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Shallow-Water Models with the Weak Coriolis
and Underlying Shear Flow Effects∗
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Abstract In this paper, we are committed to deriving shallow-water model
equations from the governing equations in the two-dimensional incompressible
fluid with the effects of weak Coriolis force and underlying shear flow. These
approximate models are established by working within a weakly nonlinear
regime, introducing suitable far-field or near-field variables, and truncating
the asymptotic expansions of the unknowns to an appropriate order. The
obtained models generalize the classical KdV and Boussinesq equations, as
well as KdV and Boussinesq equations with the Coriolis or shear flow effects.
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1. Introduction

The study of geophysical water waves is a fascinating subject in recent years. Within
a certain large-scale geophysical water waves, fluid dynamics is mainly affected by
the interaction between gravity and Coriolis force generated by the Earth’s rota-
tion. There are various shallow-water models with the Coriolis effect proposed as
approximations to the governing equations for gravity water waves under different
nonlinear regimes. In the Boussinesq scaling (weakly nonlinear regime), one can
derive the geophysical Kortewe-de Vries (gKdV) equation [12]

2ηt − 2ω0ηx + 3ηηx +
1

3
ηxxx = 0,

where η is relevant to the free surface elevation and ω0 is a constant related to the
Coriolis effect. Recently, a modified version of the geophysical KdV of the above
equation has been established in [1], which is called gpKdV equation. Additionally,
the geophysical Boussinesq-type (gBouss) equation is also obtained in [12]

Htt − 2ωHtX −HXX + 3(H2)XX −HXXXX = 0,

where H denotes the free surface elevation and ω is a constant related to the Coriolis
effect. The new features of the Coriolis term introduced into a geophysical Boussi-
nesq system in the long-wave assumption is considered in [14]. In the Camassa-Holm
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(CH) scaling (moderately nonlinear regime), the rotation-CH (R-CH) equation with
the Coriolis effect is derived from incompressible and irrotational two-dimensional
equatorial shallow water [13]. Recently, a highly nonlinear shallow-water model with
the Coriolis effect has been proposed under a larger scaling than the CH one [19].

On the other hand, in order to represent another aspect of realistic observed
flows, it requires us to study the propagation of various types of weakly nonlinear
long waves in a flow moving according to some prescribed vorticity. Such a flow is
often called a shear flow [8,18]. Due to the computational complexities for the case
of an arbitrary shear flow, for simplicity (of course, non-trivial), most of the shallow-
water models are derived with an underlying linear shear flow. It is known that the
linear shear flow means constant vorticity. Recently, two-dimensional water-wave
problem with a general non-zero vorticity field in a fluid volume with a flat bed and
a free surface has been studied in [15]. The CH equation is relevant to water waves
moving over a linear shear flow established by Johnson [18] via a double asymptotic
expansion. In [21], a generalized CH equation in the shallow-water regime under
the CH scaling with a linear shear is derived. Additionally, the Boussinesq equation
with constant vorticity is given in [8]. For the case of general shear flow, an example
is the KdV equation satisfied by the free surface elevation proposed in [10,18].

In this manuscript, we first derive a generalized KdV equation satisfied by the
horizontal component of the velocity field with the effects of weak Coriolis and an
arbitrary shear flow. It reads,

ut + c1ux + αεuux + βµuxxx = 0, (1.1)

where u is the fluid velocity in the horizontal direction. The coefficients in Eq. (1.1)
depend on the right-going wave speed c, the constant rotational frequency Ω caused
by the Coriolis effect, and the arbitrary underlying shear flow U(z), given by

c1 = c+
cΩγ1
I31

, α = −3I41γ1
2I31

, β = − J1
2I31

,

where γ1 = − 1
((U(z)−c)I2)′

, I2 =
∫ z

0
1

(U(z)−c)2 dz, I31 =
∫ 1

0
1

(U(z)−c)3 dz,

I41 =
∫ 1

0
1

(U(z)−c)4 dz, and J1 =
∫ 1

0

∫ 1

Z

∫ ζ

0
(U(ζ)−c)2

(U(Z)−c)2(U(z)−c)2 dzdζdZ.

Particularly, in absence of the Coriolis effect and any shear flow (Ω ≡ 0, U(z) ≡
0), we can get the classical KdV equation from Eq. (1.1). When U(z) ≡ 0, in
contrast to the gKdV equation of the free surface elevation, we obtain a KdV
equation that the horizontal velocity satisfies only with the Coriolis effect. The
reason why our equation is slightly different from gKdV is that we here use the
far-field variables ξ =

√
ε(x − ct), τ = ε

√
εt, not ξ = x − ct, τ = εt. Moreover, as

mentioned in Remark 2.1 of [13], it enables us to derive another KdV equation only
with the Coriolis effect of the horizontal velocity under the Boussinesq scaling in
the form

ut + cux + 3νεuux +
ν

3
cµuxxx = 0, (1.2)

where ν = c2

c2+1 , c =
√
1 + Ω2−Ω and Ω is the constant rotational frequency due to

the Coriolis effect. Note that our equation is also different from Eq. (1.2), because
we here use the weak Coriolis effect, not Coriolis effect, which leads to the difference
in equations at the leading-order approximation. And we thus obtain c = 1 from
the Burns condition when U(z) ≡ 0. This is really different from c appearing in Eq.
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(1.2). When Ω ≡ 0, we obtain a new KdV equation of the horizontal velocity in the
presence of an arbitrary underlying shear flow. Moreover, in view of (3.17), we thus
recover the resulting KdV equation of the free surface elevation for η ∼ η00 + µη01,
given in [18].

It is noticed that the applicability of KdV (as well as for gKdV and Eq. (1.1))
as a model for tsunami wave propagation is not appropriate [2, 5, 6, 9, 12, 20]. As
analyzed in [12], the space scale can be estimated in original physical variables by
x = O(λ

√
µε−2) = O(a−2h3

0) for the far-field variables ξ =
√
ε(x− ct) = O(1), τ =

ε
√
εt = O(1). Hence we find that the distance where the balance between nonlinear

and dispersive stemming from Eq. (1.1) occurs is approximately 2×108×Ω2
0, which

is much larger than the size of the Earth. While the tsunami leading to time- and
space-scales are orders of magnitude smaller than those required for KdV theory.
Hence it is reasonable to derive shallow-water models for tsunami wave propagation
in near-field variables x = O(1) and t = O(1), where the balance occurs after a

distance of approximately 2× 102×Ω
1/2
0 h

3/4
0 is more realistic. We then continue to

derive a generalized Boussinesq-type equation with the effects of weak Coriolis and
a linear shear flow in the near-field. It gives,

ηtt + (γ − 2Ω)ηtx − ηxx =
1

3
ε((1 + γ2)η − γ

∫ ∞

x

ηtdx
′)xxxx + ε(

1

2
(1 + γ2)η2

− γη

∫ ∞

x

ηtdx
′ + (

∫ ∞

x

ηtdx
′)2)xx, (1.3)

with an O(ε2) remainder term. Here η denotes the free surface elevation, γ is a
constant vorticity and Ω is a constant related to the Coriolis force. Compared
with derivation of Eq. (1.1), we need an additional assumption to eliminate the
dependence of u on the vertical coordinate z at the leading order. Hence we here
only derive Eq. (1.3) in the presence of constant vorticity. In particular, when
the Coriolis effect and linear shear flow vanish (Ω ≡ 0, γ ≡ 0), we deduce the
classical Boussinesq equation from Eq. (1.3). When γ ≡ 0, using the transformation
X = x − ε

∫∞
x

ηdx′, H = η − εη2, and the scaling H → − 2
εH, (X, t) →

√
ε
3 (X, t),

that is exactly the gBouss equation. When Ω ≡ 0, we recover the Boussinesq
equation only with constant vorticity in [8] (see equation (90) on page 171).

2. The governing equations

Assume that the two dimensional fluid is incompressible and inviscid with a constant
density and no surface-tension effect. Let z = 0 denote the location of the flat
bottom and h0 be the mean depth, or the undisturbed depth of the water. Suppose
that Dt = {(x, z) : 0 < z < h0 + η(t, x)}, where η(t, x) measures the deviation from
the average level. Under the effects of the gravity and the Coriolis force caused by
Earth’s rotation [7, 11], the equations governing the motion of the fluid consist of
Euler equations

{
ut + uux + wuz + 2Ωw = − 1

ρPx, in Dt,

wt + uwx + wwz − 2Ωu = − 1
ρPz − g, in Dt,

(2.1)

together with the equation of mass conservation

ux + wz = 0, in Dt, (2.2)
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and the dynamic and kinematic boundary conditions on the free surface

P = Pa, w = ηt + uηx, on z = h0 + η(t, x), (2.3)

and the boundary condition on the flat bottom

w = 0, on z = 0, (2.4)

where (u(t, x, z), w(t, x, z)) is the two-dimensional velocity field, Pa is the constant
atmospheric pressure, g is the constant Earth’s gravity acceleration and ρ is the
constant fluid density. The constant Ω ≈ 7.29 × 10−5rad/s denotes the rotational
speed of the Earth around the polar axis, thus the two Ω-terms in (2.1) capture the
effects of the so-called Coriolis force.

As in [16], the pressure of the fluid is written as P (t, x, z) = Pa + ρg(h0 −
z) + p(t, x, z), where the variable p measures the deviation from the hydrostatic
pressure distribution, thus on the surface z = h0 + η(t, x), the dynamic condition
P = Pa yields p = ρgη. Therefore, the equations (2.1)-(2.4) can be summarized as
the following form

ut + uux + wuz + 2Ωw = − 1
ρpx, in 0 < z < h0 + η(t, x),

wt + uwx + wwz − 2Ωu = − 1
ρpz, in 0 < z < h0 + η(t, x),

ux + wz = 0, in 0 < z < h0 + η(t, x),

p = ρgη, on z = h0 + η(t, x),

w = ηt + uηx, on z = h0 + η(t, x),

w = 0, on z = 0.

(2.5)

Now we introduce the following standard dimensionless quantities as in [9,13,16,17],
according to the magnitude of the physical quantities

x → λx, z → h0z, η → aη, t → λ√
gh0

t,

and

u →
√

gh0u, w →
√

µgh0w, p → ρgh0p, Ω →
√
gh0

h0
Ω.

In terms of the above nondimensionalised variables, the governing equations (2.5)
become 

ut + uux + wuz + 2Ωw = −px, in 0 < z < 1 + εη(t, x),

µ(wt + uwx + wwz)− 2Ωu = −pz, in 0 < z < 1 + εη(t, x),

ux + wz = 0, in 0 < z < 1 + εη(t, x),

p = εη, on z = 1 + εη(t, x),

w = ε(ηt + uηx), on z = 1 + εη(t, x),

w = 0, on z = 0,

(2.6)

where we use the following two fundamental small dimensionless parameters

ε =
a

h0
≪ 1, µ =

h2
0

λ2
≪ 1,
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referred to as the amplitude parameter and the shallowness parameter with the
small amplitude a and the long wavelength λ.

By imposing the scaling around a laminar flow

u → u1 + εu, w → w1 + εw, p → p1 + εp, (2.7)

where (u1, w1, p1) is an exact solution to the system (2.6) of the form

u1 = U(z), w1 ≡ 0, p1 = 2Ω

∫ z

1

U(z)dz, (2.8)

characterized by the plane η ≡ 0, for any U(z). This represents an arbitrary
underlying shear flow. On the other hand, as is pointed out in [12], the Coriolis force
parameter Ω and the amplitude parameter ε are of the same order of magnitude.
It is thus reasonable to assume that Ω = O(ε), or what is the same,

Ω = εΩ0, (2.9)

for some appropriate constant Ω0. According to [12], as Ω0 should not alter the
order of magnitude in (2.9), it is required that 1

2 < Ω0 < 5.

In view of Eqs. (2.7)-(2.9), the governing equations (2.6) become

ut + Uux + wU ′ + ε(uux + wuz + 2Ω0w) = −px, in 0 < z < 1 + εη(t, x),

µ(wt + Uwx + ε(uwx + wwz))− 2Ω0εu = −pz, in 0 < z < 1 + εη(t, x),

ux + wz = 0, in 0 < z < 1 + εη(t, x),

p = η − 2Ω0

∫ z

1
Udz, on z = 1 + εη(t, x),

w = ηt + (U + εu)ηx, on z = 1 + εη(t, x),

w = 0, on z = 0,

(2.10)

where the prime in the first equation of (2.10) denotes the derivative with respect
to z.

3. Generalized KdV equation

In this section, we pursue the derivation of a generalized KdV equation from the
governing equations (2.10) with the weak Coriolis and an arbitrary shear flow effects.
To proceed, we first introduce the following suitable variables in an appropriate far-
field [17,18],

ξ =
√
ε(x− ct), τ = ε

√
εt,

where c is the constant speed for linear propagation. It is worth noting that
Freeman, Johnson [10], and Geyer, Quirchmayr [12] applied the far-field variables
ξ = x − ct, τ = εt to deduce the KdV equation satisfied by the surface elevation
with shear and weak Coriolis effects, respectively. The reason why the far-field vari-
ables we use here are different from theirs is mainly inspired by Johson’s work [18]
on recovering the KdV equation of the free surface elevation in the presence of an
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arbitrary shear. Then we replace w with
√
εW for the consistency of the condition

of incompressibility. Hence, the governing equations (2.10) can be written as

εuτ − cuξ + Uuξ +WU ′ + ε(uuξ +Wuz + 2Ω0W ) = −pξ, in 0 < z < 1 + εη,

εµ(εWτ − cWξ + UWξ + ε(uWξ +WWz))− 2Ω0εu = −pz, in 0 < z < 1 + εη,

uξ +Wz = 0, in 0 < z < 1 + εη,

p = η − 2Ω0

∫ z

1
Udz, on z = 1 + εη,

W = εητ + (U − c)ηξ + εuηξ, on z = 1 + εη,

W = 0, on z = 0.

(3.1)

To search an asymptotic solution of Eq. (3.1) formally, it is assumed that the
functions involved above can be written as double asymptotic expansions in ε and
µ,

q ∼
∞∑

n=0

∞∑
m=0

εnµmqnm,

as ε → 0 and µ → 0 independently. Here q (and correspondingly qnm) stands for
u, W , p and η. Note that the relations of u,W, p and η need to be satisfied on the
free surface 1 + εη, but itself is unknown. We deal with this difficulty by taking
advantage of Taylor expansions of u, U,W, p on the surface about z = 1,

f(z) = f(1) +

∞∑
n=1

(z − 1)n

n!
f (n)(1), (3.2)

where f will be taken by the variables u, U,W, p.
In order to derive our equation (1.1), we perform calculations under the Boussi-

nesq scaling: µ ≪ 1, ε = O(µ). Substituting the asymptotic expansions of u, W , p
and η into Eq. (3.1), we check all the coefficients at each order O(ε0µ0), O(ε0µ1),
O(ε1µ0), O(ε2µ0), O(ε1µ1), respectively.

For the leading-order O(ε0µ0) approximation, we obtain

−cu00,ξ + Uu00,ξ + U ′W00 = −p00,ξ, in 0 < z < 1,

p00,z = 0, in 0 < z < 1,

u00,ξ +W00,z = 0, in 0 < z < 1,

p00 = η00, on z = 1,

W00 = (U1 − c)η00,ξ, on z = 1,

W00 = 0, on z = 0,

(3.3)

where U1 := U(1). To solve the above system, we first integrate the second equation
of (3.3)

p00 = p00|z=1 +

∫ z

1

p00,z′dz′ = η00.

Then substituting the third equation into the first one, and solving the differential
equation of W00, we obtain

W00 = η00,ξ(U − c)

∫ z

0

1

(U − c)2
dz.
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Combining it with the fifth equation of (3.3), it follows∫ 1

0

1

(U − c)2
dz = 1,

which is the familiar Burns condition [4]. For convenience, we introduce a compact
notation for the various integrals

In(z) =

∫ z

0

1

(U(z)− c)n
dz.

Obviously, I2(1) = 1, we denote it as I21. Thus we have

W00 = (U − c)I2η00,ξ,

and

u00 = −((U − c)I2)
′η00. (3.4)

For the order O(ε0µ1) terms of the governing equations (3.1), it yields

−cu01,ξ + Uu01,ξ + U ′W01 = −p01,ξ, in 0 < z < 1,

p01,z = 0, in 0 < z < 1,

u01,ξ +W01,z = 0, in 0 < z < 1,

p01 = η01, on z = 1,

W01 = (U1 − c)η01,ξ, on z = 1,

W01 = 0, on z = 0.

(3.5)

Applying the same calculation to (3.5) as (3.3), we readily get

p01 = η01, W01 = (U − c)I2η01,ξ, u01 = −((U − c)I2)
′η01. (3.6)

For the order O(ε1µ0) terms of the governing equations (3.1), we obtain from
the Taylor expansion (3.2)

u00,τ + (U − c)u10,ξ + U ′W10 + u00u00,ξ +W00u00,z

+2Ω0W00 = −p10,ξ, in 0 < z < 1,

p10,z = 2Ω0u00, in 0 < z < 1,

u10,ξ +W10,z = 0, in 0 < z < 1,

p10 + η00p00,z = η10 − 2Ω0U1η00, on z = 1,

W10 + η00W00,z = η00,τ + (U1 − c)η10,ξ + U
′

1η00η00,ξ + u00η00,ξ, on z = 1,

W10 = 0, on z = 0.

(3.7)

Integrating the second equation of (3.7), along with the fourth one, and combining
it with the third equation of (3.3), it implies that

p10,ξ = p10,ξ|z=1 +

∫ z

1

2Ω0u00,ξdz
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= η10,ξ − 2Ω0U1η00,ξ +

∫ 1

z

2Ω0W00,zdz

= η10,ξ − 2Ω0U1η00,ξ + 2Ω0W00|z=1 − 2Ω0W00. (3.8)

Substituting (3.8) into the first equation of (3.7), and solving the differential equa-
tion of W10, we have

W10 =(U − c)(I2η10,ξ − 2cΩ0I2η00,ξ + (
I2

U − c
− 2I3)η00,τ

+ (3I4 −
2I2

(U − c)2
− U ′I22

U − c
)η00η00,ξ). (3.9)

It then follows from the fifth equation that

−2I31η00,τ + 3I41η00η00,ξ − 2cΩ0η00,ξ = 0, (3.10)

which implies

η00,τ =
3I41
2I31

η00η00,ξ −
cΩ0

I31
η00,ξ.

Plugging it into (3.9), we deduce that

W10 =(U − c)I2η10,ξ − (2cΩ0(U − c)I2 +
cΩ0I2
I31

− 2cΩ0

I31
(U − c)I3)η00,ξ

+ (
3I41
2I31

(I2 − 2(U − c)I3) + (3(U − c)I4 −
2I2

U − c
− U ′I22 ))η00η00,ξ,

and thus

u10 = −((U − c)I2)
′η10 + (2cΩ0((U − c)I2)

′ +
cΩ0

I41
I ′2 −

2cΩ0

I31
((U − c)I3)

′)η00

−(
3I41
4I41

(I2 − 2(U − c)I3)
′ +

1

2
(3(U − c)I4 −

2I2
U − c

− U ′I22 )
′)η200.

(3.11)

For the order O(ε2µ0) terms of the governing equations (3.1), it is inferred that

u10,τ + (U − c)u20,ξ + U ′W20 + u10u00,ξ + u00u10,ξ +W10u00,z

+W00u10,z + 2Ω0W10 = −p20,ξ, in 0 < z < 1,

p20,z = 2Ω0u10, in 0 < z < 1,

u20,ξ +W20,z = 0, in 0 < z < 1,

p20 + η00p10,z + η10p00,z +
1
2η

2
00p00,zz = η20

−2Ω0U1η10 − Ω0U
′
1η

2
00, on z = 1,

W20 + η00W10,z + η10W00,z +
1
2η

2
00W00,zz = η10,τ

+(U1 − c)η20,ξ + U ′
1η10η00,ξ + U ′

1η00η10,ξ

+ 1
2U

′′
1 η

2
00η00,ξ + u10η00,ξ + u00η10,ξ + η00u00,zη00,ξ, on z = 1,

W20 = 0, on z = 0.

(3.12)
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Integrating the second equation of (3.12), together with the fourth one, it gives

p20,ξ = η20,ξ − 2Ω0U1η10,ξ − Ω0U
′
1(η

2
00)ξ − 2Ω0(η00u00)ξ + 2Ω0W10|z=1 − 2Ω0W10.

(3.13)

Substituting (3.13) into the first equation of (3.12), and solving the differential
equation of W20, we have

W20 =(U − c)((
I2

U − c
− 2I3)η10,τ + I2η20,ξ + (3I4 −

2I2
(U − c)2

− U ′I22
U − c

)(η10η00,ξ

+ η00η10,ξ)− 2cΩ0I2η10,ξ + (
3c2Ω2

0

I231
I4 −

4c2Ω2
0

I31
I3 −

2c2Ω2
0

I231

I3
U − c

+
2c2Ω2

0

I31

I2
U − c

− 2cΩ2
0

I31
I2)η00,ξ + (

12cΩ0

I31
I5 − (

9cΩ0I41
I231

+ 12cΩ0)I4

− 3cΩ0

I31

I4
U − c

+ (
3cΩ0I41

I31
+ 4Ω0)I3 +

6cΩ0I41
I231

I3
U − c

− 4cΩ0

I31

I3
(U − c)2

+ (
2Ω0I41
I31

− 4Ω0

U1 − c
− 4Ω0U

′)I2 − (
cΩ0I41
I31

+ 2Ω0)
I2

U − c
+ 8cΩ0

I2
(U − c)2

− 2cΩ0

I31

I2
(U − c)3

+ 4cΩ0
U ′I22
U − c

− 4cΩ0

I31

U ′I2I3
U − c

)η00η00,ξ

+ (
9I241
4I231

(3I4 −
2I3

U − c
)− I41

I31
(
43

4
I5 −

9

2

I4
U − c

− 9

2

I3
(U − c)2

− 17

4

I2
(U − c)3

− 9

2

U ′I2I3
U − c

) +
15

2
I6 −

9

4
I4 −

9

4

I4
(U − c)2

− 3

2

I2
(U − c)4

− 9

2

U ′I2I4
U − c

+
1

2

U ′′I32
U − c

)η200η00,ξ).

Hence, according to the fifth equation of (3.12), we obtain

−2I31η10,τ + 3I41(η10η00,ξ + η00η10,ξ)− 2cΩ0η10,ξ +A1η00,ξ

+A2η00η00,ξ +A3η
2
00η00,ξ = 0, (3.14)

where

A1 =
3c2Ω2

0I41
I231

− 4c2Ω2
0 −

2cΩ2
0

I31
,

A2 =
12cΩ0I51

I31
− 9cΩ0I

2
41

I231
− 9cΩ0I41 + 4cΩ0I31 +

3cΩ0I41
I31(U1 − c)

+
2Ω0I41
I31

− 6Ω0

U1 − c
− 4Ω0U

′
1,

A3 =
27I341
4I231

− 43

4

I41I51
I31

+
9

4

I41
(U1 − c)2

+
17

4

I41
I31(U1 − c)3

− 15

2
I61 −

9

4
I41.

For the order O(ε1µ1) terms of the governing equations (3.1), we derive from



392 Y. Liu, X. Liu & M. Li

the Taylor expansion (3.2)

u10,τ − cu11,ξ + Uu11,ξ + U ′W11 + u01u00,ξ + u00u01,ξ

+W00u01,z +W01u00,z + 2Ω0W01 = −p11,ξ, in 0 < z < 1,

−cW00,ξ + UW00,ξ − 2Ω0u01 = −p11,z, in 0 < z < 1,

u11,ξ +W11,z = 0, in 0 < z < 1,

p11 + η01p00,z + η00p01,z = η11 − 2Ω0Uη01, on z = 1,

W11 + η01W00,z + η00W01,z = η01,τ + (U − c)η11,ξ + U ′η00η01,ξ

+U ′η01η00,ξ + u00η01,ξ + u01η00,ξ, on z = 1,

W11 = 0, on z = 0.

(3.15)

In view of the second and the fourth equations of (3.15), we get

p11 = η11 − 2cΩ0η01 + η00,ξξ

∫ 1

z

(U − c)2I2dz − 2Ω0(U − c)I2η01.

Substituting it into the first equation of (3.15) and together with the third equation
of (3.15), we obtain

W11 =(U − c)(I2η11,ξ + (
I2

U − c
− 2I3)η01,τ + (3I4 −

2I2
(U − c)2

− U ′I22
U − c

)(η01η00)ξ

− 2cΩ0I2η01,ξ + Jη00,ξξξ),

where J = J(z) =
∫ z

0

∫ 1

Z

∫ ζ

0
(U(ζ)−c)2

(U(Z)−c)2(U(z)−c)2 dzdζdZ. Thus it follows from the

fifth equation of (3.15) that

−2I31η01,τ + 3I41(η01η00,ξ + η00η01,ξ)− 2cΩ0η01,ξ + J1η00,ξξξ = 0, (3.16)

where J1 = J(1).
According to the double asymptotic expansion of η, we take η := η00 + εη10 +

µη01+O(ε2, εµ, µ2). Multiplying each of the three equations of (3.10), (3.14), (3.16)
by 1, ε, µ, respectively, and then summating these results, we get the equation of η
up to the order O(ε2, εµ, µ2)

−2I31ητ + 3I41ηηξ − 2cΩ0ηξ + µJ1ηξξξ

+ ε(A1ηξ +A2ηηξ +A3η
2ηξ) = O(ε2, εµ, µ2). (3.17)

On the other hand, it follows from (3.4), (3.6) and (3.11) that

η00 = γ1u00, η01 = γ1u01, η10 = γ1u10 + γ2u00 + γ3u
2
00,

where γ1 = − 1
((U−c)I2)′

, γ2 = − 1
(((U−c)I2)′)2

(2cΩ0((U−c)I2)
′+ cΩ0

I31
(I2−2(U−c)I3)

′),

γ3 = − 1
(((U−c)I2)′)3

( 3I414I31
(I2−2(U−c)I3)

′+ 1
2 (3(U−c)I4− 2I2

U−c−U ′I22 )
′). Substituting

the above three equalities into the double asymptotic expansions of η, and noticing
that u := u00 + εu10 + µu01 +O(ε2, εµ, µ2), we obtain

η = γ1u+ εγ2u+ εγ3u
2 +O(ε2, εµ, µ2). (3.18)
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To proceed, substituting (3.18) into (3.17) gives rise to

uτ +
γ2
γ1

εuτ +
2γ3
γ1

εuuτ +
cΩ0γ1
I31

uξ −
A1γ1 − 2cΩ0γ2

2I31γ1
εuξ −

3I41γ1
2I31

uuξ

− 6I41γ1γ2 − 4cΩ0γ3 +A2γ
2
1

2I31γ1
εuuξ −

9I41γ3 +A3γ
2
1

2I31
εu2uξ −

J1
2I31

= O(ε2, εµ, µ2),

(3.19)

which implies that

εuτ = −cΩ0γ1
I31

εuξ +
3I41γ1
2I31

εuuξ +O(ε2, εµ, µ2),

and

εuuτ = −cΩ0γ1
I31

εuuξ +
3I41γ1
2I31

εu2uξ +O(ε2, εµ, µ2).

Hence, the equation (3.19) becomes

uτ +
cΩ0γ1
I31

uξ −
3I41γ1
2I31

uuξ −B1εuξ −B2εuuξ −B3εu
2uξ

− J1
2I31

µuξξξ = O(ε2, εµ, µ2), (3.20)

where B1 = A1γ1−2cΩ0γ2+2cΩ0γ1γ2

2I31γ1
, B2 =

3I41γ1γ2+A2γ
2
1−4cΩ0γ3+4cΩ0γ1γ3

2I31γ1
,

B3 =
3I41γ3+A3γ

2
1

2I31
.

Back to the original transformation x = ε−
1
2 ξ + cε−

3
2 τ, t = ε−

3
2 τ , we have

∂
∂ξ = ε−

1
2 ∂x,

∂
∂τ = ε−

3
2 (c∂x + ∂t). Making use of this transformation, the equation

(3.20) can be written as

ut + c1ux + αεuux + βµuxxx = 0, (3.21)

with c1 = c+ cΩγ1

I31
, α = − 3I41γ1

2I31
, β = − J1

2I31
, which give the generalized KdV equa-

tion (1.1) with both weak Coriolis and an arbitrary shear flow effects. Significantly,
the coefficients satisfy c1 → 1, α → 3

2 , β → 1
6 , when Ω → 0 and U(z) ≡ 0, which

implies

ut + ux +
3

2
εuux +

1

6
µuxxx = 0.

Applying the transformation uε,µ(t, x) = εu(
√
µt,

√
µx) to the above equation, we

find that uε,µ(t, x) solves the classical KdV equation.

4. Generalized Boussinesq equation

In this section, we turn to the derivation of a generalized Boussinesq-type equation
in the region where the non-dimensional scaled near-field variables satisfy x = O(1)
and t = O(1). Indeed, the derivation of the Boussinesq equation is considerably
more involved than the corresponding problem for the KdV equation [8]. In view of
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this, we consider a constant vorticity instead of an arbitrary vorticity, which implies
U(z) = γz, for constant γ. Correspondingly, the governing equations (2.10) become



ut + γzux + γw + ε(uux + wuz + 2Ω0w) = −px, in 0 < z < 1 + εη(t, x),

µ(wt + γzwx + ε(uwx + wwz))− 2Ω0εu = −pz, in 0 < z < 1 + εη(t, x),

ux + wz = 0, in 0 < z < 1 + εη(t, x),

p = η − 2Ω0γεη − Ω0γε
2η2, on z = 1 + εη(t, x),

w = ηt + εuηx + εγηηx + γηx, on z = 1 + εη(t, x),

w = 0, on z = 0.

(4.1)

It is worth noting that before the nondimensionalisation and scaling, the vortic-
ity ω = U ′ + uz − wx. Using the nondimensionalised variables and the scalings of
u,w as before, with the vorticity scaling ω →

√
g/h0ω, we get ω = γ+ε(uz−µwx).

Thus, in order to seek a solution with constant vorticity, it is required that

uz − µwx = 0, (4.2)

which implies that the vorticity ω ≡ γ. On the other hand, we are working in the
regime µ ≪ 1, ε = O(µ), so the parameter µ appearing in Eqs. (4.1)- (4.2) can be
replaced with ε. Therefore, we obtain the governing equations as follows



ut + γzux + γw + ε(uux + wuz + 2Ω0w) = −px, in 0 < z < 1 + εη(t, x),

ε(wt + γzwx + ε(uwx + wwz))− 2Ω0εu = −pz, in 0 < z < 1 + εη(t, x),

ux + wz = 0, in 0 < z < 1 + εη(t, x),

uz − εwx = 0, in 0 < z < 1 + εη(t, x),

p = η − 2Ω0γεη − Ω0γε
2η2, on z = 1 + εη(t, x),

w = ηt + εuηx + εγηηx + γηx, on z = 1 + εη(t, x),

w = 0, on z = 0.

(4.3)

As in [8, 12], we formally expand the respective variables u, w, p and η in the
form

q ∼
∞∑

n=0

εnqn,

and rewrite the boundary conditions at the free surface by means of the Taylor
expansions (3.2) of the involved variables u, w and p about z = 1. Hence, for the
order O(ε0) terms of the (4.3), we obtain

u0,t + γzu0,x + γw0 = −p0,x, in 0 < z < 1,

p0,z = 0, in 0 < z < 1,

u0,x + w0,z = 0, in 0 < z < 1,

u0,z = 0, in 0 < z < 1,

p0 = η0, on z = 1,

w0 = η0,t + γη0,x, on z = 1,

w0 = 0, on z = 0.
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We thus find that, for z ∈ [0, 1],

p0 = η0, w0 = z(η0,t + γη0,x), u0,t = −η0,x, u0,x = −(η0,t + γη0,x), (4.4)

which implies

η0,tt + γη0,xt − η0,xx = 0. (4.5)

For the order O(ε1) terms of the (4.3), we get

u1,t + γzu1,x + γw1 + u0u0,x + w0u0,z + 2Ω0w0 = −p1,x, in 0 < z < 1,

w0,t + γzw0,x − 2Ω0u0 = −p1,z, in 0 < z < 1,

u1,x + w1,z = 0, in 0 < z < 1,

u1,z − w0,x = 0, in 0 < z < 1,

p1 = η1 − 2Ω0γη0, on z = 1,

w1 + η0w0,z = η1,t + u0η0,x + γη0η0,x + γη1,x, on z = 1,

w1 = 0, on z = 0.

(4.6)

From the second and the fifth equations of (4.6), we find that

p1,x = η1,x − 2Ω0w0 + 2Ω0η0,t −
1

2
(z2 − 1)Qtx − γ

3
(z3 − 1)Qxx,

where Q(t, x) = η0,t + γη0,x. Combining the third and the fourth equations of (4.6)
with (4.4), we achieve

w1,zz = −zQxx,

which implies

w1 = −1

6
z3Qxx + zΦ(t, x),

for some arbitrary smooth function Φ(t, x) independent of z. Taking account of the
sixth equation of (4.6), we have

Φ(t, x) = η1,t + u0η0,x + γη0η0,x + γη1,x +
1

6
Qxx − η0Q.

Substituting all the above known quantities into the first equation of (4.6), it yields

u1,t = −η1,x − 2Ω0η0,t +
1

2
(z2 − 1)Qtx − γ

3
Qxx − u0u0,x,

which together with the third equation of (4.6) implies that

w1,zt = −u1,xt = η1,xx + 2Ω0η0,tx − 1

2
(z2 − 1)Qtxx +

γ

3
Qxxx + (u0u0,x)x.

Integrating the above equation, we deduce that

w1,t = z(η1,xx + 2Ω0η0,tx +
1

2
Qtxx +

γ

3
Qxxx + (u0u0,x)x − z3

6
Qtxx. (4.7)
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Finally, differentiating the sixth equation of (4.6) with respect to t, and substituting
(4.7) into it, we get

η1,tt + γη1,tx − η1,xx = 2Ω0η0,tx +
1

3
Qtxx +

γ

3
Qxxx + (u0u0,x)x + (η0Q)t

− (u0η0,x)t − γ(ηη0,x)t,

that is

η1,tt + γη1,tx − η1,xx = 2Ω0η0,tx +
1

3
(η0 − γu0)xxxx

+ (u2
0 +

1

2
η20 + γu0η0 +

1

2
γ2η20)xx, (4.8)

with u0 = −γη0 +
∫∞
x

η0,tdx
′ under the assumption of the decay conditions ahead

(x → ∞) of any right-running wave.
According to the asymptotic expansion of η, we take η := η0 + εη1 + O(ε2).

Multiplying equation (4.5), (4.8) by 1, ε, respectively, and then summating these
results, we get the equation of η up to the order O(ε2)

ηtt + (γ − 2Ω)ηtx − ηxx =
1

3
ε((1 + γ2)η − γ

∫ ∞

x

ηtdx
′)xxxx + ε(

1

2
(1 + γ2)η2

−γη

∫ ∞

x

ηtdx
′ + (

∫ ∞

x

ηtdx
′)2)xx +O(ε2). (4.9)

Note that Eq. (4.9) cannot be transformed into anything equivalent to the classical
Boussinesq equation by any transformation [8]. Hence we obtain a new Boussinesq-
type equation with both weak Coriolis force and constant vorticity.

5. Conclusion

In this paper, we are mainly motivated by the works [12,18] to derive shallow-water
model equations from the governing equations of two-dimensional incompressible
fluid, accounting for the effects of weak Coriolis force and underlying shear flow.
More precisely, on the one hand, when Johnson [18] applied the double asymptotic
expansion to explore the relevance of the Camassa-Holm equation to water waves
moving over a shear flow, he recovered the KdV equation obtained earlier in the
presence of an arbitrary shear [10]. On the other hand, Geyer and Quirchmayr
[12] derived the gKdV and gBouss equations only with the weak Coriolis effect,
and considered their application as models for tsunami wave propagation. This
inspires us to encompass both the Coriolis and shear flow effects. We first follow
the procedure employed in [18] (thus using the same far-field variables) to establish
the KdV equation satisfied by not only the free surface, but also the horizontal
component of the velocity. We then continue with the near-field variables in [12] to
derive the Boussinesq equation with the weak Coriolis effect and linear shear flow.
It should be noted that the travelling wave solutions of the KdV and Boussinesq
equations with only the Coriolis, and the KdV only with shear were obtained in
[3, 8, 12, 16]. What about our Eqs. (1.1) and Eqs. (1.3)? As pointed out in [8], the
Boussinesq equation only with linear shear flow cannot be transformed into anything
equivalent to the classical Boussinesq equation by any transformation. Moreover,
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there is an arbitrary function U(z) appearing in the coefficients in Eq. (1.1). These
difficulties make the problem of travelling wave solutions still open. We expect the
future study may give some new phenomena for the equations.
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