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Abstract The purpose of this work is to study the global stability of specific
nonlinear parabolic equations incorporating the p-Laplacian operator, with
a primary emphasis on their application in biology, particularly in the con-
text of epidemiology. This investigation entails the construction of Lyapunov
functions derived from the associated ODEs. To elucidate our approach, we
provide an illustrative example from the field of epidemiology.
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1. Introduction

Mathematical models have long been indispensable tools in understanding and pre-
dicting the dynamics of infectious diseases. By quantifying the complex interactions
between pathogens, hosts, and populations, these models enable researchers and pol-
icymakers to gain insights into the spread of diseases and evaluate potential control
strategies. One of the pioneering works in epidemic modeling can be attributed to
Kermack and McKendrick [2], who introduced the influential SIR model in 1927.
Over time, epidemic mathematical models have evolved and expanded to incorpo-
rate additional complexities. Researchers recognized the importance of accounting
for factors such as age structure, spatial heterogeneity, and varying transmission
rates. This led to the development of more sophisticated compartmental models,
such as the SEIR model that introduced an exposed compartment [9]. Moreover,
spatial epidemic models and network-based models emerged to capture the influ-
ence of geographical locations and social connections on disease spread [1]. In recent
years, advanced mathematical techniques have further enhanced the capabilities of
epidemic models.

In recent studies, a multitude of researchers in the fields of epidemiology and
virology have employed spatiotemporal equations. The research [3], for instance,
analyzed an epidemic model described as a parabolic system of PDEs, incorporating
the p-Laplacian operator. Their primary objective was to devise a well-thought-out
optimal control approach within a specified spatiotemporal context. This approach
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was meticulously crafted to mitigate both the propagation of infections and the
associated vaccination expenses. Through a Lyapunov function, [4] demonstrated
the global asymptotic stability of the endemic equilibrium in a graph Laplacian
reaction-diffusion SIR system when the basic reproduction number R0 is greater
than 1. Conversely, they also established the global asymptotic stability of the
disease-free equilibrium when the basic reproduction number is less than 1.

An independent investigation was carried out by [7], where an Ebola epidemic
model was developed, taking into account constraints posed by limited medical
resources, immunity loss, and the implementation of measures such as tracking
and quarantining susceptible individuals. Meanwhile, the stability analysis of the
disease-free equilibrium is presented, and the existence of multiple endemic equi-
libria as well as the occurrence of bifurcation are deduced. Utilizing the next-
generation matrix method, the study computed the basic reproduction number R0

and subsequently analyzed the model’s stability. A separate study by [10] explored
an SIRS epidemic model incorporating logistic growth and information intervention.
The study introduced the basic reproduction number R0 and presented key findings
about local stability. Furthermore, the research derived sufficient conditions for the
global stability of the endemic equilibrium. In the study by [6], an intracellular time
delay was incorporated into an HBV model originally proposed in [5]. This time
delay accounts for the lag between cell infection and the generation of new virus
particles. The investigation was conducted within a one-dimensional interval with
Neumann boundary conditions, with the simplifying assumption of homogeneous
space to facilitate the establishment of global stability for equilibrium solutions.
Furthermore, [8] extended the model introduced by [6] by introducing a saturation
response mechanism and derived the necessary conditions for ensuring the global
stability of the infected steady state.

The motivation for this paper lies in the profound significance of understanding
and establishing the global stability of reaction-diffusion systems featuring the p-
Laplacian operator, with a particular focus on systems incorporating Neumann
boundary conditions and the potential inclusion of delay. These systems serve as
powerful mathematical models that find wide-ranging applications across numerous
scientific and practical domains. By investigating their global stability, our study
addresses several critical aspects. First, the dynamics of such systems are intrinsic
to a multitude of real-world phenomena, including the spread of infectious diseases,
the diffusion of chemicals in biological tissues, and heat conduction in materials.
The inclusion of the p-Laplacian operator, known for capturing nonlinear effects,
allows for a more faithful representation of the complex interactions and diffusion
processes inherent in these phenomena.

Second, global stability analysis plays a crucial role in epidemiological appli-
cations, particularly in the control and predictability of diseases. It ensures that
equilibrium states within the systems are robust and that the dynamics tend to sta-
bilize under various conditions. This insight has profound implications for optimiz-
ing processes, managing epidemics, controlling chemical reactions, and enhancing
the reliability of materials and structural components, which is pertinent in different
fields like engineering and others.

Furthermore, our approach to constructing Lyapunov functionals for PDEs based
on those developed for ODEs represents a unifying and systematic method for ana-
lyzing and predicting the behavior of diverse dynamical systems. This methodolog-
ical contribution not only advances the theoretical foundations of nonlinear systems
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but also enhances the toolbox available to researchers and practitioners across var-
ious disciplines.

In essence, the present study focuses on demonstrating the global stability of
reaction-diffusion systems with the p-Laplacian operator, Neumann boundary con-
ditions, and the potential inclusion of delay, addressing fundamental questions with
far-reaching implications, spanning mathematical theory and practical applications.
It promises to provide valuable insights, tools, and solutions for a broad and inter-
disciplinary audience, underscoring its significance and relevance.

The organization of this research is outlined as follows. In Section 2, we conduct
a qualitative analysis of the nonlinear parabolic model, with a primary objective of
establishing global stability. Moreover, we apply our method to study the global
stability of a reaction-diffusion biological model in Section 3. To encapsulate our
findings and contributions, Section 4 offers a conclusion of our study.

2. Qualitative analysis of the proposed model

Consider the positive solution ϑ = (ϑ1, ϑ2, · · · , ϑn) of the following ODE{
∂tϑ(t) = Φ(ϑ(t)),

ϑ(0) = ϑ0,
t ∈ IT := [0, T ], (2.1)

where T ∈ R∗
+ and Φ is a C1 function defined on Rn into Rn.

Assuming that ϑ∗ represents a positive equilibrium of (2.1), it also serves as a
spatially homogeneous solution to the following spatiotemporal system

∂tϑ(t, x)− κ∆pϑ(t, x) = Φ(ϑ(t, x)), in IT × U ,
∇ϑi · ν⃗ = 0, 1 ≤ i ≤ n, on IT × ∂U ,
ϑ(0, x) = ϑ0(x), in U ,

(2.2)

with p ≥ 2, U ⊂ Rm is a bounded domain with smooth boundary ∂U , the diffusion
coefficient is denoted as κ = (κ1, · · · , κn), ∆p be the p-Laplacian operator defined
by

∆pϑ = ∇ ·
(
|∇ϑ|p−2∇ϑ

)
= div

(
|∇ϑ|p−2∇ϑ

)
,

and the normal vector to ∂U is represented by ν⃗.
Let Y represents a Lyapunov function associated with (2.1), defined over a do-

main within Rn
+. When ϑ serves as a solution to (2.1), it becomes imperative to

calculate the time-derivative of Y (ϑ(t)). Then

dtY (ϑ) = ∇Y (ϑ) · Φ (ϑ) . (2.3)

Let ϑ represent a positive solution to (2.2). We define

X =

∫
U
Y (ϑ) dx. (2.4)

Lemma 2.1. The time-derivative of X is given by

dtX =

∫
U
Y (ϑ) dx−

n∑
i=1

κi

∫
U
|∇ϑi|p−2∇ϑi · ∇

(
∂Y
∂ϑi

)
dx. (2.5)
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Proof. Given that ϑ is a non-negative solution to (2.2), we can express the time-
derivative of X as follows

dtX =

∫
U
∇Y (ϑ) · (κ∆pϑ+Φ(ϑ)) dx

=

∫
U
∇Y (ϑ) · Φ (ϑ) dx+

∫
U
∇Y (ϑ) · κ∆pϑdx

=

∫
U
∇Y (ϑ) · Φ (ϑ) dx+

n∑
i=1

κi

∫
U
∇ ·
(
|∇ϑi|p−2∇ϑi

) ∂Y(ϑ)

∂ϑi
.

According to the homogeneous boundary conditions of Neumann, we get

dtX =

∫
U
∇Y (ϑ) · Φ (ϑ) dx−

n∑
i=1

κi

∫
U
|∇ϑi|p−2∇ϑi · ∇

(
∂Y(ϑ)

∂ϑi

)
dx.

Based on this significant finding, we can establish the following theorem

Theorem 2.1. If the condition

∀i ∈ {1, 2, · · · , n},
∫
U
|∇ϑi|p−2∇ϑi · ∇

(
∂Y(ϑ)

∂ϑi

)
dx ≥ 0, (2.6)

holds, then the function X , defined as in (2.4), serves as a Lyapunov function
associated with the proposed spatiotemporal problem (2.2).

In the field of mathematical epidemiology, numerous studies have devised explicit
Lyapunov functions with the following structure

Y(ϑ) =

n∑
j=1

αj

(
ϑj − ϑ∗

j ln (ϑj) + δj
)
, (2.7)

with αj and δj are constants. A straightforward computation yields∫
U
|∇ϑj |p−2∇ϑj · ∇

(
∂Y(ϑ)

∂ϑj

)
dx = αjϑ

∗
j

∫
U

|∇ϑj |p

ϑ2
j

dx ≥ 0. (2.8)

We can encapsulate this outcome in the following corollary.

Corollary 2.1. If Y is established as a Lyapunov function of (2.1), defined as
shown in (2.7), then it follows that X serves as a Lyapunov function of the reaction-
diffusion system described in (2.2).

3. Application

In this section, we utilize our approach to analyze the global stability of equilibrium
of a spatiotemporal SIR mathematical model within the field of biology. The entire
population N in this model is categorized into three compartments corresponding
to pathological conditions. These compartments are denoted as S (susceptible), I
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(infected), and R, (recovered). Consider the reaction-diffusion SIR model charac-
terized by

∂tS − κ1∆pS = µN − βSI − ηS,

∂tI − κ2∆pI = βSI − (η + σ)I,

∂tR− κ3∆pR = σI − ηR,

in IT × U ,

∇S · ν⃗ = ∇I · ν⃗ = ∇R · ν⃗ = 0, on IT × ∂U ,
(S(0, ·), I(0, ·), R(0, ·)) =

(
S0(·), I0(·), R0(·)

)
, in U ,

(3.1)

where β denotes the effective contact rate, σ signifies the removal rate, µ charac-
terizes the birth rate, and η represents the natural mortality rate.

The following Figure shows how the epidemic spreads from one compartment to
another in system (3.1)

S I R
µN

ηS

βSI

ηI

σI

ηR

Figure 1. Transfer diagram for the proposed SIR problem.

The problem (3.1), can be rewriten in the form (2.2), with U ⊂ R2, ϑ = (S, I,R),
ϑ0(·) = (S0(·), I0(·), R0(·)), and

Φ(ϑ) =


µ(ϑ1 + ϑ2 + ϑ3)− βϑ1ϑ2 − ηϑ1

βϑ1ϑ2 − (η + σ)ϑ2

σϑ2 − ηϑ3

 .

Applying the methodology outlined in page 4 from [3], it can be demonstrated that
(3.1) possesses a unique non-negative weak solution in

(C(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω))

)3
.

The basic reproduction number of (3.1) in the absence of spatial effects, is expressed
as

R0 =
µβN

η(η + σ)
, (3.2)

To identify equilibria, we equate the right-hand side of (3.1) to zero. This results in
the determination of two equilibria in the coordinate space (S, I,R). Specifically, the
disease-free equilibrium Ef (µNη , 0, 0), and the endemic equilibrium E∗(S∗, I∗, R∗),
with

S∗ =
µN

ηR0
, I∗ =

η

β
(R0 − 1) and R∗ =

σ

β
(R0 − 1). (3.3)

It’s important to note that the variable R is not present in the first two equations
of (3.1). This observation allows us to focus our analysis on the associated system
to (3.1) without R.
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
∂tS − κ1∆pS = µN − βSI − ηS,

∂tI − κ2∆pI = βSI − (η + σ)I,
in IT × U ,

∇S · ν⃗ = ∇I · ν⃗ = 0, on IT × ∂U ,
(S(0, ·), I(0, ·)) =

(
S0(·), I0(·)

)
, in U ,

(3.4)

3.1. Global stability of E∗

We introduce a Goh-Volterra-type nonlinear Lyapunov function as follows

Ỹ(ϑ) = S∗
(

S

S∗ − ln
S

S∗ − 1

)
+ I∗

(
I

I∗
− ln

I

I∗
− 1

)
. (3.5)

By utilizing the ODE associated with (3.1), the time-derivative of (3.5) is expressed
as follows

dtỸ =

(
(µN − βSI − ηS)− S∗(µN − βSI − ηS)

S

)
+

(
(βSI − (η + σ)I)− I∗(βSI − (η + σ)I)

I

)
.

(3.6)

At a steady state, as determined by the ODE associated with (3.1), the following
relationships are satisfied

µN = βS∗I∗ + ηS∗ and η + σ = βS∗. (3.7)

Substituting these expressions from (3.7) into (3.6), further simplification yields

dtỸ = −η + βI∗

S
(S − S∗)

2
. (3.8)

Put

X̃ =

∫
Ω

Ỹ(ϑ(t, x))dx. (3.9)

Upon evaluating the time-derivative of X̃ , we deduce the ensuing inequality

dtX̃ = −(η + βI∗)

∫
Ω

(S − S∗)
2

S
dx− κ1S

∗
∫
Ω

|∇S|p

S2
dx− κ2I

∗
∫
Ω

|∇I|p

I2
dx. (3.10)

This establishes that X̃ serves as a Lyapunov functional for (3.1) at the endemic
equilibrium E∗.

3.2. Global stability of Ef

To investigate the global stability of the disease-free equilibrium Ef , we utilize the
following Lyapunov function

Ŷ(ϑ) =

(
S − Sf ln

S

Sf

)
+ I. (3.11)

By examining the associated ODE of (3.1), we derive

dtỸ =
(
βSf − (η + σ)

)
I +

1

S

(
µNS − ηS2 − µNSf + ηSSf

)
. (3.12)



Global Stability of a Parabolic System 459

Given that

µN = βSf , (3.13)

then, we can simplify (3.12) as follows

dtỸ = − η

S

(
S − Sf

)2
+ (η + σ) (R0 − 1) I. (3.14)

Introduce

X̂ =

∫
Ω

Ŷ(ϑ(t, x))dx. (3.15)

From (3.14) and (3.15), further simplification gives

dtX̂ =

∫
Ω

(
−η
(
S − Sf

)2
S

+ (η + σ) (R0 − 1) I

)
dx− κ1S

f

∫
Ω

|∇S|p

S2
dx. (3.16)

It is evident that R0 ≤ 1 ensures dtX̂ ≤ 0. Therefore, X̂ serves as a Lyapunov
functional for (3.1) at equilibrium Ef .

3.3. Numerical results

The given mathematical model (3.1) has been computationally solved by using an
FDM implemented in MatLab. For our simulations, we adopted specific parameter
values κ = 0.1, µ = 0.09/µ = 0.05, β = 0.01/β = 0.009, σ = 0.1, η = 0.09. The
initial conditions were specified as

(
S0, I0, R0

)
= (30, 5, 0).

Figures 2 and 3 depicts time series of the model solution when R0 ≤ 1, signifying
the global asymptotic stability of the disease-free equilibrium Ef .

Conversely, Figures 4 and 5 illustrate time series of the solution when R0 ≥ 1,
indicating the global asymptotic stability of the endemic equilibrium E∗.

Furthermore, it is noteworthy that higher values of the parameter p contribute
to the accelerated propagation of the disease and hasten the convergence of the
involved compartments towards their respective equilibria.

Figure 2. The global behavior of the solution of (3.1), with µ = 0.05 and β = 0.009 (R0 ≤ 1) for p = 5.
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Figure 3. The global behavior of the solution of (3.1), with µ = 0.05 and β = 0.009 (R0 ≤ 1) for
p = 10.

Figure 4. The global behavior of the solution of (3.1), with µ = 0.09 and β = 0.01 (R0 ≥ 1) for p = 5.

Figure 5. The global behavior of the solution of (3.1), with µ = 0.09 and β = 0.01 (R0 ≥ 1) for p = 10.
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4. Conclusion

In this study, we have undertaken a thorough exploration of the global stability of
specific nonlinear parabolic equations featuring the p-Laplacian operator, with Neu-
mann boundary conditions. Our approach involves the construction of Lyapunov
functions derived from the associated ODEs. We dedicated to a qualitative analysis
of the nonlinear parabolic model, with the overarching goal of establishing global
stability. Furthermore, we showcased the application of our method in studying
the global stability of a reaction-diffusion SIR biological model, providing valuable
insights into its implications for real-world scenarios.
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