
Journal of Nonlinear Modeling and Analysis https://journal.global-sci.org/jnma

Volume 7, Number 2, April 2025, 414–428 DOI:10.12150/jnma.2025.414

Dynamics of an n-Patch Predator-Prey Model
with Allee Effect∗
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Abstract A class of n-patch predator-prey diffusion models with the Allee
effect is established. The influence of the Allee effect and diffusion of prey on
the existence and stability of the equilibrium point are investigated. Firstly,
sufficient conditions for the permanence and extinction of the system are an-
alyzed. Secondly, by constructing a new Lyapunov function in terms of graph
theory, we obtain a sufficient condition of the global asymptotical stability for
the positive equilibrium point. Finally, our results of this paper are verified
by Matlab simulation.
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1. Introduction

Considering the influence of predator and prey diffusion behavior, Levin [1] first es-
tablished the population dynamics model in a patch environment, and studied the
related problems of predator-prey diffusion model [2–9]. Up to now, the dynamics
problem of patch predator-prey model has received lots of attention. For exam-
ple, Kuang and Takeuchi [2] investigated the following autonomous predator-prey
systems

ẋ1 = x1g1(x1)− yp1(x1) + d(x2 − x1),

ẋ2 = x2g2(x2)− yp2(x2) + d(x1 − x2),

ẏ = y[−s(y) + c1p1(x1) + c2p2(x2)].
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They obtained sufficient conditions for permanence, local stability and global sta-
bility of the system. After this, many scholars have extended Kuang and Takeuchi’s
model to consider the influence of impulse [7], fear effect [8], age structure [9] and
other factors on the patch predator-prey model. Since the dynamic analysis in [2–9]
is mainly concentrated in the patch environment, the patch predator-prey model
for high-dimensional systems is not applicable. Li and Shuai [10] considered the
n-patch predator-prey model. In [10], the authors used the results of graph theory
to construct the global Lyapunov function of a large-scale coupled system from a
single vertex system, and then obtained the stability of the system.

In addition, population density is limited by the environment. Excessive sparse-
ness or overcrowding can inhibit the growth of the population, which means that
the species has the range for the population growth. This phenomenon is called the
Allee effect [11–14]. In this paper, we assume that the prey growth rate is affected by
the Allee effect, so in the absence of predators, the per capita growth rate function
becomes g (x) = r

(
1− x

k

)
(x+m), where m is the Allee effect parameter. Recently,

Pal, Samanta [15] and Saha [16] studied the diffusion dynamics of a predator-prey
system with a strong Allee effect in a two-patch environment. In [15, 16], they ob-
tained the existence and stability criteria of the positive equilibrium point in the
presence and absence of diffusion. Biswas and Pal [17] introduced the strong Allee
effect into the three-patch model. Biswas and Pal showed the dynamics and the
asymptotic behavior of the system and proved the occurrence of Hopf bifurcation.
The Allee effect plays an important role in the dynamic behavior of the predator
prey system. However, there are few results to deal with the weak Allee effect of
n-path predator-prey.

Motivated by the above discussions, we discuss the weak Allee effect of n-path
predator-prey in this paper. By using Li and Shuai’s technique of constructing Lya-
punov function, the conditions for the stability of the positive equilibrium point of
the n-patch predator-prey model are given. We also provide examples to demon-
strate the effectiveness of the proposed stability results. It also shows how the weak
Allee effect determines the existence and stability of positive equilibrium.

This paper is organized as follows: In Section 2, our mathematical model of
n-patch predator-prey with Allee effect is presented and some preliminaries are
given. In Section 3, the main results for both permanence and asymptotically
stability of n-patch predator-prey model with the weak Allee effect are proposed.
An effective numerical simulation is presented in Section 4 to illustrate the main
results. Concluding remarks are collected in Section 5.

2. The model and preliminaries

In this paper, we consider the following system

dxi

dt = ri(1− xi

ki
)(xi +mi)xi − bixi

2 − qixiy +
n∑

l=1

dil(xl − xi),

dxn

dt = rn(1− xn

kn
)xn +

n∑
l=1

dnl(xl − xn),

dy
dt = −sy + y

n−1∑
i=1

eixi.i = 1, 2, ..., n− 1.

(2.1)

In the system, n ≥ 2, xl(t) is the number of prey populations in the l, l = 1, 2, ..., n,
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patch at time t; y(t) is the number of predator populations at time t; rl, kl are the
intrinsic growth rate and environmental capacity of the prey population in the l
patch, respectively. mi is the Allee effect coefficient of the prey population in the
i, i = 1, 2, ..., n− 1 patch; mi quantifies the intensity of the Allee effect so that it is
weak with 0 < mi < ki, i = 1, 2, ..., n − 1. bi the density restriction factors of the
population affected by food and environment; qi is the proportion coefficient of the
amount of prey eaten by predators per unit time proportional to the number of prey
population, and ei represents the predator’s prey intake rate. s is the mortality rate
of the predator population; djl, j, l = 1, 2, ..., n is the constant diffusivity of the prey
population from patch l to patch j.

Therein, q1
e1

= q2
e2

= ... = qi
ei

indicates that the predator has the same conver-
sion rate for the same prey; djl = dlj , j, l = 1, 2, ..., n indicates that the migration
constant from patch j to patch l is equal to the migration constant from patch l to
patch j; dll = 0 indicates that the migration constant from patch l to patch l is 0.

Define vector

(X(t), y(t)) = (x1(t), x2(t), ..., xn(t), y(t))
T ∈ Rn+1

+ .

I0 = (x1(0), x2(0), ..., xn(0), y(0)), and assume that I0 satisfies nonnegative initial
conditions xl(0), y(0) > 0, l = 1, 2, ..., n. According to the existence and uniqueness
theorem of solution of the system of ordinary differential equations in literature [18],
there exists a unique solution satisfying the condition.

Definition 2.1. The weight matrix of a weighted digraph G with n vertices is
D = (dlj)n×n and satisfies dlj ≥ 0. A weighted digraph (G,D) is strongly connected
if and only if the weighted matrix D is irreducible. Furthermore the Laplace matrix
L = [lij ] of a weighted digraph (G,D) with a strongly connected graph is as follows:

llj =

{
−dlj , l ̸= j,∑

k ̸=l dlk, l = j.

Definition 2.2. Let (X(t), y(t)) be a solution to system (2.1) if there are constants
0 < ci < Ci, i = 1, 2 for any initial value I0 ∈ intRn

+ such that

0 < c1 ≤ lim inf
t→+∞

xl(t, xl(0)) ≤ lim sup
t→+∞

xl(t, xl(0)) ≤ C1,

and

0 < c2 ≤ lim inf
t→+∞

y(t, y(0)) ≤ lim sup
t→+∞

y(t, y(0)) ≤ C2,

then it is called the permanence of the system (2.1).

Lemma 2.1 (Theorem2.2, [10]). Assume n ≥ 2. If

γl =
∑
T ∈Tl

w(T ), l = 1, 2, . . . , n, (2.2)

then
n∑

l,j=1

γlaljGl(xl) =

n∑
l,j=1

γlaljGj(xj), (2.3)

where Tl is the set of all spanning trees T of (G,D) that are rooted at vertex l, and
w(T ) is the weight of T . In particular, if (G,D) is strongly connected, then γl > 0
for 1 ≤ l ≤ n, Gl(xl) is arbitrary functions.
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Lemma 2.2 (Theorem6.3, [19]). Suppose that permanence holds for the set of dif-
ference equations or the set of differential equations. Then there exists an equilib-
rium point in intRn

+.

Lemma 2.3. Every solution (X(t), y(t)) with initial conditions xl(0), l = 1, 2, ..., n,
y(0) > 0, remains positive for all t > 0.

Proof. System (2.1) is equivalent to system (2.4){
dX
dt = g(t,X, y),
dy
dt = gn+1(t,X, y),

(2.4)

whereX = (x1, ..., xn−1, xn)
T , g(t,X, y) = (g1(t,X, y), ..., gn−1(t,X, y), gn(t,X, y))T ,

gi(t,X, y) = ri(1− xi

ki
)(xi+mi)xi− bixi

2−qixiy+
n∑

l=1

dil(xl − xi), i = 1, 2, ..., n−1,

gn(t,X, y) = rn(1− xn

kn
)xn +

n∑
l=1

dnl(xl − xn), gn+1(t,X, y) = −sy + y
n−1∑
i=1

eixi.

When xi = 0, and xn, y ≥ 0, gi(t,X, y) =
n∑

l=2

dilxl ≥ 0; when xn = 0, and

xi, y ≥ 0, gn(t,X, y) =
n−1∑
l=1

dnlxl ≥ 0; when y = 0, and xi, xn ≥ 0, gn+1(t,X, y) = 0.

We know from Proposition B.7 [20] that when xl(0) > 0, y(0) > 0, the solution
of system (2.1) satisfying positive initial value can remain constant positive.

3. Main results

3.1. Permanence and extinction

In this section, we discuss the boundedness of solutions, the permanence and ex-
tinction of the system. The existence of positive equilibrium point is analyzed.

Theorem 3.1. Every solution of the system equation (2.1) is uniformly bounded
in Rn+1

+ .

Proof. We define
V1 = max {xl} , l = 1, ..., n.

Calculating the upper right derivative of V1 along the positive solution of system
(2.1), we have
(1) If V1(t) = xi(t), i = 1, ..., n− 1, then

D+V1(t) = ẋi(t)

≤ xi(t)ri(1− xi(t)
ki

)(xi(t) +mi)

≤ V1(t)ri(1− V
ki
)(V1(t) +mi). (i = 1, ..., n− 1).

(2) If V1(t) = xn(t), then

D+V1(t) = ẋn(t)

≤ xn(t)rn(1− xn(t)
kn

)

≤ V1(t)rn(1− V1(t)
kn

).
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Therefore,

lim sup
t→+∞

V1(t) ≤ max {kl} . (3.1)

From(3.1), we derive C1 = max {kl} , l = 1, . . . , n.

lim sup
t→+∞

V1(t) ≤ C1. (3.2)

We can obtain
(a) If V1(0) = max{xl(0)} ≤ C1, then max{xl(t)} ≤ C1, t > 0.
(b) If V1(0) = max{xl(0)} > C1, then let α > 0,

−α = max{C1ri(1−
C1

ki
)(C1 +mi), C1rn(1−

C1

kn
)}.

If V1(0) = xl(0) > C1 holds, then there exists ε > 0, such that if t ∈ [0, ε),
V1(t) = xl(t) > C1 and we have

D+V1(xl(t)) = ẋl(t) < −α < 0 , l = 1, ..., n.

So there exists T1 > 0 if t > T1, and we have

V1(t) = max{xl(t)} ≤ C1. (3.3)

In addition,we define for a solution (X(t), y(t)) of system (2.1),

U1(t) = U1(X, y) ≡ A1

n∑
l=1

xl(t) +B1y(t), (3.4)

where B1 = A1q1
e1

, θn = kn(rn+1)
2rn

, A1 = 1
n−1∑
i=1

θiri(1−
θi
ki

)(θi+mi)−biθi2+θi+θnrn(1− θn
kn

)+θn

,

θi =
riki−rimi−biki+

√
ri2mi(mi+ki)+riki(riki+3)+biki(ki−2ri(ki−mi))

3ri
.

Then we have

U̇1(t) = A1

n∑
l=1

ẋl(t) +B1ẏ(t)

= A1[
n−1∑
i=1

xiri(1− xi

ki
)(xi +mi)− bixi

2 + xnrn(1− xn

kn
)]−B1sy

≤ A1F1 − [A1

n∑
l=1

xl+B1sy].

Now, if we take F1 =
n−1∑
i=1

xiri(1− xi

ki
)(xi+mi)− bixi

2+xi+xnrn(1− xn

kn
)+xn,

then the value of F1 is maximum at (θ1, θ2, ..., θn) and F1max = 1
A1

> 1.

Therefore, U̇1 ≤ A1F1max − α1U1 where α1 = min{1, s}. This implies

U̇1 ≤ 1− α1U1

and we get

lim sup
t→+∞

U1(t) ≤
1

α1
.



Dynamics of an n-Patch Predator-Prey Model 419

Because of (3.4),

lim sup
t→+∞

B1y(t) = lim sup
t→+∞

(U1(t)−A1

n∑
l=1

xl(t))

≤ lim
t→+∞

supU1(t)

≤ 1
α1

.

So there exist a positive constant C2 = 1
B1α1

such that

lim
t→+∞

sup y(t) ≤ C2. (3.5)

From (3.3) and (3.5) we take M = max {C1, C2}, so

xl(t) ≤ M, l = 1, 2, ..., n, y(t) ≤ M.

Hence every solution of the system equation (2.1) is uniformly bounded in Rn+1
+ .

Theorem 3.2. If positive constants C1, C2, and µ exist such that the following
conditions are satisfied:

(i) rimi − qiC2 > 0;

(ii) max{kl} ≤ C1 ≤ min{ki( riC1+rimi+1
riC1+rimi+biki

), kn(1 +
1
rn
)}.i = 1, ..., n− 1;

(iii) s <
n−1∑
i=1

eiµ,

then the system (2.1) is said to be permanence, that is, the system has a positive
equilibrium.

Proof. Suppose that (X(t), y(t)) is a solution of system (2.1) which satisfies I0 >
0. We define

V2(t) = min {xl} .

According to Theorem 3.1, there exists C2 such that

lim sup
t→+∞

y(t) ≤ C2.

In accordance with Lemma 2.3 if t > T and condition (i) holds, then by calculating
the lower right derivative of V2(t) along the positive solution of system (2.1), we
obtain

D+V2(t) = ẋl(t) ≥

xi(t)[− ri
ki
x2
i (t) + (ri − rimi

ki
− b)xi(t) + rimi − qiC2],

xn(t)[rn − rn
kn

xn(t)].

=

xi(t)[(xi(t) + µ̄i1)(µi2 − xi(t))], i = 1, 2, ..., n− 1.

xn(t)[rn − rn
kn

xn(t)],

where

∆i = (ri − rimi

ki
− bi)

2 + 4 ri
ki
(rimi − qiC2) > 0, µ̄i1 = |µi1|,
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µi1 =
riki − rimi − biki − ki

√
∆i

2ri
, µi2 =

riki − rimi − biki + ki
√
∆i

2ri
> 0.

We get

lim inf
t→+∞

xi(t) ≥ µ, (3.6)

where µ = min{µi2}, i = 1, . . . , n− 1.
Let c1 = min{µ, kn}. So

lim inf
t→+∞

V2(t) ≥ c1.

We can obtain
(a)If V2(0) = min{xl(0)} ≥ c1, then min{xl(t)} ≥ c1, t > 0.
(b)If V2(0) = min{xl(0)} < c1, then let

u = min{xi(0)[(c1 + µ̄i1)(µi2 − c1)], xn(0)[rn − rn
kn

c1]}.

If V2(0) = xl(0) < c1 holds, then there exists ε > 0, such that if t ∈ [0, ε),V2(t) =
xl(t) and we have

D+V2(xl(t)) = ẋl(t) > u > 0, l = 1, 2, ..., n.

Furthermore, there exists T̄1 > 0 if t > T̄1, and we have V2(t) = min{xl(t)} > c1.
On the whole

lim inf
t→+∞

xl(t) ≥ c1 > 0, l = 1, 2, ..., n.

Hence we let

U2(t) = A2

n∑
l=1

xl(t) +B2y(t).

Then

U̇2(t) = A2

n∑
l=1

ẋl(t) + Ḃ2y(t)

= A2[
n−1∑
i=1

xiri(1− xi

ki
)(xi +mi)− bix

2
i + xnrn(1− xn

kn
)]−B2sy

≥ A2F2 − [A2

n∑
l=1

xl−B1sy]

≥ A2F2 − α2U2,

where fi(xi) = ri(1− xi

ki
)(xi +mi) − bixi + 1, fn(xn) = rn(1 − xn

kn
) + 1, F2(xl) =

n∑
l=1

xlfl(xl). We know xl ∈ (c1, C1) from the previous proof. And because of the

(ii) and fl(0) = 0, fl(c1) > 0, fl(C1) > 0. Then

F2min = min

{
n∑

l=1

c1fl(c1),

n∑
l=1

c1fl(C1)

}
=

1

A2
.

We get U̇2 ≥ 1 − α2U2. This implies lim inf
t→+∞

U2(t) ≥ α2 and lim inf
t→+∞

y(t) ≤ 1
B2α2

,

where α2 = max{1, s}. We also know

ẏ ≥ y(

n−1∑
l=1

eiµ− s) > 0
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from condition (iii). We know t = t0, y(t0) > 0 from Lemma 2.3. There exists
t0 > 0 if t′ > t0 when t′ → +∞, lim inf

t′→+∞
y(t) > y(t0) > 0. So there exists a positive

constant c2 = y(t0) such that

lim inf
t→+∞

y(t) > c2.

Combining Theorem 3.1, we can know that there exist positive constants ci, Ci,
i = 1, 2 such that

0 < c1 ≤ lim inf
t→+∞

xl(t) ≤ lim sup
t→+∞

xl(t) ≤ C1,

and
0 < c2 < lim inf

t→+∞
y(t) ≤ lim sup

t→+∞
y(t) ≤ C2,

then the system (2.1) is permanence. Furthermore, from Lemma 2.2(Hutson and
Schmitt’s Theorem 6.3 [19]), the system (2.1) has a positive equilibrium.

Remark 3.1. By Theorems 3.1 and 3.2, when m < 0 is a strong Allee effect, the
boundedness of the solution of the system is satisfied and Theorem 3.1 holds, but
the sufficient conditions for the permanence of the system are not satisfied and
Theorem 3.2 does not hold.

Theorem 3.3. If s > ne0r0

a0 , then the predator population will go extinct, where
e0 = max{ei}, r0 = max{rimi, rn}, a0 = min{ rn

kn
, ai}, i = 1, 2, ..., n− 1.

Proof. Let

H1 =

n∑
l=1

xl.

Compute the derivative of H1 along (2.1) to get

Ḣ1 =
n∑

l=1

ẋl

≤
n−1∑
i=1

xiri(1− xi

ki
)(xi +mi)− bix

2
i − xnrn(1− xn

kn
)

≤ r0H1 − a0

n H2
1 ,

where r0 = max{rimi, rn}, a0 = min{ rn
kn

, ai}, −ai = ri − rimi

ki
− bi, ai > 0. Hence

lim sup
t→+∞

H1(t) ≤ nr0

a0 .

From the fourth equation in (2.1), consider the constants e0 = max{ei} and l1 > 0.
Then it satisfies that when t is large enough

ẏ ≤ y(−s+ e0H1) ≤ −l1y,

as t → +∞, y → 0. When s > ne0r0

a0 , the predator population becomes extinct.
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Remark 3.2. From Theorems 3.2 and 3.3, we can see that the magnitude of the
mortality parameter of the predator population is very important for the perma-

nence of the system. When s <
n−1∑
i=1

eiµ, the system (2.1) exhibits permanence.

When s > ne0r0

a0 , the predators in system (2.1) tend to go extinct. The positive
equilibrium point will not exist.

3.2. Stability of equilibrium

In this section, we study the existence and stability of the equilibria point of the
system (2.1). Let’s assume that the equilibrium point of the system is E = (X, y),
X = (x1, x2, ..., xn). It is clear that the extinction equilibrium E0 = (0, 0), 0 =
(0, 0, ..., 0) exists, while the edge equilibrium E1 = (0, y∗), y∗ > 0 does not.

Theorem 3.4. If the following conditions are satisfied

(i) dlj = d, l ̸= j, l, j = 1, ..., n;

(ii) rimi = rn = (n− 1)d, i = 1, ..., n− 1,

then extinction balance E0 = (0, 0) is the saddle point.

Proof. The Jacobian matrix of system (2.1) at the extinction equilibrium point
E0 = (0, 0) is

J(E0) =

∣∣∣∣∣∣J1 0

0 −s

∣∣∣∣∣∣
(n+1)×(n+1)

,

where

J1 =

∣∣∣∣∣∣∣∣∣∣∣∣

r1m1 − (n− 1)d d · · · d d
...

...
...

...
...

d d · · · rn−1mn−1 − (n− 1)d d

d d · · · d rn − (n− 1)d

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

The characteristic equation of the variation matrix J (E0) is given by,

|λE − J(E0)| = |λE − J1| (λ+ s) .

It’s obvious that λ = −s. We just need to discuss |λE − J1| = 0.
Condition (ii) implies that rimi − (n− 1)d = rn − (n− 1)d = 0.

|λE − J1| =

∣∣∣∣∣∣∣∣∣∣∣∣

λ −d · · · −d −d
...

...
...

...
...

−d −d · · · λ −d

−d −d · · · −d λ

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= (λ− (n− 1)d)(λ+ d)n−1.

Clearly there are multiple roots λ = −d with multiple (n − 1) and a positive root
λ = (n− 1)d. Therefore, we can say that there exists an eigenvalue greater than 0.
In summary, the system (2.1) is unstable at the extinction equilibrium point.
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Through the above description, we obtain the sufficient condition of the existence
of the positive equilibrium point E∗. Next, we analyze the stability of the positive
equilibrium point E∗.

Theorem 3.5. If a positive equilibrium E∗ exists, when the following conditions
are satisfied

(i) dlj ̸= 0, j ̸= l, l, j = 1, 2, ..., n. The diffusion coefficient matrix is irreducible;

(ii) (ri−bi)ki

ri
≤ mi < ki,

then it is unique and globally asymptotically stable in Rn+1
+ .

Proof. Uniqueness can be deduced from global asymptotic stability, so only the
global asymptotic stability of positive equilibrium points is investigated.

Let E∗ = (X∗, y∗) denote the positive equilibrium. Consider a Lyapunov func-
tion

V = δ

(
y − y∗ + y∗ ln

y

y∗

)
+

n∑
l=1

γlεl

(
xl − x∗

l + x∗
l ln

xl

x∗
l

)
, (3.7)

where δ = γiεiqi
δei

.γl =
∑

T ∈Tl
w(T ). Differentiating V along (2.1) gives

dV

dt

∣∣∣∣
(2.1)

=

n−1∑
i=1

γiεi(xi − x∗
i )(ri

(
1− xi

k i

)
(xi +mi)− bixi − qiy +

n∑
l=1

dil(
xl

xi
− 1))

+ γnεn(xn − x∗
n)(rn

(
1− xn

kn

)
+

n∑
l=1

dnl(
xl

xn
− 1))

+ δ(y − y∗)(

n−1∑
i=1

eixi − s)

=

n−1∑
i=1

γiεi(xi − x∗
i )

2
(ri −

rimi

ki
− bi)− γiεi(xi − x∗

i )
2 ri
ki
(xi + x∗

i )

− γiεiqi(xi − x∗
i )(y − y∗) +

n−1∑
i=1

n∑
l=1

γiεidil(
xl

x∗
l

− xi

x∗
i

+ 1− xlx
∗
i

x∗
l xi

)x∗
l

− γnεn
rn
kn

(xn − x∗
n)

2
+

n∑
l=1

γnεndnl(
xl

x∗
l

− xn

x∗
n

+ 1− xlx
∗
n

x∗
l xn

)x∗
l

+

n−1∑
i=1

δei(xi − x∗
i )(y − y∗)− sδ(y − y∗).

Because of (ii), we have

dV

dt

∣∣∣∣
(2.1)

≤
n∑

j,l=1

γjεjdjl(
xl

x∗
l

− xj

x∗
j

+ 1−
xlx

∗
j

x∗
l xj

)x∗
l

=

n∑
j,l=1

γjεjdjlx
∗
l (Gj(xj)−Gl(xl) + 1−

xlx
∗
j

x∗
l xj

+ ln
xlx

∗
j

x∗
l xj

),
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of which ajl = djlεjx
∗
l , Gl(xl) = − xl

x∗
l
+ ln xl

x∗
l
. Here we use one fact:1− c+ ln c ≤ 0

for a ≥ 0 with equality holding if c = 1. We have shown that γl and Gl(xl) satisfy
the assumptions of Lemma 2.1. Therefore,

dV

dt

∣∣∣∣
(2.1)

≤
3∑

j,l=1

γjajl(Gj(xj)−Gl(xl)) = 0.

When dV
dt

∣∣
(2.1)

= 0, by ri − rimi

ki
− bi < 0, i = 1, 2, ..., n − 1, we obtain (ri −

rimi

ki
− bi)(xi − x∗

i )
2 = 0, rn(xn − x∗

n)
2 = 0. We can solve xl = x∗

l , l = 1, 2, ..., n.
sδ(y − y∗) = 0, when y = y∗.

If vertices j and l are connected by edges, then djl > 0. Thus 1− xjx
∗
l

x∗
jxl

+ln
xjx

∗
l

x∗
jxl

.

Due to 1 − c + ln c ≤ 0 and 1 − c + ln c = 0 is equivalent to c = 1, it follows that
xl

x∗
l
=

xj

x∗
j
= 1, when xl = x∗

l , l = 1, 2, ..., n.

From the irreducible property of diffusivity, the graph G is strongly connected,
which means that any vertex j and l are connected. Thus, xl = x∗

l , l = 1, 2, ..., n.
In summary, {(X, y)| dVdt

∣∣
(2.1)

= 0}. The maximal closed invariant subsets are

single-point sets E∗. According to LaSalle’s Invariance Principle, E∗ the equilibrium
point is globally asymptotically stable in Rn+1

+ = { (X, y)|X = (xl, x2, ..., xn), xl >
0, y > 0, l = 1, 2, ...n.}.

Remark 3.3. Set y = 0 in system (2.1) to get the following system
dxi

dt = ri(1− xi

ki
)(xi +m1)xi − bixi

2 +
n∑

l=1

dil(xl − xi),

dxn

dt = rn(1− xn

kn
)xn +

n∑
l=1

dnl(xl − xn).
(3.8)

For system (3.8), we can still obtain the existence of the positive equilibrium point
E∗ = (x1∗, x2∗, ..., xn∗) of system (3.8) by Theorems 3.1 and 3.2. All solutions of
the system (2.1) xl(t) still satisfy the inequality

0 < c1 ≤ lim inf
t→+∞

xl(t) ≤ lim sup
t→+∞

xl(t) ≤ C1.

For the proof of the stability of the positive equilibrium point E∗, we take a similar
method to the proof of Theorem 3.5. Consider the Lyapunov function

V =

n∑
l=1

γlεl

(
xl − x∗

l + x∗
l ln

xl

x∗
l

)
. (3.9)

When δ = 0 in equation (3.7), the global asymptotic stability of the positive equi-
librium point E∗ can still be obtained.

4. Numerical simulation

In this paper, we primarily analyze two situations : (1)the permanence and stability
of the predator-prey system ; (2)the effect of the parameter value of predator pop-
ulation mortality s on the system. To simulate the model presented in this paper,
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we consider the following model for n = 2.
dx1

dt = 3x1(1− x1

3 )(x1 + 2.9)− 0.1x1
2 − 2x1y + (x2 − x1),

dx2

dt = 0.5x2(1− x2) + (x1 − x2),
dy
dt = −y + 0.76699yx1.

(4.1)

First of all, we choose the initial values x1(0) = 0.6, x2(0) = 0.2, y(0) = 0.4.
According to the prearranged model, the required parameters of the system can be
calculated. C1 = 3, C2 = 3.5, µ = 1.3038, c1 = 1 and c2 = 0.4. By substituting the
parameters into the judgment conditions in the theorem, it can be found that when
the obtained parameters satisfy Theorems 3.2 and 3.5, the system (4.1) exhibits
uniform persistence and the positive equilibrium point E∗ is stable, as shown in
Figure 1. Starting from different initial values, it can be seen that the solution of
system (4.1) satisfies

0 < 1 ≤ lim inf
t→+∞

xl(t, xl(0)) ≤ lim sup
t→+∞

xl(t, xl(0)) ≤ 3,

and

0 < 0.4 ≤ lim inf
t→+∞

y(t, y(0)) ≤ lim sup
t→+∞

y(t, y(0)) ≤ 3.5.

So the solution curves of system (4.1) are all in the cube with red border, and the
arrows will tend to the positive equilibrium point with time, as shown in Figure 1.

Finally, the effect of changes in s on the predator population was observed
when the other parameters were fixed. According to Theorems 3.2 and 3.3, when
s < 1.0032, the predator population exists and tends to a normal number point.
When s > 2.3010, the predator population tends to 0. Four groups of s values
were selected to draw the variation rules of predator and prey population density
respectively, which are s = 0.97, s = 1.003, s = 2.5 and s = 4, as shown in Figure
2.

Figure 1. The stability of the positive equilibrium point of the system (4.1). Left: the population
density of predators and prey tends to be stable over time; Right: the solution of the system (4.1) is
selected from different initial values and tends to be stable in a bounded red cube.
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Figure 2. Trend of predator and prey population density with parameter s in system (4.1).

5. Discussion and summary

In this paper, the dynamic behavior of a predator-prey diffusion model with the
Allee effect is studied. Firstly, we obtain the boundedness and permanence of
the system. We discover that the system cannot achieve the coexistence under
the strong Allee effect, while under the weak Allee effect, the system can be the
permanence and guarantee the existence of the positive equilibrium point. Secondly,
we prove the sufficient conditions for the global stability of the positive equilibrium
point by constructing a Lyapunov function. We can see that the population diffusion
and weak Allee effect are crucial for the coexistence and stability of the system.
Finally, we analyze the influence of the parameter s on the predator population,
and calculate the parameter threshold of the parameter s on the permanence and
extinction of the predator. From Figure 2, we can understand the influence of
parameter s on population density. Due to time constraints, we will continue to
consider the strong Allee effect, bifurcation behavior, and even random diffusion
factors in the future.
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