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Spreading Analysis of an SEIR Epidemic Model
with Distributed Delay on Scale-Free Network∗
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Abstract A novel epidemic SEIR model with distributed delay on scale-free
network is proposed in this paper. The formula of the basic reproduction
number R0 for the model is given, and globally dynamic behaviours of the
model are discussed. Numerical simulations are carried out to demonstrate
the main results.
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1. Introduction

The epidemic dynamics models have been widely investigated for a long time, which
can effectively explained the process of disease transmission. Since the modelling
of the seminal works on the scale-free network, in which the probability of p(k)
for any node with k links to other nodes is distributed according to the power
law p(k) = Ck−γ (2 < γ ≤ 3), suggested by Barabási and Albert [1], the studies
of complex network have attracted more and more interests. In recent years, the
compartmental spreading models of epidemic diseases on scale-free network has
been established and discussed by many scholars [2, 4, 5, 7–21].

In order to describe the effects of disease incubation or immunity, the delay is
often incorporated in the epidemic model. Unfortunately, compared with the ordi-
nary differential equation models on scale-free network, a relatively small number of
scholars has studied the epidemic model with time delays. Let the delay represent
the incubation period during which the infectious agents develop in the vector, Guan
and Guo [5] discussed an epidemic model with time delay and saturated incidence,
Wang etc [14] discussed the delayed SIR model. Noting that in the process of the
epidemic propagation, when a susceptible node is infected by the infected nodes, it
first becomes an exposed node, then becomes an infected node after a certain latent
period, Liu and Li [10] and Kang etc [8] discussed SEIR model with discrete delay
in which time delay represents latent period of disease, respectively.
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Considering the time taken from the moment of a new infected but non-infectious
case arising to the moment of the individual becoming infectious may differ from
individual to individual (Almost all infectious disease such as varicella, measle,
diphtheria, Ebola hemorrhagic fever, etc. have this characteristic.), Huang etc [7]
discussed one SIR model with distributed delay. In this paper, we propose a novel
epidemic SEIR model with distributed delay on scale-free network to investigate
the epidemic spreading.

Consider the while population as a scale-free network, and suppose that the
number of total nodes is time invariant constant N . The total nodes are divided
into four classes: susceptible nodes, infected nodes, exposed nodes and recovered
nodes. let Sk(t), Ek(t), Ik(t) and Rk(t) be the relative density of susceptible nodes,
exposed nodes, infected nodes and recovered nodes of connectivity k at time t,
respectively, where k = 1, 2, · · · , n and n is the maximum degree number in the
network. Based on the mean-field approximation, one can formulate the following
compartmental model on the scale-free network:

Ṡk(t) = µ− λ(k)Sk(t)Θ(t)− µSk(t),

Ėk(t) = λ(k)Sk(t)Θ(t)− λ(k)

∫ +∞

0

Sk(t− τ)Θ(t− τ)f(τ)e−µτdτ − µEk(t),

İk(t) = λ(k)

∫ +∞

0

Sk(t− τ)Θ(t− τ)f(τ)e−µτdτ − βIk(t)− µIk(t),

Ṙk(t) = βIk(t)− µRk(t)

(1)
with the normalization conditions

Sk(t) + Ek(t) + Ik(t) +Rk(t) = 1,

where λ(k) be the k-dependent infection rate such as λk, λc(k) [14, 16], β is the
recovery rate of the infected nodes, and the recruitment rate and the removal rate
are identical, this is denoted by µ. Assuming that the network has no degree
correlations [10,16], and

Θ(t) =
1

⟨k⟩

n∑
k=m

φ(k)p(k)Ik(t), (2)

where ⟨k⟩ =
∑

k p(k)k stands for the average node degree and φ(k) denotes an
infected node with degree k occupied edges which can transmit the disease, so Θ(t)
represents the probability that any given link points to an infected node, φ(k) =
akα/(1 + bkα)(0 ≤ α < 1, a > 0, b ≥ 0) [18], limk→+∞ φ(k) = a/b when b ̸= 0,
i.e., φ(k) gradually become saturated with the increase of degree k. Infectiousness
varies over time, which is described by a kernel function f(τ), which denotes the
probability that the exposed nodes becomes an infected person over time τ , f(τ) is
continuous on [0,+∞) and satisfies

f(τ) ≥ 0,

∫ +∞

0

f(τ)dτ = 1,

∫ +∞

0

f(τ)erτdτ < +∞, (3)

where r > 0 is a positive real number.There are many kinds of kernel functions such
as Gamma distribution, Delta-distribution and so on. Standard theory of functional
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differential equation implies that system (1) has a unique solution satisfying the
initial conditions

Sk(θ) = ϕ1k(s), Ik(θ) = ϕ2k(s), Rk(θ) = ϕ3k(s),

ϕik(s) ≥ 0, s ∈ (−∞, 0], ϕik(0) > 0. i = 1, 2, 3, k = 1, 2, · · · , n.

where (ϕ11(s), ϕ21(s), ϕ31(s) · · · , ϕ1n(s), ϕ2n(s), ϕ3n(s)) ∈ X. It can be verified that
solutions of system (1) with initial conditions above remain positive for all t ≥ 0.

The rest of this paper is organized as follows. In Section 2, the dynamical
behaviors of the SIR model (1) with distributed delay are discussed. In Section 3,
numerical simulations are performed to demonstrate the main results. Finally, the
conclusion is provided in Section 4.

2. Spreading analysis for the model

In this section, we aim to fully analyze the dynamic properties of the system (1),
including the equilibriums and their global stability.

Denote

R0 =
⟨λ(k)φ(k)⟩
(µ+ β)⟨k⟩

∫ +∞

0

f(τ)e−µτdτ, (4)

where ⟨λ(k)φ(k)⟩ =
∑

k λ(k)φ(k)p(k).

We will conclude that R0 is the basic reproduction number for the model (1).
The R0 represents the average number of secondary infectious infected by an in-
fected node during whose whole course of disease in the case that all the members
of the population are susceptible nodes.

Since Ek and Rk do not appear in the first equation and the third equation of
system (1), it suffices to study the following two-dimensional system (5).


Ṡk(t) = µ− λ(k)Sk(t)Θ(t)− µSk(t),

İk(t) = λ(k)

∫ +∞

0

Sk(t− τ)Θ(t− τ)f(τ)e−µτdτ − βIk(t)− µIk(t).
(5)

Theorem 2.1. System (5) has always a disease-free equilibrium E0, and if R0 < 1,
the disease-free equilibrium E0 of system (5) is globally asymptotically stable. Where
E0 = (S0

1 , S
0
2 , · · · , S0

n, I
0
1 , I

0
2 , · · · , I0n) in which S0

k = 1, I0k = 0, k = 1, 2, · · · , n.

Proof. Obviously, system (5) has always a disease-free equilibrium E0.

Consider the following Lyapunov function

V (t) =
1

2
Θ2(t) + η

∫ +∞

0

f(τ)e−µτ

∫ t

t−τ

Θ2(s)dsdτ,
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where η = 1
2
⟨λ(k)φ(k)⟩

⟨k⟩ =
1

2

1

⟨k⟩
∑
k

λ(k)ϕ(k)p(k). We have

V̇ (t)
∣∣∣
(5)

= Θ(t)

[
1

⟨k⟩
∑
k

λ(k)ϕ(k)p(k)

∫ +∞

0

Sk(t− τ)Θ(t− τ)f(τ)e−µτdτ

]
−(µ+ β)Θ2(t) + η

∫ +∞

0

f(τ)e−µτ (Θ2(t)−Θ2(t− τ))dτ

≤ Θ(t)

[
1

⟨k⟩
∑
k

λ(k)ϕ(k)p(k)

∫ +∞

0

Θ(t− τ)f(τ)e−µτdτ

]
−(µ+ β)Θ2(t) + η

∫ +∞

0

f(τ)e−µτ (Θ2(t)−Θ2(t− τ))dτ

≤

[
1

⟨k⟩
∑
k

λ(k)ϕ(k)p(k)

∫ +∞

0

f(τ)e−µτdτ
1

2
(Θ2(t) + Θ2(t− τ))

]

−(µ+ β)Θ2(t) + η

∫ +∞

0

f(τ)e−µτ (Θ2(t)−Θ2(t− τ))dτ

= Θ2(t)(µ+ β)(R0 − 1).

Thus V̇ (t)
∣∣∣
(5)

≤ 0 when R0 < 1, and the largest invariant set of V̇ (t)
∣∣∣
(5)

= 0

is a singleton E0. Hence the disease-free equilibrium E0 of system (5) is globally
asymptotically stable when R0 < 1 according to LaSalle Invariance Principle [9].

Theorem 2.2. If R0 > 1, System (5) has a unique endemic equilibrium E∗, and it
is globally asymptotically stable.

Proof. First, suppose that E∗ = (S∗
1 , S

∗
2 , · · · , S∗

n, I
∗
1 , I

∗
2 , · · · , I∗n), it satisfies the

following equation according to system (5).


λ(k)S∗

kΘ
∗ + µS∗

k = µ,

λ(k)S∗
kΘ

∗
∫ +∞

0

f(τ)e−µτdτ = (µ+ β)I∗k ,
(6)

where

Θ∗ =
1

⟨k⟩
∑
k

φ(k)p(k)I∗k . (7)

By similar method in [10], one can conclude that the endemic equilibrium E∗ exists.

Second, we will prove that E∗ is globally asymptotically stable when R0 > 1.
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System (5) can be rewritten as the following system according to (6).

Ṡk(t) = −
n∑

l=1

βklSk(t)Il(t) +
n∑

l=m

βklS
∗
kI

∗
l

−µ(Sk(t)− S∗
k),

İk(t) =
n∑

l=1

βkl

∫ +∞

0

Sk(t− τ)Il(t− τ)f(τ)e−µτdτ

− 1

I∗k

(
n∑

l=1

βklS
∗
kI

∗
l

∫ +∞

0

f(τ)e−µτdτ

)
Ik(t),

(8)

where βkl =
1

⟨k⟩
λ(k)φ(l)p(l), k, l = 1, 2, · · · , n.

Since the solutions of system (5) with initial conditions remain positive for all
t ≥ 0, let us consider

Vk(t) =

(
Sk(t)− S∗

k − S∗
k ln

Sk(t)

S∗
k

)∫ +∞

0

f(τ)e−µτdτ +

(
Ik(t)− I∗k − I∗k ln

Ik(t)

I∗k

)
+

n∑
l=1

βkl

∫ +∞

0

∫ t

t−τ

f(τ)e−µτ (Sk(s)Il(s)− S∗
kI

∗
l − S∗

kI
∗
l ln

Sk(s)Il(s)

S∗
kI

∗
l

)dsdτ

(9)
Calculating the derivative of Vk(t) along solution of system (8), we get

V̇k(t)
∣∣∣
(8)

= −µ
(Sk − S∗

k)
2

S∗
k

∫ +∞

0

f(τ)e−µτdτ

+
n∑

l=1

βklS
∗
kI

∗
l

∫ +∞

0

f(τ)e−µτ

[
2− S∗

k

Sk
+

Il
I∗l

− Ik
I∗k

− Sk(t− τ)Il(t− τ)I∗k
S∗
kIkI

∗
l

−ln
Sk(t)Il(t)

S∗
kI

∗
l

+ ln
Sk(t− τ)Il(t− τ)

S∗
kI

∗
l

]
dτ.

(10)
Noting that

2− S∗
k

Sk(t)
+

Il(t)

I∗l
− Ik(t)

I∗k
− Sk(t− τ)Il(t− τ)I∗k

S∗
kIkI

∗
l

−ln
Sk(t)Il(t)

S∗
kI

∗
l

+ ln
Sk(t− τ)Il(t− τ)

S∗
kI

∗
l

= H(
Ik(t)

I∗k
)−H(

Il(t)

I∗l
)−G(

S∗
k

Sk(t)
)−G(

Sk(t− τ)Il(t− τ)I∗k
S∗
kIlI

∗
k

≤ H(
Ik(t)

I∗k
)−H(

Il(t)

I∗l
),

where H(x) = −x+ lnx and G(x) = x− 1− lnx ≥ 0, it follows that

V̇k(t)
∣∣∣
(9)

≤
n∑

l=1

βklS
∗
kI

∗
l

∫ +∞

0

f(τ)e−µτ

(
H(

Ik(t)

I∗k
)−H(

Il(t)

I∗l
)

)
. (11)
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In addition, the following matrix

(βklS
∗
kI

∗
l )n×n =

(
λ(k)φ(l)p(l)

⟨k⟩
S∗
kI

∗
l

)
n×n

is a irreducible, and the following matrix B is also irreducible.

B =



∑
l ̸=1 β1lS

∗
mI∗l −β21S

∗
2I

∗
1 · · · −βn1S

∗
nI

∗
1

−β12S
∗
1I

∗
2

∑
l ̸=2 β2lS

∗
2I

∗
l · · · −βn2S

∗
nI

∗
2

· · · · · · · · · · · ·

−β1nS
∗
1I

∗
n −β2nS

∗
2I

∗
n · · ·

∑
l ̸=n βnlS

∗
nI

∗
l


Hence there exists a positive vector C = (c1, c2, · · · , cn) such that BC = 0 in which
ck is the cofactor of the kth diagonal of B, 1 ≤ k ≤ n [6], which means that

n∑
l=1

clβlkS
∗
l I

∗
k = ck

n∑
l=1

βklS
∗
kI

∗
l , k = 1, 2, · · · , n,

and hence

n∑
k=1

ck

n∑
l=1

βklS
∗
kI

∗
l

∫ +∞

0

f(τ)e−µτ (H(
Ik
I∗k

)−H(
Il
I∗l

))dτ = 0. (12)

Define a Lyapunov function

V (t) =

n∑
k=1

ckVk(t)

in which Vk(t) is defined by (9).
We have from (9), (11) and (12) that

V̇ (t)
∣∣∣
(8)

≤ 0.

Note that the fact the largest invariant set of V̇ (t)
∣∣∣
(8)

= 0 is a singleton E∗. There-

fore, LaSalle Invariance Principle implies that the endemic equilibrium E∗ of system
(5) is globally asymptotically stable when R0 > 1.

The basic reproduction number for system (5) (i.e., system (1)) is R0 (shown
in (4)) according to Theorem 2.1 and 2.2. R0 not only depends on the epidemic
properties and topology structure of the network, but also depends on distributed
delay.

Remark 2.1. Model (1) in this paper reduce to model (6) in [8] when λ(k) = λk
and kernel functions is Delta-distribution function i.e.,

f(τ) = δ(τ) =

+∞, τ = h,

0, τ ̸= h,
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0

δ(τ)dτ = 1.

Based on screening nature of δ function, the basic reproduction number also reduce

to R0 = λ⟨kφ(k)⟩
(µ+β)⟨k⟩e

−µh, which is consistent with one in [8]. Therefore, more general

results are obtained in this paper.

3. Numerical simulations

For further understanding of the proposed model, numerical simulations will be
performed on a scale-free network in which the degree distribution is p(k) = Ck−γ ,
and C satisfies

∑n
k=m p(k) = 1. n = 100 and m = 1 is a suitable assumption.

Meanwhile, we set ϕ(k) = akp/(1 + bkp) in which a = 0.5, p = 0.75, b = 0.02 and
λ(k) = λk. Let f(τ) follows the simpler Gamma distribution f(τ) = 1/be−τ/b, b > 0.
The initial functions are Ik(s) = 0.45, k = 2, 3, 4, 5 and Ik = 0, k ̸= 2, 3, 4, 5 for
s ∈ (−∞, 0].

Denote

I(t) =
∑
k

p(k)Ik(t).

Obviously, I(t) is the relative average density of the infected nodes.

Case 1: Letting γ = 2.5, λ = 0.05, β = 0.1, µ = 0.03, f(τ) = 1/be−τ/b (b = 5),
we can obtain from (4) that R0 = 0.5360 < 1. Fig. 1 (a) shows the dynamical
behaviors of system (5). The numerical simulation shows limt→+∞ I(t) = 0, it
follows that limt→+∞ Ik(t) = 0, the infection eventually disappear. The numerical
result is consistent with Theorem 2.1.

Case 2: Letting γ = 2.5, λ = 0.15, β = 0.1, µ = 0.03, f(τ) = 1/be−τ/b (b = 5).
We can obtain from (4) that R0 = 1.6079 > 1. Fig. 1 (b) shows the dynamic
behaviors of system (5). The endemic equilibrium is globally stable, and the relative
density Ik(t) and the relative average density I(t) converge to positive constant as
t → +∞ respectively. The numerical result is consistent with Theorem 2.2.

Case 3: Letting γ = 2.5, λ = 0.15, β = 0.1, µ = 0.03, f(τ) = 1/be−τ/b. When
b = 5, the endemic equilibrium E∗ is globally stable, but the equilibrium E∗ may lose
its stability as b increases because R0 < 1 according to

∫ +∞
0

f(τ)e−µτdτ = 1
1+bµ and

the disease-free equilibrium becomes globally asymptotically stable. Fig. 2 shows
the dynamic behaviors of system (5). This means kernel function f(τ) has a great
influence on the dynamic behaviours of system (5), and this also implies that it is
interesting to discuss the epidemic model with distributed delay on heterogeneous
network.
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Figure 1. (a) Dynamical behaviors of system (5) with R0 = 0.5630. (b) Dynamical behaviors of system
(5) with R0 = 1.6079.
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Figure 2. Behaviors of system (5) with f(τ) = 1/be−τ/b in which b = 5, 10, 20.

4. Conclusion

An novel SEIR epidemic dynamical model with distributed delay describing the
incubation period of disease has been proposed on scale-free network in this paper.
The formula of the basic reproduction number R0 for the model is given. By con-
structing suitable Lyapunov function, we proved that the disease-free equilibrium is
globally asymptotically stable and the disease dies out when R0 < 1, the endemic
equilibrium is globally asymptotically stable and the disease will always exist when
R0 > 1. Of course, for specific epidemic, the reasonable selection of parameters and
kernel function, as well as the verification of actual data, are important tasks, we
leave this for our future work.
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