant nutrient uptake model in this paper are
illuminating for other advection-diffusion problems with double Robin boundary
conditions.
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Appendix A

In this appendix, we will give the numerical scheme of models (2.1)-(2.4). Cn
i is the

value of CN (x, t) at grid points in models (2.1)-(2.4). The crossing point (xi = i∆x,
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tn = n∆t for i = 0, 1, . . . , J , n = 0, 1, . . . ).

b
Cn+1

i − Cn
i

∆t
= Db

Cn
i+1 − 2Cn

i + Cn
i−1

(∆x)2
+ v0

Cn
i+1 − Cn

i

∆x
−mCn

i + SN , (A.1)

v0C
n
0 + Db

Cn
1 − Cn

0

∆x
=

kN jrmaxC
n
0

kN Cn
0 + jrmax

, (A.2)

v0C
n
J + Db

Cn
J − Cn

J−1

∆x
= 0, (A.3)

C0
i =

SN

m
. (A.4)
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