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A Stochastic Immunotherapy Model for Breast
Cancer with Pulsed Chemotherapy∗

Weipeng Zhang1,†, Shiyu Zhang2 and Hang Wang2

Abstract In this paper, we consider an immunotherapy model for breast can-
cer with stochastic perturbations and pulsed chemotherapy. By using stochas-
tic Lyapunov analysis and the strong law of large numbers, we first prove the
existence, uniqueness and the stochastic ultimate boundedness of the global
positive solution for the model. Then we obtain sufficient conditions for the
extinction of tumor cells and the persistence of all three kinds of cells for this
model. Finally, we use numerical simulations to verify the theoretical results
which are obtained in the paper.
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fect
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1. Introduction

Breast cancer has become one of the malignant tumors that threaten women’s lives
and health in today’s society and its mortality rate has already been the second
highest among female tumors. Further, studies have shown that age, family his-
tory, reproductive factors, estrogen and lifestyle are the five important risk factors of
breast cancer [26]. With the development of medical level and treatment method,
survival rates and survival time of patients have increased. However, from the
prevention of breast cancer to precise treatment, many problems remain to be ex-
plored. Therefore, it is very meaningful to study the mechanism of breast cancer. It
is recorded that the immune system can recognize and eliminate cancer cells before
they proliferate and grow, which is called immune surveillance [12, 29]. And the
immune response to tumor cells is usually mediated by natural killer (NK) cells and
cytotoxic T lymphocytes (CTLs) [1, 21,31].

Mathematical models of tumor growth are powerful tools for understanding,
predicting and improving treatment options. More and more scholars have further
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studied dynamical behaviors of tumor growth by establishing mathematical models
containing NK cells and CTLs. For example, de Pillis et al. [5] set up a mathemat-
ical model to express tumor-immune interaction and they focused on the roles of
NK cells and CD8+ T cells in tumor monitoring. Further, Masaha et al. [20] pre-
sented a new model which involved various immune cell populations and tumor cell
populations. Moreover, Wei [30] studied a four-dimensional tumor-immune model
for breast cancer by comparing the results obtained from numerical simulation with
those from clinical and experimental studies.

Up to now, the clinical treatment methods include surgery to remove cancerous
tissue, chemotherapy, radiotherapy, immunotherapy and so on. Compared with
other treatments, immunotherapy such as dendritic cell vaccine therapy [23] and
HER2/neu(E75) peptide vaccine [2] has attracted more and more scholars’ attention
[13,27]. Motivated by the above references, we consider the following model

dx(t) =
(
ev − fx− p2xz +

p3xz
1+α3z+β3x

)
dt,

dy(t) =
[

p5Iy
α4+I

(
1− y

K1

)
z

α5+z − dy + by
]
dt,

dz(t) =
[
z
(
a+ cE(t)z

1+α1E(t)+β1z2

)(
1− z

K

)
− p1x

2z
1+α2z+β2x2 − p6yz

2

1+α6z2+β6y

]
dt,

dv(t) = (α− βv)dt,

x(0) = x0, y(0) = y0, z(0) = z0, v(0) = v0,

(1.1)

where x(t), y(t), z(t) and v(t) denote the NK cell population, the CTL population,
the tumor cell population and the white blood cell (WBC) population, respectively,
and E(t) represents the circulating level of estradiol. Besides, E(t) is a periodic
function, namely, E(t) = E(t − nτ̂), t ∈ [nτ̂ , (n + 1)τ̂). Based on the realistic
background, all parameters of system (1.1) are real and positive. Further, the
significance of parameters and the schematic diagram of the interactions among
four kinds of cells for system (1.1) are shown in Table 1 and Figure 1, respectively.

Table 1. The parameters and their interpretations in model (1.1).

Parameter Description Parameter Description

e Fraction of WBCs becoming NK cells a Tumor growth rate

f NK cell death rate c Tumor growth rate induced by E2

p2 NK cell inactivation by tumor cells α1 Half saturation constant

p3 NK cell recruitment rate β1 Half saturation constant

α3 Half saturation constant K Tumor cell carrying capacity

β3 Half saturation constant p1 NK induced tumor death

p5 CTL growth rate induced by IL-2 α2 Half saturation constant

I IL-2 concentration β2 Half saturation constant

α4 Half saturation constant p6 CTL induced tumor death

K1 CTL carrying capacity α6 Half saturation constant

α5 Half saturation constant β6 Half saturation constant

d CTL death rate α WBC production rate

b CTL growth rate by immunotherapy β WBC death rate

It is worth noting that the last equation is independent of the first three equa-
tions. Then we can derive v(t) = α

β + (v0 − α
β )e

−βt. Supposing that v0 > α
β , we
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can easily know that α
β < v(t) ≤ v0. Hence, system (1.1) can be reduced to the

following differential equation



dx(t) =
(
ev − fx− p2xz +

p3xz
1+α3z+β3x

)
dt,

dy(t) =
[

p5Iy
α4+I

(
1− y

K1

)
z

α5+z − dy + by
]
dt,

dz(t) =
[
z
(
a+ cE(t)z

1+α1E(t)+β1z2

)(
1− z

K

)
− p1x

2z
1+α2z+β2x2 − p6yz

2

1+α6z2+β6y

]
dt,

x(0) = x0, y(0) = y0, z(0) = z0.

(1.2)

In the tumor tissue, the growth rate and cytotoxic parameters are always influ-
enced by many environmental factors such as the supply of oxygen, temperature,
radiation and gene expression [8]. As a consequence, it is very necessary to consider
the impacts of the stochastic fluctuations of the environment. A widely used method
is to assume that white noises may affect some parameters in a system [15, 32]. In
this way, we assume that environmental fluctuations mainly affect the death rate
of NK cells f , the death rate of CTLs d and the growth rate of tumor cells a, i.e.,

−fdt → −fdt+ σ1dB1(t), − ddt → −ddt+ σ2dB2(t), adt → adt+ σ3dB3(t),

where Bi(t) (i = 1, 2, 3) are independent one-dimensional Brownian motions, and
σi (i = 1, 2, 3) are white noise intensities. Therefore, system (1.2) becomes the
following SDE



dx(t) =
(
ev − fx− p2xz +

p3xz
1+α3z+β3x

)
dt+ σ1xdB1(t),

dy(t) =
[

p5Iy
α4+I

(
1− y

K1

)
z

α5+z − dy + by
]
dt+ σ2ydB2(t),

dz(t)=
[
z
(
a+ cE(t)z

1+α1E(t)+β1z2

)(
1− z

K

)
− p1x

2z
1+α2z+β2x2 − p6yz

2

1+α6z2+β6y

]
dt+σ3zdB3(t),

x(0) = x0, y(0) = y0, z(0) = z0.

(1.3)

We can easily see that when σ1 = σ2 = σ3 = 0, system (1.3) will degenerate into
system (1.2).

In fact, the combination of chemotherapy and immunotherapy can undoubtedly
achieve the best therapeutic effects [24, 25]. In experimental and clinical studies,
chemotherapy and immunotherapy drugs are usually injected at a fixed time to treat
cancer. This kind of pulsed therapy can be described by using impulsive differen-
tial equations [33]. For example, Yang et al. [33] investigated a stochastic tumor-
immune system with impulse comprehensive therapy which can reduce the damage
of therapy to the healthy cells. Consequently, inspired by the above references, we
try to add pulsed chemotherapy to model (1.3). In order to be more realistic, we
consider turning parameters of system (1.3) into time-dependent functions. Hence,
we get the following stochastic immunotherapy model for breast cancer with pulsed
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Figure 1. Schematic diagram of the interactions among NK cells, CTLs, tumor cells and WBCs for
system (1.1).

chemotherapy

dx(t) =
(
e(t)v − f(t)x− p2(t)xz +

p3(t)xz

1 + α3(t)z + β3(t)x

)
dt

+ σ1(t)xdB1(t), t ̸= tk, k ∈ N,

dy(t) =
[ p5(t)I(t)y

α4(t) + I(t)

(
1− y

K1(t)

) z

α5(t) + z
− d(t)y + b(t)y

]
dt

+ σ2(t)ydB2(t), t ̸= tk, k ∈ N,

dz(t) =
[
z
(
a(t) + c(t)E(t)z

1+α1(t)E(t)+β1(t)z2

)(
1− z

K(t)

)
− p1(t)x

2z
1+α2(t)z+β2(t)x2

− p6(t)yz
2

1+α6(t)z2+β6(t)y

]
dt+ σ3(t)zdB3(t), t ̸= tk, k ∈ N,

x(t+k ) = (1 + d1k)x(t), t = tk, k ∈ N,

y(t+k ) = (1 + d2k)y(t), t = tk, k ∈ N,

z(t+k ) = (1 + d3k)z(t), t = tk, k ∈ N,

(1.4)

with initial values x(0) = x0, y(0) = y0 and z(0) = z0. Moreover, the parameters
of the first three equations for model (1.4) are all continuous bounded nonnegative
functions on [0,∞); d1k, d2k and d3k are all constants in the interval (−1, 0) and
0 < t1 < t2 < · · · < tk < · · · is a strictly increasing sequence satisfying lim

k→∞
tk =

+∞.
In this article, we will mainly study system (1.4) which not only involves the

random perturbations but also simulates the comprehensive treatment including
immunotherapy and pulsed chemotherapy. Further, using a suitable Lyapunov func-
tion, we get the existence and uniqueness of the global positive solution and obtain
the sufficient condition for stochastic ultimate boundedness of the solution. Besides,
by the strong law of large numbers, we prove the extinction of tumor cells and the
persistence of all three kinds of cells under certain conditions. The results show
that white noises do play an important role in the tumor treatment. What’s more,
the bounded impulsive effects do not affect some properties such as the existence,
uniqueness and the stochastic ultimate boundedness of the global positive solution.

The structure of this paper is as follows: In Section 2, we give some preliminary
knowledge. In Section 3, we prove the existence and uniqueness of the global positive
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solution. In Section 4, we deduce the sufficient condition of the stochastic ultimate
boundedness for the solution. In Section 5 and Section 6, we pay attention to the
extinction of tumor cells and the persistence of all three kinds of cells. In Section
7, we use numerical simulations to verify the correctness of our theoretical results.
Finally, our paper ends with a conclusion.

2. Preliminaries

In order to explore the above problems, firstly, we need to define some denota-
tions. Throughout this paper, Rn represents the space of n-dimensional real col-
umn vectors and Rn

+ is the set of n-dimensional real column vectors with pos-
itive elements, that is, Rn

+ = {x ∈ Rn | xi > 0, 1 ≤ i ≤ n}, and we have
R̄n

+ = {x ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n}. Let (Ω, {Ft}t≥0,P) denote a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions and E be
the probability expectation with respect to P. For any x ∈ Rn, we let |x| denote
the Euclidean norm of x on Rn. Bi(t)(i = 1, 2, · · · ,m) are mutually independent
standard Brownian motions defined on this complete probability space.

Generally speaking, we consider the n-dimensional stochastic differential equa-
tion in reference [19]

dx(t) = f
(
t, x(t)

)
dt+ g

(
t, x(t)

)
dB(t), (2.1)

where x(t) is an n-dimensional vector valued function, f
(
t, x(t)

)
is an n-dimensional

vector valued function in Rn defined on [0,+∞)×Rn, and g
(
t, x(t)

)
is an n×m ma-

trix valued function. f and g are locally Lipschitz functions in x(t). B(t) denotes an
m-dimensional Brownian motion on the complete probability space (Ω, {Ft}t≥0,P).
Furthermore, let C1,2([0,+∞) × Rn;R) be the family of all nonnegative functions
V (t, x) defined on [0,+∞) × Rn, which are continuously once differentiable in t
and continuously twice differentiable in x. We define the differential operator L
associated with equation (2.1) by

L =
∂

∂t
+

n∑
i=1

fi(t, x)
∂

∂xi
+

1

2

n∑
i,j=1

[g(t, x)gT (t, x)]ij
∂2

∂xi∂xj
.

Then for a function V (t, x) ∈ C1,2([0,+∞)× Rn;R), we have

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x) +
1

2
trace[gT (t, x)Vxx(t, x)g(t, x)].

Here we set

Vt(t, x) =
∂V

∂t
, Vx(t, x) = (

∂V

∂x1
, · · · , ∂V

∂xn
),

Vxx(t, x) = (
∂2V

∂xi∂xj
)n×n =


∂2V

∂x1∂x1
. . .

∂2V

∂x1∂xn
...

...

∂2V

∂xn∂x1
. . .

∂2V

∂xn∂xn

 .

For convenience, we set

⟨f(t)⟩= 1

t

∫ t

0

f(s)ds, f∗=lim inf
t→∞

f(t), f∗=lim sup
t→∞

f(t), fu=sup
t≥0

f(t), f l= inf
t≥0

f(t),
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where f(t) is a continuous bounded function defined on [0,∞).

Assumption 2.1. Throughout this paper, we assume that there exist two con-
stants m1 and M1 such that for all t ≥ 0 and i = 1, 2, 3, m1 ≤

∏
0<tk<t

(1+dik) ≤ M1.

Definition 2.1. [19] The population x(t) is said to become extinct exponentially

with probability one if lim sup
t→∞

log x(t)
t < 0 a.s.

Next, we give the definitions of weak persistence and persistence in the mean
referring to the literature [16,17].

Definition 2.2. The population x(t) is said to be weakly persistent if lim sup
t→∞

x(t)

> 0 a.s.

Definition 2.3. The population x(t) is said to be persistent in the mean if ⟨x(t)⟩∗ >
0 a.s.

3. Existence and uniqueness of the global positive
solution

From a biological point of view, we should ensure that system (1.4) has a unique
global positive solution. First of all, we give the definition of solutions to impulsive
stochastic differential equations (ISDEs).

Definition 3.1. ( [17]) Consider the following ISDEdX(t) = F
(
t,X(t)

)
dt+G

(
t,X(t)

)
dB(t), t ̸= tk, k ∈ N,

X(t+k )−X(tk) = BkX(tk), k ∈ N,
(3.1)

with initial condition X(0). A stochastic process X(t) =
(
X1(t), X2(t), ...Xn(t)

)T
,

t ∈ R+, is said to be a solution of ISDE (3.1) if

(i) X(t) is Ft-adapted and is continuous on (0, t1) and each interval (tk, tk+1) ⊂
R+, k ∈ N; F

(
t,X(t)

)
∈ L1(R+;Rn), G

(
t,X(t)

)
∈ L2(R+;Rn), where

Lk(R+;Rn) is all Rn valued measurable {Ft}-adapted processes f(t) satis-

fying
∫ T

0
|f(t)|kdt < ∞ a.s. (almost surely) for every T > 0;

(ii) for each tk, k ∈ N, X(t+k ) = lim
t→t+k

X(t) and X(t−k ) = lim
t→t−k

X(t) exist and

X(t) = X(t−k ) with probability one;

(iii) for almost all t ∈ [0, t1], X(t) obeys the integral equation

X(t) = X(0) +

∫ t

0

F
(
s,X(s)

)
ds+

∫ t

0

G
(
s,X(s)

)
dB(s).

And for almost all t ∈ (tk, tk+1], k ∈ N, X(t) obeys the integral equation

X(t) = X(t+k ) +

∫ t

tk

F
(
s,X(s)

)
ds+

∫ t

tk

G
(
s,X(s)

)
dB(s).

Moreover, X(t) satisfies the impulsive conditions at each t = tk, k ∈ N with
probability one.
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Then we will prove the existence and uniqueness of the global positive solution
for system (1.4).

Theorem 3.1. System (1.4) has a unique global positive solution X(t) =
(
x(t), y(t),

z(t)
)
on t ≥ 0 for any initial value X(0) = (x0, y0, z0) ∈ R3

+ with probability one,

that is to say, X(t) =
(
x(t), y(t), z(t)

)
∈ R3

+ for all t ≥ 0 almost surely.

Proof. We first consider the following system without impulse

dx1(t)=
( e(t)v

D1(t)
−f(t)x1−p2(t)D3(t)x1z1+

p3(t)D3(t)x1z1
1 + α3(t)D3(t)z1 + β3(t)D1(t)x1

)
dt

+ σ1(t)x1dB1(t),

dy1(t)=
[
p5(t)I(t)y1

α4(t)+I(t)

(
1−D2(t)y1

K1(t)

)
D3(t)z1

α5(t)+D3(t)z1
−d(t)y1+b(t)y1

]
dt+ σ2(t)y1dB2(t),

dz1(t)=
[
z1

(
a(t)+ c(t)E(t)D3(t)z1

1+α1(t)E(t)+β1(t)D2
3(t)z

2
1

)(
1−D3(t)z1

K(t)

)
− p1(t)D

2
1(t)x

2
1z1

1+α2(t)D3(t)z1+β2(t)D2
1(t)x

2
1

− p6(t)D2(t)D3(t)y1z
2
1

1+α6(t)D2
3(t)z

2
1+β6(t)D2(t)y1

]
dt+ σ3(t)z1dB3(t),

(3.2)

where v(t) = α
β + (v0 − α

β )e
−βt. For any initial value Y (0) =

(
x1(0), y1(0), z1(0)

)
=

X(0) ∈ R3
+, where Di(t) =

∏
0<tk<t

(1 + dik), i = 1, 2, 3, it is obvious that the

coefficients of system (3.2) are locally Lipschitz continuous. So we see that system
(3.2) has a unique local solution

(
x1(t), y1(t), z1(t)

)
on t ∈ [0, τe) and τe is the

explosion time. To prove that the solution is global, we will show that τe = ∞ a.s.

Set n0 ∈ N be sufficiently large such that x1(0) ∈
(

1

n0
, n0

)
, y1(0) ∈

(
1

n0
, n0

)
and

z1(0) ∈
(

1

n0
, n0

)
. For ∀ n ≥ n0, n ∈ N, we define a stopping time as follows

τn = inf

{
t ∈ [0, τe) |min{x1(t), y1(t), z1(t)} ≤ 1

n
or max{x1(t), y1(t), z1(t)} ≥ n

}
,

(3.3)
where we define ∅ is the empty set and set inf ∅ = ∞. Thus, it is easy to see that
τn is increasing as n → ∞. We let τ∞ = lim

n→∞
τn, then τ∞ ≤ τe a.s. Exactly, we

just need to prove τ∞ = ∞ a.s. If this assertion is false, then there will exist two
constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} ≥ ε. Then, there is an integer
n1 ≥ n0 such that

P{τn ≤ T} ≥ ε, ∀ n ≥ n1. (3.4)

Next, we define a C2-function V : R3
+ → R̄+,

V (x1, y1, z1) = (x1 − 1− log x1) + (y1 − 1− log y1) + (z1 − 1− log z1).

Using the Itô formula, we obtain that

dV (x1, y1, z1) =LV dt+ σ1(t)(x1 − 1)dB1(t) + σ2(t)(y1 − 1)dB2(t)

+ σ3(t)(z1 − 1)dB3(t),

where

LV =

(
1− 1

x1

)(
e(t)v

D1(t)
−f(t)x1−p2(t)D3(t)x1z1+

p3(t)D3(t)x1z1
1+α3(t)D3(t)z1+β3(t)D1(t)x1

)
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+

(
1− 1

y1

)[
p5(t)I(t)y1
α4(t) + I(t)

(
1− D2(t)y1

K1(t)

)
D3(t)z1

α5(t) +D3(t)z1
− d(t)y1 + b(t)y1

]
+

(
1− 1

z1

)
·
[
z1

(
a(t) +

c(t)E(t)D3(t)z1
1 + α1(t)E(t) + β1(t)D2

3(t)z
2
1

)(
1− D3(t)z1

K(t)

)
− p1(t)D

2
1(t)x

2
1z1

1+α2(t)D3(t)z1+β2(t)D2
1(t)x

2
1

− p6(t)D2(t)D3(t)y1z
2
1

1 + α6(t)D2
3(t)z

2
1 + β6(t)D2(t)y1

]
+

σ2
1(t)

2
+

σ2
2(t)

2
+

σ2
3(t)

2

≤

(
e(t)v

D1(t)
+ f(t) + d(t)+

c(t)E(t)

β1(t)D3(t)
+

c(t)E(t)

K(t)β1(t)
+
p1(t)

β2(t)
+
σ2
1(t)

2
+
σ2
2(t)

2

+
σ2
3(t)

2

)
+

p3(t)

α3(t)
x1 +

(
p5(t) + b(t) +

p5(t)D2(t)

K1(t)

)
y1 +

(
p2(t)D3(t) + a(t)

+
a(t)D3(t)

K
+
p6(t)D3(t)

β6(t)

)
z1.

Since for ∀ u > 0, the inequality u ≤ 2(u+ 1− log u) holds. Thus,

LV ≤

(
euv0
m1

+ fu + du +
cuEu

βl
1m1

+
cuEu

Klβl
1

+
pu1
βl
2

+
(σu

1 )
2

2
+

(σu
2 )

2

2
+

(σu
3 )

2

2

)

+
2pu3
αl
3

(x1 + 1− log x1) + 2

(
pu5 + bu +

pu5M1

Kl
1

)
(y1 + 1− log y1)

+ 2

(
pu2M1 + au +

auM1

Kl
+

pu6M1

βl
6

)
(z1 + 1− log z1).

Then we define two positive constants v1 := euv0
m1

+fu+du+cuEu

βl
1m1

+cuEu

Klβl
1
+

pu
1

βl
2
+

(σu
1 )

2

2 +

(σu
2 )

2

2 +
(σu

3 )
2

2 , v2 := 2
(

pu
3

αl
3
+ pu5 + bu +

pu
5M1

Kl
1

+ pu2M1 + au + auM1

Kl +
pu
6M1

βl
6

)
. Namely,

LV ≤ v1 + v2(x1 + 1− log x1) + v2(y1 + 1− log y1) + v2(z1 + 1− log z1)

= v1 + v2V (x1, y1, z1).

Further, we have

dV (x1, y1, z1) ≤ [v1 + v2V (x1, y1, z1)]dt+ σ1(t)(x1 − 1)dB1(t)

+ σ2(t)(y1 − 1)dB2(t) + σ3(t)(z1 − 1)dB3(t).
(3.5)

Integrating both sides of (3.5) from 0 to T ∧ τn and taking expectations, we then
derive that

E
[
V
(
x1(T ∧ τn), y1(T ∧ τn), z1(T ∧ τn)

)]
≤ V

(
x1(0), y1(0), z1(0)

)
+ v1T + v2

∫ T

0

E
[
V
(
x1(s ∧ τn), y1(s ∧ τn), z1(s ∧ τn)

)]
ds,

where a ∧ b = min{a, b} and IA(·) is the indicate function of set A. Using the
Gronwall inequality, then we have

E
[
V
(
x1(T∧τn), y1(T∧τn), z1(T∧τn)

)]
≤
(
V
(
x1(0), y1(0), z1(0)

)
+v1T

)
ev2T .(3.6)
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Setting Ωn = {ω | τn ≤ T} for n ≥ n1, thus from (3.4) we get P(Ωn) ≥ ε. Con-
sequently, for ∀ ω ∈ Ωn, at least one of x(T ∧ τn), y(T ∧ τn) and z(T ∧ τn) equals

either n or
1

n
, which shows that

V
(
x1(T ∧ τn), y1(T ∧ τn), z1(T ∧ τn)

)
≥
(
n+ 1− log n

)
∧
(
1

n
+ 1+ log n

)
. (3.7)

In view of (3.6) and (3.7), we get(
V
(
x1(0), y1(0), z1(0)

)
+ v1T

)
ev2T ≥ E

[
V
(
x1(T ∧ τn), y1(T ∧ τn), z1(T ∧ τn)

)]
≥ E

[
IΩn

(ω)V
(
x1(τn, ω), y1(τn, ω), z1(τn, ω)

)]
≥ P(Ωn) ·

[(
n+1− log n

)
∧
(
1

n
+ 1 + log n

)]
≥ ε

[(
n+ 1− log n

)
∧
(
1

n
+ 1 + log n

)]
.

Letting n → ∞, it leads to

(
n+ 1− log n

)
∧
(
1

n
+ 1 + log n

)
→ ∞, and then we

get a contradiction

∞ ≥
(
V
(
x1(0), y1(0), z1(0)

)
+ v1T

)
ev2T = ∞.

Further, we obtain τ∞ = ∞ a.s. That is, system (3.2) has a unique global solu-
tion

(
x1(t), y1(t), z1(t)

)
∈ R3

+ with probability one for all t ≥ 0. Setting x(t) =
D1(t)x1(t), y(t) = D2(t)y1(t) and z(t) = D3(t)z1(t), we can see that system
(1.4) with initial value X(0) = (x0, y0, z0) has a unique global solution X(t) =(
x(t), y(t), z(t)

)
∈ R3

+. In fact, x(t), y(t) and z(t) are continuous on (0, t1) and
every interval (tk, tk+1) ⊂ (0,∞), k ∈ N. If t ̸= tk, we have

dx(t) = d
(
D1(t)x1(t)

)
= D1(t)dx1(t)

=

(
e(t)v − f(t)x− p2(t)xz +

p3(t)xz

1 + α3(t)z + β3(t)x

)
dt+ σ1(t)xdB1(t),

dy(t) = d
(
D2(t)y1(t)

)
= D2(t)dy1(t)

=

[
p5(t)I(t)y

α4(t) + I(t)

(
1− y

K1(t)

)
z

α5(t) + z
− d(t)y + b(t)y

]
dt+ σ2(t)ydB2(t),

dz(t) = d
(
D3(t)z1(t)

)
= D3(t)dz1(t)

=

[
z

(
a(t) +

c(t)E(t)z

1 + α1(t)E(t) + β1(t)z2

)(
1− z

K(t)

)
− p1(t)x

2z

1 + α2(t)z + β2(t)x2

− p6(t)yz
2

1 + α6(t)z2 + β6(t)y

]
dt+ σ3(t)zdB3(t).

For any k ∈ N, tk ∈ R+, we observe

x(t+k ) = lim
t→t+k

x(t) =
∏

0<tj≤tk

(1 + d1j)x1(t
+
k ) = (1 + d1k)

∏
0<tj<tk

(1 + d1j)x1(tk)

= (1 + d1k)x(tk).
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Similarly, we can obtain that y(t+k ) = (1 + d2k)y(tk) and z(t+k ) = (1 + d3k)z(tk).
Therefore, X(t) =

(
x(t), y(t), z(t)

)
is the unique global positive solution for system

(1.4) with probability one. The proof is now complete.

4. Stochastic ultimate boundedness

Theorem 3.1 allows us to further investigate how the solution of system (1.4) changes
in R3

+. The following theorem gives a criterion for the stochastic ultimate bound-
edness (see the reference [18]) of the solution in system (1.4).

Theorem 4.1. If f l −h2 +
(σu

1 )
2

2 > 0, then the solution of system (1.4) is stochas-
tically ultimately bounded for any initial value X(0) = (x0, y0, z0) ∈ R3

+.

Proof. Due to Theorem 3.1, we know that the solution X(t) =
(
D1(t)x1(t),

D2(t)y1(t), D3(t)z1(t)
)
of system (1.4) will remain in the positive cone R3

+ with
probability one for all t ≥ 0. Firstly, we will prove that for any initial value Y (0)
=
(
x1(0), y1(0), z1(0)

)
, the solution of system (3.2) is stochastically ultimately

bounded. Then we define a function

g(z1) =
pu3M1z1

1 + αl
3m1z1

− pl2m1z1, z1 > 0,

and obtain that

(i) If pu3M1 ≤ pl2m1, then g(z1) < 0, ∀ z1 > 0.

(ii) If pu3M1 > pl2m1, then g(z1) ≤

(√
pu
3M1−

√
pl
2m1

)2

αl
3m1

, ∀ z1 > 0.

That is,

g(z1) ≤

[√
pu3M1 −

√
pl2m1√

αl
3m1

∨ 0

]2
=: h2, ∀ z1 > 0, (4.1)

where a ∨ b = max{a, b}. In view of f l − h2 +
(σu

1 )
2

2 > 0, we get 1 + 2(f l−h2)
(σu

1 )
2 > 0.

For any fixed p ∈
(
0, 1 + 2(f l−h2)

(σu
1 )

2

)
, we define a function as follows

V1 = (1 + x1)
p, ∀ x1 ∈ R+.

By computing LV1, we derive that

LV1 = p(1 + x1)
p−2

(
e(t)v

D1(t)
−f(t)x1−p2(t)D3(t)x1z1+−f(t)x2

1 − p2(t)D3(t)x
2
1z1

p3(t)D3(t)x1z1
1+α3(t)D3(t)z1+β3(t)D1(t)x1

+
e(t)vx1

D1(t)
+

p3(t)D3(t)x
2
1z1

1 + α3(t)D3(t)z1 + β3(t)D1(t)x1

+
(p− 1)σ2

1(t)x
2
1

2

)
.

(4.2)

Based on the range of p, we obtain that f l − h2 − (p−1)(σu
1 )

2

2 > 0, and then we can
choose a small enough positive constant κ such that

−κ

p
+ f l − h2 − (p− 1)(σu

1 )
2

2
> 0. (4.3)



A Stochastic Immunotherapy Model for Breast Cancer 473

By the Itô formula, it is easy to see that

MV1
(t) := eκtV1

(
x1(t)

)
− V1

(
x1(0)

)
−
∫ t

0

L
[
eκsV1

(
x1(s)

)]
ds

is a local martingale. Next, we compute L[eκtV1(x1)]. By (4.1) and (4.2), we have

L
[
eκtV1(x1)

]
≤ peκt(1 + x1)

p−2

(
κ

p
+

2κ

p
x1 +

κ

p
x2
1 +

euv0
m1

− f lx1 − pl2m1x1z1 +
pu3M1x1z1
1 + αl

3m1z1

+
euv0x1

m1
− f lx2

1 − pl2m1x
2
1z1 +

pu3M1x
2
1z1

1 + αl
3m1z1

+
(p− 1)(σu

1 )
2x2

1

2

)
≤ peκt(1 + x1)

p−2W1(x1),

where

W1(x1)=

(
κ

p
+
euv0
m1

)
+

(
2κ

p
−f l+h2+

euv0
m1

)
x1+

(
κ

p
−f l+h2+

(p− 1)(σu
1 )

2

2

)
x2
1.

From (4.3), we can get

lim
x1→+∞

(1 + x1)
p−2W1(x1) = −∞.

This, together with the continuity of (1 + x1)
p−2W1(x1) in R+, allow us to derive

H1(p) := p sup
x1∈R+

{
(1 + x1)

p−2W1(x1)
}

<+∞.

Hence,
L[eκtV1(x1)] ≤ H1(p)e

κt. (4.4)

Then we will prove

E
[
eκtV1

(
x1(t)

)]
= E

[
V1

(
x1(0)

)]
+ E

∫ t

0

L
[
eκsV1

(
x1(s)

)]
ds.

In fact, we choose a sufficiently large constant r0 such that x1(0), y1(0) and z1(0)

are all in the interval
(

1
r0
, r0

)
. For ∀ r ≥ r0, we define a stopping time as follows

ξr = inf {t ≥ 0 |max{x1(t), y1(t), z1(t)} ≥ r}. (4.5)

Noting that ξr is monotonically increasing, thus its limit exists and we define the
limit as ξ∞. According to the definition of τr in (3.3), we can know that ξr ≥ τr. By
Theorem 3.1, we get τ∞ = ∞ a.s. Therefore, ξ∞ = ∞ a.s. Because of the properties
of local martingale, we easily obtain E[MV1

(t ∧ ξr)] = 0. Namely, for any t ≥ 0, we
deduce that

E
[
eκ(t∧ξr)V1

(
x1(t ∧ ξr)

)]
= E

[
V1

(
x1(0)

)]
+ E

∫ t∧ξr

0

L
[
eκsV1

(
x1(s)

)]
ds. (4.6)

Letting r → ∞ and applying the monotonicity of ξr, then we have

eκ(t∧ξr)
(
1 + x1(t ∧ ξr)

)p → eκt
(
1 + x1(t)

)p
a.s.
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Clearly,

E
[
eκ(t∧ξr)V1

(
x1(t ∧ ξr)

)]
→ E

[
eκtV1

(
x1(t)

)]
, as r → ∞.

By (4.4) and the dominated convergence theorem, we derive that

E
∫ t∧ξr

0

L
[
eκsV1

(
x1(s)

)]
ds → E

∫ t

0

L
[
eκsV1

(
x1(s)

)]
ds, as r → ∞.

Letting r → ∞ in (4.6), we obtain

E
[
eκtV1

(
x1(t)

)]
= E

[
V1

(
x1(0)

)]
+ E

∫ t

0

L
[
eκsV1

(
x1(s)

)]
ds. (4.7)

Combining (4.4) with (4.7), we get

eκtE
[(
1 + x1(t)

)p] ≤ E
[(
1 + x1(0)

)p]
+ E

∫ t

0

H1(p)e
κsds

≤ E
[(
1 + x1(0)

)p]
+

H1(p)

κ
eκt.

Then dividing eκt and taking the upper limit on both sides, we arrive at

lim sup
t→∞

E
[(
1 + x1(t)

)p] ≤ H1(p)

κ
=: Ĥ1(p).

Consequently,
lim sup
t→∞

E
[
xp
1(t)

]
< Ĥ1(p). (4.8)

Next, we define

V2 = etyp1 , ∀ y1 ∈ R+.

Similarly, we have

LV2 = etyp1+petyp−1
1

[
p5(t)I(t)y1
α4(t)+I(t)

(
1−D2(t)y1

K1(t)

)
D3(t)z1

α5(t) +D3(t)z1
− d(t)y1 + b(t)y1

]
+

p(p− 1)

2
etσ2

2(t)y
p
1

≤ etyp−1
1

(
y1 + ppu5y1 −

ppl5I
lm2

1y
2
1z1

Ku
1 (α

u
4 + Iu)(αu

5 +M1z1)
+pbuy1 +

p(p− 1)

2
(σu

2 )
2y1

)
= etyp−1

1 W2(y1, z1), (4.9)

where

W2(y1, z1) =

(
1 + ppu5 + pbu +

p(p− 1)

2
(σu

2 )
2

)
y1 −

ppl5I
lm2

1y
2
1z1

Ku
1 (α

u
4 + Iu)(αu

5 +M1z1)
.

Obviously, we know
lim

y2
1+z2

1→+∞
yp−1
1 W2(y1, z1) = −∞.
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Then combining the above formula with the continuity of yp−1
1 W2(y1, z1) in R2

+

leads to
H2(p) := sup

(y1,z1)∈R2
+

{
yp−1
1 W2(y1, z1)

}
<+∞.

Hence,
LV2 ≤ H2(p)e

t. (4.10)

According to the Itô formula again, we know that

MV2(t) := V2

(
y1(t)

)
− V2

(
y1(0)

)
−
∫ t

0

L
[
V2

(
y1(s)

)]
ds

is a local martingale. In the same way, E[MV2
(t ∧ ξr)] = 0, where ξr is defined by

(4.5). Similar to the above proof, we can get

E
[
V2

(
y1(t)

)]
= E

[
V2

(
y1(0)

)]
+ E

∫ t

0

L
[
V2

(
y1(s)

)]
ds. (4.11)

Combining (4.10) with (4.11), we have

etE
[
yp1(t)

]
− yp1(0) ≤ H2(p)e

t.

Therefore,

lim sup
t→∞

E
[
yp1(t)

]
≤ H2(p). (4.12)

Setting q as a positive constant, we continue to define a function

V3 = (1 + qy1 + z1)
p, ∀ (y1, z1) ∈ R2

+.

Now, let’s calculate LV3 as follows

LV3 =p(1+qy1+z1)
p−2

[
(1+qy1+z1)

(
qp5(t)I(t)D3(t)y1z1(

α4(t)+I(t)
)(
α5(t)+D3(t)z1

)
− qp5(t)I(t)D2(t)D3(t)y

2
1z1

K1(t)
(
α4(t)+I(t)

)(
α5(t)+D3(t)z1

)−qd(t)y1+qb(t)y1+a(t)z1 −
a(t)D3(t)z

2
1

K(t)

+
c(t)E(t)D3(t)z

2
1

1 + α1(t)E(t) + β1(t)D2
3(t)z

2
1

− c(t)E(t)D2
3(t)z

3
1

K(t)
(
1 + α1(t)E(t) + β1(t)D2

3(t)z
2
1

)
− p1(t)D

2
1(t)x

2
1z1

1 + α2(t)D3(t)z1 + β2(t)D2
1(t)x

2
1

− p6(t)D2(t)D3(t)y1z
2
1

1 + α6(t)D2
3(t)z

2
1 + β6(t)D2(t)y1

)
+

p− 1

2
σ2
2(t)q

2y21 +
p− 1

2
σ2
3(t)z

2
1

]
. (4.13)

Applying the Itô formula yields that

MV3
(t) := V3

(
y1(t), z1(t)

)
− V3

(
y1(0), z1(0)

)
−
∫ t

0

L
[
esV3

(
y1(s), z1(s)

)]
ds

is a local martingale. Similarly, E[MV3
(t ∧ ξr)] = 0, where ξr is defined by (4.5).

Computing L[etV3(y1, z1)] and according to (4.13), we deduce that

L[etV3(y1, z1)]
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≤ et(1 + qy1 + z1)
p−2

[
1 + q2y21 + z21 + 2qy1 + 2z1 + 2qy1z1 + p(1+qy1+z1)(

qp5(t)y1+qb(t)y1 + a(t)z1 +
c(t)E(t)

β1(t)D3(t)

)
− pz1 ·

a(t)D3(t)z
2
1

K(t)

− pqy1 ·
qp5(t)I(t)D2(t)D3(t)y

2
1z1

K1(t)
(
α4(t) + I(t)

)(
α5(t) +D3(t)z1

) + p(p− 1)

2
σ2
2(t)q

2y21

+
p(p− 1)

2
σ2
3(t)z

2
1

]
≤ et(1 + qy1 + z1)

p−2W3(y1, z1),

where

W3(y1, z1) =

(
1 +

pcuEu

βl
1m1

)
+

(
2q + pqpu5 + pqbu +

pqcuEu

βl
1m1

)
y1 +

(
2 + pau

+
pcuEu

βl
1m1

)
z1 +

(
q2 + pq2pu5 + pq2bu +

p(p− 1)

2
(σu

2 )
2q2
)
y21

+

(
2q+pqau+pqpu5+pqbu

)
y1z1+

(
1+pau+

p(p− 1)

2
(σu

3 )
2

)
z21

− palm1

Ku
z31 − pq2pl5I

lm2
1z1

Ku
1 (α

u
4 + Iu)(αu

5 +M1z1)
y31 .

It is obvious to see that

lim
y2
1+z2

1→∞
(1 + qy1 + z1)

p−2W3(y1, z1) = −∞.

Combining with the community of (1 + qy1 + z1)
p−2W3(y1, z1) in R2

+, we find that

H3(p) := sup
(y1,z1)∈R2

+

{
(1 + qy1 + z1)

p−2W3(y1, z1)
}

<+∞.

Consequently,

L[etV3] ≤ H3(p)e
t. (4.14)

Similar to the above process, we arrive at

E
[
etV3

(
y1(t), z1(t)

)]
=E
[
V3

(
y1(0), z1(0)

)]
+E

∫ t

0

L
[
esV3

(
y1(s), z1(s)

)]
ds.(4.15)

From (4.14) and (4.15), we obtain that

etE
[(
1 + qy1(t) + z1(t)

)p] ≤ E
[(
1 + qy1(0) + z1(0)

)p]
+H3(p)e

t.

Dividing et and taking the upper limit on the both sides, then we know that

lim sup
t→∞

E
[(
1 + qy1(t) + z1(t)

)p] ≤ H3(p).

Due to the positivity of y1(t) and the constant q, we can have

lim sup
t→∞

E
[
zp1(t)

]
< H3(p). (4.16)
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For X(t) =
(
x(t), y(t), z(t)

)
∈ R3

+, we derive that

|X|p =
(
x2 + y2 + z2

) p
2 ≤ 3

p
2

(
xp + yp + zp

)
.

By (4.8), (4.12), (4.16) and Assumption 2.1, we get

lim sup
t→∞

E[|X|p] ≤ 3
p
2

(
lim sup
t→∞

E
[
xp
]
+ lim sup

t→∞
E
[
yp
]
+ lim sup

t→∞
E
[
zp
])

≤ 3
p
2Mp

1

(
lim sup
t→∞

E
[
xp
1

]
+ lim sup

t→∞
E
[
yp1
]
+ lim sup

t→∞
E
[
zp1
])

< 3
p
2Mp

1

(
Ĥ1(p) +H2(p) +H3(p)

)
<+∞.

Let M(p) = 3
p
2Mp

1

(
Ĥ1(p) + H2(p) + H3(p)

)
and χ =

(
2M(p)

ε

) 1
p

. Applying the

Chebyshev inequality, we can obtain

lim sup
t→∞

P {ω : |X(ω)| > χ} ≤
lim sup
t→∞

E[|X|p]

χp
≤ M(p)

χp
=

ε

2
< ε. (4.17)

The proof is therefore complete.

5. Extinction

In this section, we shall consider the asymptotic behaviors of NK cells x(t), CTLs
y(t) and tumor cells z(t) under different noise intensities.

Lemma 5.1. ( [17]) Suppose that x(t) ∈ C[Ω×R+,R0
+], where R0

+ = {a | a > 0, a ∈
R}. Let Bi(t)(i = 1, 2, 3, ..., n) be independent Brownian motions defined on a
complete probability space (Ω,F ,P).

(i) If there are positive constants λ0, T and λ ≥ 0 such that

log x(t) ≤ λt− λ0

∫ t

0

x(s)ds+

n∑
i=1

βiBi(t)

for all t ≥ T , where βi is a constant, 1 ≤ i ≤ n, then ⟨x(t)⟩∗ ≤ λ
λ0

a.s.

(ii) If there are positive constants λ0, T and λ ≥ 0 such that

log x(t) ≥ λt− λ0

∫ t

0

x(s)ds+

n∑
i=1

βiBi(t)

for all t ≥ T , where βi is a constant, 1 ≤ i ≤ n, then ⟨x(t)⟩∗ ≥ λ
λ0

a.s.

Theorem 5.1. If λ̂2 < 0, λ̂3 < 0 and al

Ku − cu

αl
1
> 0, then

lim sup
t→∞

x(t) > 0 a.s.

lim sup
t→∞

log y(t)

t
≤ λ̂2 < 0 a.s.

lim sup
t→∞

log z(t)

t
≤ λ̂3 < 0 a.s.
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where

λ̂2 := lim sup
t→∞

1

t

{ ∑
0<tk<t

log(1 + d2k)−
∫ t

0

(
d(s)− b(s) +

σ2
2(s)

2

)
ds

}
,

λ̂3 := lim sup
t→∞

1

t

{ ∑
0<tk<t

log(1 + d3k) +

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds

}
.

That is, NK cells (x) will be weakly persistent while CTLs (y) and tumor cells (z)
will become extinct exponentially with probability one.

Proof. Applying the Itô formula to log z1 leads to

d(log z1)

=

[
a(t) +

c(t)E(t)D3(t)z1
1 + α1(t)E(t) + β1(t)D2

3(t)z
2
1

− a(t)D3(t)z1
K(t)

− c(t)E(t)D2
3(t)z

2
1

K(t)
(
1 + α1(t)E(t) + β1(t)D2

3(t)z
2
1

) − p1(t)D
2
1(t)x

2
1

1+α2(t)D3(t)z1+β2(t)D2
1(t)x

2
1

− p6(t)D2(t)D3(t)y1z1
1+α6(t)D2

3(t)z
2
1+β6(t)D2(t)y1

− σ2
3(t)

2

]
dt+σ3(t)dB3(t).

According to x(t) = D1(t)x1(t), y(t) = D2(t)y1(t) and z(t) = D3(t)z1(t), integrat-
ing both sides of the above equation from 0 to t and dividing both sides by t yield
that

log z1(t)−log z1(0)

t
=

1

t

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds+

1

t

∫ t

0

c(s)E(s)z(s)

1+α1(s)E(s)+β1(s)z2(s)
ds

− 1

t

∫ t

0

a(s)z(s)

K(s)
ds− 1

t

∫ t

0

[
c(s)E(s)z2(s)

K(s)
(
1+α1(s)E(s)+β1(s)z2(s)

)
+

p1(s)x
2(s)

1+α2(s)z(s)+β2(s)x2(s)
+

p6(s)y(s)z(s)

1 + α6(s)z2(s) + β6(s)y(s)

]
ds

+
1

t

∫ t

0

σ3(s)dB3(s).

(5.1)

Because z(t) =
∏

0<tk<t
(1 + d3k)z1(t) and

al

Ku − cu

αl
1
> 0, then we deduce that

log z(t)− log z(0)

t

=

∑
0<tk<t

log(1+d3k)

t
+

log z1(t)−log z1(0)

t

≤

∑
0<tk<t

log(1 + d3k)

t
+

1

t

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds+

1

t

∫ t

0

σ3(s)dB3(s). (5.2)

Taking the upper limit of both sides and using the strong law of large numbers, we
arrive at

lim sup
t→∞

log z(t)

t
≤ λ̂3 < 0 a.s. (5.3)
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By the Itô formula, we can similarly calculate d(log x1) as follows

d(log x1)=

(
e(t)v

D1(t)x1
−f(t)−p2(t)D3(t)z1 +

p3(t)D3(t)z1
1+α3(t)D3(t)z1+β3(t)D1(t)x1

− σ2
1(t)

2

)
dt+σ1(t)dB1(t).

Due to x(t) = D1(t)x1(t) and z(t) = D3(t)z1(t), integrating both sides of the above
formula from 0 to t and dividing both sides by t, one derives

log x1(t)− log x1(0)

t
=

1

t

∫ t

0

e(s)v(s)

x(s)
ds− 1

t

∫ t

0

(
f(s) +

σ2
1(s)

2

)
ds

− 1

t

∫ t

0

p2(s)z(s)ds+
1

t

∫ t

0

p3(s)z(s)

1 + α3(s)z(s) + β3(s)x(s)
ds

+
1

t

∫ t

0

σ1(s)dB1(s).

Similarly by x(t) =
∏

0<tk<t
(1 + d1k)x1(t), we can have

log x(t)− log x(0)

t
≥

∑
0<tk<t

log(1 + d1k)

t
+

elα

β
· 1
t

∫ t

0

1

x(s)
ds (5.4)

−
(
fu +

(σu
1 )

2

2

)
− pu2 ⟨z(t)⟩+

1

t

∫ t

0

σ1(s)dB1(s).

Denote the set S1 =

{
lim sup
t→∞

x(t) = 0

}
. If the first assertion of Theorem 5.1 does

not hold, then P(S1) > 0. Further, for any given ω ∈ S1, we derive lim
t→∞

x(t, ω) = 0.

And then for arbitrary small ε satisfying 0 < ε < min

{
1, 2elα(

2fu+(σu
1 )

2
)
β

}
, there is a

constant T1 = T1(ε, ω) > 0 such that

x(t, ω) ≤ ε, ∀ t ≥ T1(ε, ω).

On the other hand, it follows from the continuity of x(t) that there is a positive
constant ρ such that

x(t, ω) ≤ ρ, ∀ 0 ≤ t ≤ T1(ε, ω).

Noting that the extinction of z(t) implies that there exists a set S2 ∈ F satisfying
P(S2) = 1. Thus, for any ω ∈ S2, we have ⟨z(t, ω)⟩∗ = 0. Moreover, using the
strong law of large numbers shows that there exists a set S3 ∈ F with P(S3) = 1,
then for ∀ ω ∈ S3, we obtain

lim
t→∞

1

t

∫ t

0

σ1(s)dB1(s) = 0.

It is easy to find that S1 ∩ S2 ∩ S3 ̸= ∅, then for ∀ ω ∈ S1 ∩ S2 ∩ S3, taking the
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upper limit of both sides for (5.4) and by using m1 ≤
∏

0<tk<t
(1+ d1k) ≤ M1, we get

lim sup
t→∞

log x(t)

t
≥ elα

β
·
(
lim sup
t→∞

1

t

∫ T1

0

1

ρ
ds+ lim sup

t→∞

1

t

∫ t

T1

1

ε
ds

)
−
(
fu +

(σu
1 )

2

2

)

=
elα

β
· lim sup

t→∞

1

t

∫ t

T1

1

ε
ds−

(
fu +

(σu
1 )

2

2

)
.

In view of 0 < ε < min
{
1, 2elα

(2fu+(σu
1 )

2)β

}
, one may arrive

lim sup
t→∞

log x(t)

t
> 0. (5.5)

However, for ∀ t ≥ T1(ε, ω), we have

log x(t)

t
≤ log ε

t
<

log 1

t
= 0.

Hence, we can deduce the contradiction

0 ≥ lim sup
t→∞

log x(t)

t
> 0.

Then
lim sup
t→∞

x(t) > 0 a.s.

Finally, we will prove the extinction of y(t). Computing d(log y1) by the Itô formula,
we have

d(log y1) =

[
p5(t)I(t)D3(t)z1(

α4(t)+I(t)
)(
α5(t)+D3(t)z1

) − p5(t)I(t)D2(t)D3(t)y1z1

K1(t)
(
α4(t)+I(t)

)(
α5(t)+D3(t)z1

)
− d(t)+b(t)− σ2

2(t)

2

]
dt+ σ2(t)dB2(t).

By virtue of y(t) = D2(t)y1(t) and z(t) = D3(t)z1(t), integrating both sides of the
above formula from 0 to t and dividing both sides by t, we can see that

log y1(t)−log y1(0)

t
=
1

t

∫ t

0

p5(s)I(s)z(s)(
α4(s)+I(s)

)(
α5(s)+z(s)

)ds
− 1

t

∫ t

0

p5(s)I(s)y(s)z(s)

K1(s)
(
α4(s)+I(s)

)(
α5(s)+z(s)

)ds
− 1

t

∫ t

0

(
d(s)− b(s) +

σ2
2(s)

2

)
ds

+
1

t

∫ t

0

σ2(s)dB2(s).

Similarly, because y(t) =
∏

0<tk<t
(1 + d2k)y1(t), we obtain

log y(t)− log y(0)

t
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≤

∑
0<tk<t

log(1+d2k)

t
+
1

t

∫ t

0

p5(s)I(s)z(s)(
α4(s)+I(s)

)(
α5(s)+z(s)

)ds (5.6)

− 1

t

∫ t

0

(
d(s)−b(s)+

σ2
2(s)

2

)
ds+

1

t

∫ t

0

σ2(s)dB2(s).

Using the extinction of z(t), we can see that for ∀ ε > 0, there exists a constant
T2 > 0 such that for any t ≥ T2, z(t) < ε a.s. Consequently,

log y(t)− log y(0)

t

≤

∑
0<tk<t

log(1 + d2k)

t
+
1

t

∫ T2

0

p5(s)I(s)z(s)(
α4(s)+I(s)

)(
α5(s)+z(s)

)ds+ t− T2

t
· p

u
5ε

αl
5

− 1

t

∫ t

0

(
d(s)− b(s) +

σ2
2(s)

2

)
ds+

1

t

∫ t

0

σ2(s)dB2(s).

By taking the upper limit on both sides of the above inequality and using the strong
law of large numbers and the arbitrariness of ε, it follows that

lim sup
t→∞

log y(t)

t
≤ λ̂2 < 0 a.s.

This completes the proof.

Theorem 5.2. If λ̌2 > 0, λ̂3 < 0 and al

Ku − cu

αl
1
> 0, then we can have that

lim sup
t→∞

x(t) > 0 a.s. (5.7)

⟨y(t)⟩∗ ≥ Kl
1λ̌2

pu5
a.s. (5.8)

lim sup
t→∞

log z(t)

t
≤ λ̂3 < 0 a.s. (5.9)

where

λ̌2 := lim inf
t→∞

1

t

{ ∑
0<tk<t

log(1 + d2k)−
∫ t

0

(
d(s)− b(s) +

σ2
2(s)

2

)
ds

}
,

λ̂3 := lim sup
t→∞

1

t

{ ∑
0<tk<t

log(1 + d3k) +

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds

}
.

That is, NK cells (x) will be weakly persistent and CTLs (y) will be persistent in the
mean, while tumor cells (z) will become extinct exponentially with probability one.

Proof. The proof of (5.7) and (5.9) is the same as Theorem 5.1, hence it is omitted
here. Next, we will prove (5.8). From (5.6), we get

log y(t)− log y(0)

t
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≥

∑
0<tk<t

log(1 + d2k)

t
− 1

t

∫ t

0

pu5
Kl

1

· y(s)ds− 1

t

∫ t

0

(
d(s)−b(s) +

σ2
2(s)

2

)
ds

+
1

t

∫ t

0

σ2(s)dB2(s).

Applying λ̌2 := lim inf
t→∞

1

t

{ ∑
0<tk<t

log(1+ d2k)−
∫ t

0

(
d(s)− b(s)+

σ2
2(s)
2

)
ds

}
> 0, we

can similarly obtain that for ∀ ε > 0, there exists a constant T3 > 0 such that for
any t ≥ T3

1

t

{ ∑
0<tk<t

log(1 + d2k)−
∫ t

0

(
d(s)− b(s) +

σ2
2(s)

2

)
ds

}
> λ̌2 −

ε

2
a.s. (5.10)

Due to the strong law of large numbers, we easily know that there exists a set
Ω1 ∈ F with P(Ω1) = 1. For the above ε > 0, ∀ ω ∈ Ω1, there exists a constant
T4 = T4(ε, ω) > 0 such that for any t ≥ T4

−ε

2
<

1

t

∫ t

0

σ2(s)dB2(s) <
ε

2
. (5.11)

Consequently, by (5.10) and (5.11), for t ≥ max{T3, T4}, it is easy to get

log y(t)− log y(0)

t
≥ λ̌2 −

ε

2
− pu5

Kl
1

· 1
t

∫ t

0

y(s)ds− ε

2

= λ̌2 −
pu5
Kl

1

· 1
t

∫ t

0

y(s)ds− ε.

Hence, using Lemma 5.1 and the arbitrariness of ε, we obviously have

⟨y(t)⟩∗ ≥ Kl
1λ̌2

pu5
a.s.

The proof is now complete.

6. Persistence

In this section, we will find the conditions to guarantee the persistence of all three
kinds of cells.

Theorem 6.1. If λ̌2 > 0, λ̌3 − Eu⟨c(t)⟩∗
Klβl

1
− ⟨p1(t)⟩∗

βl
2

> 0 and al

Ku − cu

αl
1
> 0, then we

have
lim sup
t→∞

x(t) > 0 a.s. (6.1)

⟨y(t)⟩∗ ≥ Kl
1λ̌2

pu5
a.s. (6.2)

λ̌3 − Eu⟨c(t)⟩∗
Klβl

1
− ⟨p1(t)⟩∗

βl
2

au

Kl +
pu
6

βl
6

≤ ⟨z(t)⟩∗ ≤ ⟨z(t)⟩∗ ≤ λ̂3

al

Ku − cu

αl
1

a.s. (6.3)
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where

λ̌2 := lim inf
t→∞

1

t

{ ∑
0<tk<t

log(1 + d2k)−
∫ t

0

(
d(s)− b(s) +

σ2
2(s)

2

)
ds

}
,

λ̌3 := lim inf
t→∞

1

t

{ ∑
0<tk<t

log(1 + d3k) +

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds

}
,

λ̂3 := lim sup
t→∞

1

t

{ ∑
0<tk<t

log(1 + d3k) +

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds

}
.

That is, NK cells (x) will be weakly persistent while CTLs (y) and tumor cells (z)
will be persistent in the mean.

Proof. From (5.2), on one hand, we have

log z(t)− log z(0)

t
≥

∑
0<tk<t

log(1 + d3k)

t
+

1

t

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds

− 1

t

∫ t

0

(
au

Kl
+

pu6
βl
6

)
·z(s)ds− Eu⟨c(t)⟩

Klβl
1

− ⟨p1(t)⟩
βl
2

+
1

t

∫ t

0

σ3(s)dB3(s).

According to λ̌3 := lim inf
t→∞

1

t

{ ∑
0<tk<t

log(1 + d3k) +
∫ t

0

(
a(s)− σ2

3(s)
2

)
ds

}
, we know

that for ∀ ε > 0, ∃ T5 > 0 such that for ∀ t ≥ T5

1

t

{ ∑
0<tk<t

log(1 + d3k) +

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds

}
> λ̌3 −

ε

4
a.s. (6.4)

In view of the definition of upper limit, for the above ε > 0, one can find two
constants T6, T7 > 0 such that for ∀ t ≥ max{T6, T7}

⟨c(t)⟩ < ⟨c(t)⟩∗ + εKlβl
1

4Eu
a.s. ⟨p1(t)⟩ < ⟨p1(t)⟩∗ +

εβl
2

4
a.s. (6.5)

Then, we use the strong law of large numbers again, and find that there exists a
set Ω2 ∈ F with P(Ω2) = 1. Thus, for the above ε > 0, ∀ ω ∈ Ω2, there exists a
constant T8 = T8(ε, ω) > 0 such that for any t ≥ T8

−ε

4
<

1

t

∫ t

0

σ3(s)dB3(s) <
ε

4
. (6.6)

Combining (6.4), (6.5) and (6.6), we obviously get that ∃ T = max{T5, T6, T7, T8}
such that for any t ≥ T

log z(t)− log z(0)

t
≥ λ̌3 −

ε

4
− 1

t

∫ t

0

(
au

Kl
+

pu6
βl
6

)
· z(s)ds− Eu⟨c(t)⟩∗

Klβl
1

− ε

4

− ⟨p1(t)⟩∗

βl
2

− ε

4
− ε

4

= λ̌3 −
1

t

∫ t

0

(
au

Kl
+

pu6
βl
6

)
· z(s)ds− Eu⟨c(t)⟩∗

Klβl
1

− ⟨p1(t)⟩∗

βl
2

− ε.
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By λ̌3 − Eu⟨c(t)⟩∗
Klβl

1
− ⟨p1(t)⟩∗

βl
2

> 0, the arbitrariness of ε and Lemma 5.1, we have

⟨z(t)⟩∗ ≥
λ̌3 − Eu⟨c(t)⟩∗

Klβl
1

− ⟨p1(t)⟩∗
βl
2

au

Kl +
pu
6

βl
6

a.s.

On the other hand, by (5.2) we can obtain

log z(t)− log z(0)

t
≤

∑
0<tk<t

log(1+d3k)

t
+
1

t

∫ t

0

(
a(s)− σ2

3(s)

2

)
ds

+

(
cu

αl
1

− al

Ku

)
· 1
t

∫ t

0

z(s)ds

+
1

t

∫ t

0

σ3(s)dB3(s).

Similarly, according to al

Ku − cu

αl
1
> 0 and using Lemma 5.1 we obtain

⟨z(t)⟩∗ ≤ λ̂3

al

Ku − cu

αl
1

a.s. (6.7)

Finally, the proof of (6.1) and (6.2) is similar to (5.7) and (5.8) of Theorem 5.2,
hence it is omitted here.

7. Numerical simulation

In this section, we present some numerical simulations and examples to further illus-
trate our theoretical results. We use the Milstein method [10] to get the discretiza-
tion equation for system (1.4) and discuss the influence of stochastic perturbations
and pulsed chemotherapy. In the following examples, we choose the initial value
(x0, y0, z0, v0) = (4× 105, 105, 2× 105, 4× 105) and the parameter values are shown

in Table 2. Besides, E(t) = Ẽ(t− nτ̂), t ∈ [nτ̂ , (n+ 1)τ̂), which is shown in Figure
2 [30], and τ̂ = 29, which is a menstrual cycle.

Figure 2. Estradiol levels across the menstrual cycle.

Example 7.1. Choose σ1(t) =
√
0.04+0.02 sin t, σ2(t) =

√
0.04+0.02 sin t, σ3(t) =√

0.04+0.02 sin t, d1k = d2k = d3k = e−
1
k2 − 1 and τ = 30.



A Stochastic Immunotherapy Model for Breast Cancer 485

By computing h2 =

[√
pu
3M1−

√
pl
2m1√

αl
3m1

∨ 0

]2
= 0, we have f l − h2 +

(σu
1 )

2

2 =

0.0833 > 0, which satisfies the condition of Theorem 4.1. Hence, the solution of
system (1.4) is stochastically ultimately bounded. The results of numerical sim-
ulations are shown in Figure 3 and Figure 4. They reveal the sample path of
|X(t)| =

√
x2(t) + y2(t) + z2(t) and the three-dimensional diagram of system (1.4),

respectively. Obviously, both of the two figures verify the conclusion of Theorem
4.1.

0 100 200 300 400 500 600 700 800 900 1000

Time t
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107

Figure 3. The sample path of |X(t)| =
√

x2(t) + y2(t) + z2(t) for system (1.4) with σ1(t) =√
0.04 + 0.02 sin t, σ2(t) =

√
0.04 + 0.02 sin t and σ3(t) =

√
0.04 + 0.02 sin t.
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Figure 4. Three-dimensional diagram of system (1.4) with σ1(t) =
√
0.04 + 0.02 sin t, σ2(t) =√

0.04 + 0.02 sin t and σ3(t) =
√
0.04 + 0.02 sin t.

Next, we choose σ1(t) =
√
0.01+0.02 sin t, σ2(t) =

√
0.25+0.01 sin t, σ3(t) =√

0.64+0.01 sin t, and other parameters keep unchanged. By calculating λ̂2 =

−0.115 < 0, λ̂3 = −0.02 < 0 and al

Ku − cu

αl
1
≈ 2.325 × 10−7 > 0, we can obtain

that the conditions of Theorem 5.1 hold, namely, x is weakly persistent while y and
z become extinct. And the numerical simulations are presented in Figure 5.

Further, we choose σ2(t) =
√
0.01 + 0.02 sin t and keep the other parameters

unchanged. By computing λ̌2 = 0.005 > 0, λ̂3 = −0.02 < 0 and al

Ku − cu

αl
1

≈
2.325×10−7 > 0, thus the conditions of Theorem 5.2 hold, that is, x will be weakly
persistent and y will be persistent in the mean, while z goes to die out. The results
of numerical simulations are shown in Figure 6, which confirms Theorem 5.2.
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Figure 5. The sample path of x(t), y(t), z(t) and ẑ(t) with σ1(t) =
√
0.01 + 0.02 sin t, σ2(t) =√

0.25 + 0.02 sin t and σ3(t) =
√
0.64 + 0.02 sin t, respectively.

Moreover, set σ3(t) =
√
0.01 + 0.02 sin t and the other parameters are the same

as above. By computing λ̌2 = 0.005 > 0, λ̌3 − Eu⟨c(t)⟩∗
Klβl

1
− ⟨p1(t)⟩∗

βl
2

≈ 0.277 > 0

and al

Ku − cu

αl
1
≈ 2.325× 10−7 > 0, we find that the conditions of Theorem 6.1 hold.

Consequently, x will be weakly persistent as well as y and z will be persistent in
the mean, as is shown in Figure 7.

Finally, in order to investigate the effects of pulsed chemotherapy on tumor cell
extinction, we will compare the following SDE without impulse with system (1.4),
where v̂(t) = v(t) = α

β + (v0 − α
β )e

−βt.

dx̂(t) =
(
e(t)v̂ − f(t)x̂− p2(t)x̂ẑ +

p3(t)x̂ẑ
1+α3(t)ẑ+β3(t)x̂

)
dt+ σ1(t)x̂dB1(t),

dŷ(t) =
(

p5(t)I(t)ŷ
α4(t)+I(t)

(
1− ŷ

K1(t)

)
ẑ

α5(t)+ŷ − d(t)ŷ + b(t)ŷ
)
dt+ σ2(t)ŷdB2(t),

dẑ(t) =
(
ẑ
(
a(t)+ c(t)E(t)ẑ

1+α1(t)E(t)+β1(t)ẑ2

)(
1− ẑ

K(t)

)
− p1(t)x̂

2ẑ
1+α2(t)ẑ+β2(t)x̂2

− p6(t)ŷẑ
2

1+α6(t)ẑ2+β6(t)ŷ

)
dt+σ3(t)ẑdB3(t),

x̂(0) = x0, ŷ(0) = y0, ẑ(0) = z0.

(7.1)

The parameter values of system (7.1) are the same as model (1.4). We will take two
sets of noise intensities as follows: σ1(t)=

√
0.01+0.02 sin t, σ2(t)=

√
0.25+0.01 sin t,

σ3(t)=
√
0.64 + 0.01 sin t, and σ2(t) =

√
0.01 + 0.01 sin t, where σ1(t) and σ3(t) keep

unchanged. Similarly, we can get the results that tumor cells will become extinct
in both cases. Here, we only simulate the sample paths of tumor cells which are
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shown in Figure 5(c) and Figure 6(c), respectively. Obviously, it is easy to find that
pulsed chemotherapy can accelerate the extinction of tumor cells.

Table 2. Parameter values in model (1.4).

Parameter Value Reference

e(t) 0.00486 + 0.0001 sin t Estimated from data [30,34]

a(t) 0.3 + 0.01 sin t Estimated from data [30]

f(t) 0.0693 + 0.001 sin t Estimated from data [30,34]

c(t) 1.3 × 10−7 + 10−8 sin t Estimated

p2(t) 3.42 × 10−6 + 10−7 sin t Estimated from data [6, 7, 30]

α1(t) 4.507 + 0.01 sin t Estimated

p3(t) 1.87 × 10−8 + 10−9 sin t Estimated from data [3, 30]

β1(t) 7.08 × 10−8 + 10−9 sin t Estimated from data [30]

α3(t) 1.6 × 10−5 + 10−6 sin t Estimated from data [3, 30]

K(t) 106 + 105 sin t Estimated

β3(t) 3.27 + 0.01 sin t Estimated from data [3, 30]

p1(t) 8.7 × 10−7 + 10−8 sin t Estimated

p5(t) 4.14 × 10−3 + 10−4 sin t Estimated from data [11,30]

α2(t) 7 × 106 + 105 sin t Estimated from data [3, 30]

I(t) 2.3 × 10−11 + 10−12 sin t Estimated from data [14,22,30]

β2(t) 5.4 × 10−5 + 10−6 sin t Estimated from data [3, 30]

α4(t) 2.3 × 10−11 + 10−12 sin t Estimated from data [14,22,30]

p6(t) 2.04 × 10−3 + 10−4 sin t Estimated from data [3, 30]

K1(t) 8 × 108 + 107 sin t Estimated from data [9, 30]

α6(t) 0.268 + 0.01 sin t Estimated from data [3, 30]

α5(t) 1000 + 100 sin t Estimated from data [30]

β6(t) 4343 + 100 sin t Estimated from data [3, 30]

d(t) 0.41 + 0.01 sin t Estimated from data [4, 30]

α 3.6 × 107 [30]

b(t) 0.42 + 0.01 sin t Estimated

β 6.3 × 10−3 [28, 30]

Example 7.2. Choose σ1(t) =
√
0.01+0.02 sin t, σ2(t) =

√
0.25+0.01 sin t, σ3(t) =√

0.64+0.01 sin t, τ = 90 and other parameters are the same as in Example 7.1.

By calculation, we can similarly obtain that tumor cells will die out. Moreover,
our purpose is only to compare the effects of different pulsed chemotherapy cycles
on tumor cell extinction, as shown in Figure 8. It is clear that shortening the pulsed
period can keep the number of tumor cells lower until they become extinct.

Example 7.3. In order to illustrate the inhibitory effects of random disturbances
on cell proliferation, we choose σ1(t) =

√
0.2+0.02 sin t, σ2(t) =

√
0.4+0.02 sin t

and σ3(t) =
√
0.8+0.02 sin t, and other parameters are the same as in Example 7.1.

By similar calculation, we can easily observe that the parameters satisfy the
conditions of Theorem 5.1. Hence, x will be weakly persistent while y and z will
become extinct. The results of numerical simulations compared with Example 7.1
are shown in Figure 9. It can be seen that increasing the intensities of random
disturbances will accelerate the extinction of tumor cells, that is, stochastic distur-
bances can inhabit the cell proliferation.
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Figure 6. The sample path of x(t), y(t), ⟨y(t)⟩, z(t) and ẑ(t) with σ1(t) =
√
0.01 + 0.02 sin t, σ2(t) =√

0.01 + 0.02 sin t and σ3(t) =
√
0.64 + 0.02 sin t, respectively.

0 50 100 150 200

Time t

0

2

4

6

8

10
10

6 (a)

0 50 100 150 200

Time t

0

0.5

1

1.5

2

2.5
10

5 (b)

0 50 100 150 200

Time t

0

5

10

15
10

5 (c)

Figure 7. The sample path of x(t), y(t), ⟨y(t)⟩, z(t) and ⟨z(t)⟩ with σ1(t) =
√
0.01 + 0.02 sin t,

σ2(t) =
√
0.01 + 0.02 sin t and σ3(t) =

√
0.01 + 0.02 sin t, respectively.



A Stochastic Immunotherapy Model for Breast Cancer 489

0 10 20 30 40 50 60 70 80 90 100

Time t

0

2

4

6

8

10

12

14

16

18
105

Figure 8. The sample path of z(t) with different pulsed periods.
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Figure 9. The sample paths of x(t), y(t) and z(t) with different white noise intensities, respectively.

8. Conclusion

In this paper, we devote our main attention to studying stochastic model (1.4) which
includes immunotherapy and pulsed chemotherapy. First, we prove the existence
and uniqueness of the global positive solution for system (1.4) by the method of
stochastic Lyapunov analysis, which lays a foundation for the following discussion.
Next, the sufficient condition to guarantee the stochastic ultimate boundedness of
the solution is obtained. Furthermore, we focus on the extinction of the tumor
cells and the persistence of all three kinds of cells by using the strong law of large
numbers. Specifically, when CTLs and tumor cells are subject to strong noises, both
of them will become extinct exponentially with probability one. Moreover, tumor
cells will be extinct when the perturbations to them are large enough while CTLs
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will persist in the mean under weak noises. Besides, when both tumor cells and
CTLs are subject to sufficiently weak noises, they will be persistent in the mean. In
all the above three cases, NK cells are weakly persistent, and we can find that the
stochastic perturbations play an important role in the elimination of tumor cells.
At last, all of our theoretical results are illustrated by numerical simulations. The
figures also imply that pulsed chemotherapy can accelerate the extinction of tumor
cells and shortening the period of pulsed chemotherapy can keep tumor cells at a
low level until they become extinct. In addition, stochastic disturbances can inhibit
cell proliferation.

Therefore, one of the most commonly used methods in the clinical treatment of
breast cancer is pulsed chemotherapy. This treatment is characterized by periodic
dosing, that is, concentrated dosing over a period of time, followed by an inter-
mittent period. This way of periodic administration can reduce the damage of the
drug to normal cells, while improving the killing effect on tumor cells. In clinical
treatment, appropriately shortening the cycle of pulse chemotherapy can also in-
hibit tumor cells at a lower level until extinction. In addition, in daily life, patients
should maintain a reasonable rest to avoid the impact of environmental factors on
cancer patients.
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