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Impact of Plankton Body Size on a Stochastic
Plankton System with Lévy Jumps∗

Shulin Sun1,†, Yaping Jin1 and Cuihua Guo2

Abstract In consideration of the important impact of plankton body size
and Lévy noise on plankton system, a stochastic phytoplankton-zooplankton
system with Lévy jump is proposed and investigated in this paper. Firstly,
we prove that there is a unique global positive solution to the system by
using Lyapunov function and Itǒ formula. Then, some thresholds which de-
pend on plankton body size are given, and they determine the extinction and
weak persistence in the mean of plankton populations. In addition, the suffi-
cient conditions for the existence of a stationary distribution of the solution
are given. Finally, some numerical simulations are introduced to support the
main theoretical results and illustrate the impact of plankton body size and
environmental noise on plankton populations.
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1. Introduction

As the most abundant life form in the aquatic ecosystem, phytoplankton absorbs
nutrients from water and generates energy through photosynthesis to support the
entire biological community, including fish and heterotrophic bacteria. However,
phytoplankton may grow out of control, resulting in toxic or harmful effects on
humans, fish, marine mammal under anoxic conditions [1]. These have stimulated
many scholars to study the dynamics of phytoplankton blooms in many different
ways, so as to explore the possible mechanisms underlying the occurrence or ter-
mination of these blooms. Hence, finding some key factors affecting the growth
mechanisms of phytoplankton is currently of great interest.

Phytoplankton are a polyphyletic of single-cell primary producers commonly ex-
isting in aquatic ecosystems [2]. It is worth noting that the size of phytoplankton
cells plays a major part in the metabolism and growth rate of phytoplankton. Fur-
ther experimental studies showed that the growth rate, metabolic rate and nutrient
uptake all depend on the size of phytoplankton cells [3]. In addition, the size of zoo-
plankton is considered to be another prominent element that can significantly affect
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the growth of aquatic plankton, because the size of zooplankton body can change
the grazing choices of phytoplankton and maintain a clear state in the aquatic
ecosystem [4]. To sum up, the cell size of phytoplankton and the body size of zoo-
plankton are two vital factors affecting the dynamic mechanism of phytoplankton
growth in aquatic ecosystems. Because the dynamic mechanism of phytoplankton
growth can be qualitatively and quantitatively described by mathematical models,
mathematical models, as a powerful tool, have attracted increasing attention from
biological mathematicians. However, there are few mathematical ecological models
to study the effects of phytoplankton cell size or zooplankton body size or both on
the dynamic mechanism of phytoplankton blooms in recent years [5]. For example,
Zhao et al. successively studied a phytoplankton-zooplankton model [6–8], and they
found that phytoplankton cell size or zooplankton body size has important effects
on the spatiotemporal dynamics and growth dynamics of phytoplankton in the com-
plex aquatic environments. This provides a very good idea for future research on
phytoplankton-zooplankton models. As we all know, many toxin-producing phyto-
plankton (TPP) can release toxic chemicals into the aquatic environment, which can
inhibit the growth of zooplankton and even kill them. Furthermore, the dynamics
of plankton system can be affected by the release toxin.

In fact, in the real aquatic environment, the growth of plankton is inevitably be
affected by environmental noise, such as photosynthetic effective radiation, nutrient
availability, water temperature, light, acidity, etc., which are usually unpredictable.
In this way, it is meaningful to incorporate the unpredictable environmental factors
into the aquatic ecosystem, which can help us gain a deeper understanding of the
real aquatic ecosystem. Of course, the intrinsic growth rate and mortality of the
plankton are always disturbed by environmental noise.

In addition, population system may suffer sudden environmental perturbations,
such as, tsunami, earthquakes, volcanoes, floods or hurricanes [9]. Scheffer et al. [10]
pointed out that all ecosystems are exposed to gradual changes in climate, nutrient
loading, habitat fragmentation or biotic exploitation. However, this smooth change
can be interrupted by sudden drastic switches to a contrasting state. In order to
model the physical environmental disturbance (occasional catastrophic shocks), it
is reasonable to consider another environmental noise, namely the Lévy jump noise,
into the underlying population system. Bao et al. [9,11] did some interesting works
in this field.

Based on the above research works, in this paper, we will consider the following
stochastic phytoplankton-zooplankton model:

dP (t)
dt = P (t−)[r(x)(1− P (t−)

K )− αC(x, y)Z(t−)]dt+ σ1P (t−)dB1(t)

+P (t−)
∫
Y γ1(u)Ñ(dt,du),

dZ(t)
dt = Z(t−)[βC(x, y)P (t−)− µ− θP 2(t−)

m2+P 2(t−) ]dt+ σ2Z(t−)dB2(t)

+Z(t−)
∫
Y γ2(u)Ñ(dt, du),

(1.1)

where P (t) is the density of toxin producing phytoplankton population and Z(t) is
the density of zooplankton population at time t. All parameters are nonnegative.K
is the environmental carrying capacity of TPP population; µ denotes the natural
death rate of zooplankton; α is the rate of predation and β is the conversion rate of

zooplankton; θ is TPP toxin releasing rate; according to [12] ,the function P 2(t)
m2+P 2(t)

describes the distribution of toxic substance which ultimately contributes to the
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death of zooplankton populations. In view of [5], r(x) = x
c1x2+c2x+c3

is the maxi-
mum specific growth rate of phytoplankton as a function of phytoplankton cell size
x, and cj(j = 1, 2, 3) is a positive empirical constant; C(x, y) = Cm exp[− 1

d (x−ey)2]
is the consumption rate of zooplankton as a function of phytoplankton cell size x
(µm3) and the zooplankton body size y (µg/ind, dry weight), where the units of
the phytoplankton cell size and the zooplankton body size can refer to the ref-
erences [13, 14], where Cm is the maximum consumption rate, d and e are the
consumption rate coefficients. B1(t) and B2(t) are mutually independent standard
Brownian motions defined on a complete probability space (Ω,F ,P) with a filtra-
tion {Ft}t≥0 satisfying the usual conditions, σ1 and σ2 denote the intensities of the

white noise. Ñ(dt, du) = N(dt, du)− λ(du)dt is the compensated Poisson random
measure, where N is a Poisson counting measure with Lévy measure (jump mea-
sure) λ on a measurable subset Y of (0,∞) with λ(Y) < ∞, and N is independent
of Bi(t), the jump intensities γi : Y× Ω → R are bounded and continuous.

The rest of this paper is organized as follows: Section 2 initially presents the basic
assumptions and a useful lemma, and we investigate the existence and uniqueness of
global positive solutions. Then we apply Itô’s formula to obtain sufficient conditions
for the extinction and persistence in the mean of the system by constructing a
suitable stochastic Lyapunov function. In addition, the sufficient conditions for a
stationary distribution are given. In section 3, a series of numerical simulations are
then performed to verify the theoretical analysis. We summarize the results and
present our conclusions in Section 4.

2. Dynamic behaviors

In this section, we will investigate the existence and uniqueness of global positive
solutions of system (1.1), the extinction and persistence in the mean of plankton
populations. In addition, the sufficient conditions for the existence of a stationary
distribution are given.

2.1. Preliminaries

Consider the following two-dimensional stochastic differential equation with Lévy
jumps

dx(t−) = F (x(t−), t)dt+G(x(t−), t)dB(t) +

∫
Y
H(x(t−), t, u)Ñ(dt,du),

x(t) is the solution of the stochastic differential equation. If V ∈ C2,1(R2 ×
[t0,+∞); R+), the random differentiation of V is

dV (x, t) =LV (x, t)dt+ Vx(x
−, t)G(x−, t)dB(t)

+

∫
Y

[
V (x− +H(x−, t, u), t)− V (x−, t)

]
Ñ(dt, du),

and

LV (x, t) =Vt(x
−, t) + Vx(x

−, t)F (x−, t) +
1

2
trace

(
GT (x−, t)VxxG(x−, t)

)
+

∫
Y

[
V (x− +H(x−, t, u), t)− V (x−, t)− Vx(x

−, t)H(x−, t, u)
]
λ(du),
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where x− = x(t−).
Assumption 2.1. Throughout this paper, we assume that 1+γi(u) > 0, u ∈ Y, i =
1, 2, and there is a constant c > 0 such that∫

Y
ln2(1 + γi(u))λ(du) ≤ c,

∫
Y
γ2
i (u)λ(du) ≤ c.

That is to say, the intensity of the Lévy jumps is not too large.

Lemma 2.1. [15] Suppose that X(t) ∈ C(Ω × [0,+∞);R+), and let Assumption
2.1. hold.

(i) If there exist two positive constants T and ρ0 such that

lnX(t) ≤ ρt− ρ0

∫ t

0

X(s)ds+ σB(t) +

2∑
i=1

ρi

∫ t

0

∫
Y
ln(1 + γi(u))Ñ(ds,du),

for all t ≥ T , where both σ and ρi are constants, then ⟨X(t)⟩∗ ≤ ρ
ρ0

a.s. ρ ≥ 0;

limt→+∞ X(t) = 0 a.s. ρ < 0.

(ii) If there exist three positive constants T , ρ and ρ0 such that

lnX(t) ≥ ρt−ρ0

∫ t

0

X(s)ds+σB(t)+

2∑
i=1

ρi

∫ t

0

∫
Y
ln(1+γi(u))Ñ(ds,du) a.s.,

then

⟨X(t)⟩∗ ≥ ρ

ρ0
a.s.

Lemma 2.2. Let Assumption 2.1. hold. Then, for any initial value (P (0), Z(0)) ∈
R2

+, the solution (P (t), Z(t)) of system (1.1.1) has the property

lim
t→∞

sup
lnP (t)

t
≤ 0, lim

t→∞
sup

lnZ(t)

t
≤ 0.

Proof. For system (1.1), applying Itǒ-Lévy formula we deduce

et lnP (t) = lnP0 +

∫ t

0

es[lnP (s) + r(s)(1− P (s)

K
)− αZ(s)− σ2

1

2

−
∫
Y
(γ1(u)− ln(1 + γ1(u)))λ(du)]ds+

∫ t

0

esσ1dB1(s)

+

∫ t

0

∫
Y
es ln(1 + γ1(u))Ñ(dt,du).

It follows from the inequality lnx ≤ x− 1 that

et lnP (t) ≤ lnP0 +

∫ t

0

es[lnP (s) + r(s)− r(s)

K
P (s)− σ2

1

2
]ds
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+

∫ t

0

esσ1dB1(s) +

∫ t

0

∫
Y
es ln(1 + γ1(u))Ñ(dt,du).

Due to the property of the function ln v − rv
K ( r

K , v > 0) which has a maximum

value −1− ln r
K at v = K

r , we deduce that

et lnP (t) ≤ lnP0 +
∫ t

0
es[−1 + r(s)− ln r(s)

K − σ2
1

2 ]ds

+
∫ t

0
esσ1dB1(s) +

∫ t

0

∫
Y es ln(1 + γ1(u))Ñ(dt, du).

(2.1)

Let M1(t) =
∫ t

0
esσ1dB1(s),M2(t) =

∫ t

0

∫
Y es ln(1 + γ1(u))Ñ(dt, du). Then the

quadratic variation of M1(t) and M2(t) is

⟨M1(t)⟩ (t) =
∫ t

0

e2sσ2
1ds ≤

σ2
1

2
(e2t − 1) < ∞,

and

⟨M2(t)⟩ (t) =
∫ t

0

∫
Y
e2s| ln(1 + γ1(u))|2λ(du) ≤

c(e2t − 1)

2
< ∞.

In view of Lemma 4.3 in [9], for any positive numbers a, b, T, we have

P
{

sup
0≤t≤T

[
M1(t)−

a

2
⟨M1(t)⟩+M2(t)

−1

a

∫ t

0

∫
Y
[eae

s ln(1+γ1(u)) − 1− aes ln(1 + γ1(u)]λ(du)ds

]
> b

}
≤ e−ab.

Choose T = nη, a = εe−nη, b = ξenη lnn

ε , where n ∈ N, 0 < ε < 1, η > 0, ξ > 1.
By the Borel-Cantelli lemma, we see that there exists an Ωi ⊆ Ω with P(Ωi) = 1
such that, for any ω ∈ Ωi, there is an integer n0 = n0(ω) such that

M1(t) +M2(t) ≤
ξenη lnn

ε
+

εe−nη

2

∫ t

0

e2sσ2
1ds+

enη

ε

∫ t

0

∫
Y
[(1 + γ1(u))

εes−nη

− 1− εes−nη ln(1 + γ1(u))]λ(du)ds,

where n > n0, 0 ≤ t ≤ nη. Furthermore, from the inequality xp ≤ 1 + p(x− 1)(x ≥
1, 0 ≤ p ≤ 1) we get

enη

ε

∫ t

0

∫
Y
[(1 + γ1(u))

εes−nη

− 1− εes−nη ln(1 + γ1(u))]λ(du)ds

≤
∫ t

0

∫
Y
es(γ1(u)− ln(1 + γ1(u)))λ(du)ds.

Substituting the above inequality into (2.1) yields

et lnP (t) ≤ lnP0 +
ξenη lnn

ε
+

∫ t

0

es(−1− ln
r(x)

K
+ r(x)− σ2

1

2
)ds

+
εe−nη

2

∫ t

0

e2sσ2
1ds+

∫ t

0

∫
Y
es(|γ1(u)|+ | ln(1 + γ1(u))|)λ(du)ds
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≤ lnP0 +
ξenη lnn

ε
+

∫ t

0

es(−1− ln
r(x)

K
+ r(x)− (1− εes−nη)σ2

1

2
)ds

+

∫ t

0

∫
Y
es(|γ1(u)|+ | ln(1 + γ1(u))|)λ(du)ds.

Then, for any ω ∈ Ωi and (n− 1)η ≤ t ≤ nη with n > n0 + 1, we have

rl lnP (t) ≤ lnP0

et
+

ξeη lnn

ε
+

∫ t

0

es−t(−1− ln
r(x)

K
+ r(x)− (1− εes−nη)σ2

1

2
)ds

+

∫ t

0

∫
Y
es−t(|γ1(u)|+ | ln(1 + γ1(u))|)λ(du)ds.

By Assumption 2.1, it is readily seen that, for any 0 ≤ t ≤ nη, there exists a
constant N which is independent of n such that

lnP (t)

t
≤ lnP0

tet
+

ξeη lnn

tε
+N(

1

t
− 1

tet
).

Setting t → ∞ leads to

lim
t→∞

sup
lnP (t)

t
≤ 0.

On the other hand, the result for Z(t) can be proved in the same way and so we
omit it.

2.2. Existence and uniqueness of global positive solutions

Before investigating the dynamics of system (1.1), we should first guarantee the
existence of global positive solutions. Based on the biological interpretation, we
just take the nonnegative solutions into account for system (1.1). The following
result can be presented.

Theorem 2.1. For any given initial value (P (0), Z(0)) ∈ R2
+, system (1.1) has a

unique solution (P (t), Z(t)) ∈ R2
+ for all t > 0 with probability 1.

Proof. Since the coefficients of system (1.1) are locally Lipschitz continuous, for
any given initial value (P (0), Z(0)) ∈ R2

+, there is a unique local solution (P (t), Z(t))
∈ R2

+, for t ∈ [0, τe), where τe is the explosion time. To show this solution is global,
we only need to show that τe = +∞ a.s. Let k0 > 0 be sufficiently large such that
(P (0), Z(0)) lies within the interval ( 1

k0
, k0). For each integer k ≥ k0, define the

stopping time

τk = inf

{
t ∈ [0, τe) : P (t) /∈ (

1

k
, k) or Z(t) /∈ (

1

k
, k)

}
.

Throughout this paper, we set inf ∅ = ∞ (as usual ∅ is the empty set). Obviously,
τk is increasing as k → +∞. Let τ∞ = lim

k→+∞
τk. Thus, τ∞ ≤ τe a.s. If we can

verify τ∞ = +∞, then τe = +∞ and (P (t), Z(t)) ∈ R2
+ a.s. That is to say, to

complete the proof we only need to show that τ∞ = +∞ a.s. If τ∞ ̸= +∞, there
exists a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.
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Hence there is an integer k1 ≥ k0, such that for all k ≥ k1

P{τk ≤ T} ≥ ε. (2.2)

Define a C2− function V : R2
+ → R+ by

V (P (t), Z(t)) = β[P (t)−M −M ln(
P (t)

M
)] + α(Z(t)− lnZ(t)− 1),

where M is a positive constant to be determined suitably later.
Applying Itǒ formula to V , we have

dV =LV dt+ βσ1(P (t)−M)dB1(t) + ασ2(Z(t)− 1)dB2(t) + β

∫
Y
[γ1(u)P (t−)

−M ln(1 + γ1(u)]Ñ(dt, du) + α

∫
Y
[γ2(u)Z(t−)− ln(1 + γ2(u)]Ñ(dt, du),

where

LV =βr(x)P (t)− βr(x)

K
P 2(t)− αβC(x, y)P (t)Z(t)− βMr(x) +

βMr(x)P (t)

K

+ αβMC(x, y)Z(t) + αβC(x, y)P (t)Z(t)− αµZ(t)− αθP 2(t)Z(t)

m2 + P 2(t)

− αβC(x, y)P (t) + αµ+
αθP 2(t)

m2 + P 2(t)
+

1

2
βMσ2

1 +
1

2
ασ2

2

+ β

∫
Y
[Mγ1(u)−M ln(1 + γ1(u))]λ(du) + α

∫
Y
[γ2(u)− ln(1 + γ2(u))]λ(du)

≤− βr(x)

K
P 2(t) + (βr(x) +

βMr(x)

K
+

αθ

2m
)P (t) + (αβMC(x, y)− αµ)Z(t)

+ αµ+
1

2
βMσ2

1 +
1

2
ασ2

2 + β

∫
Y
[Mγ1(u)−M ln(1 + γ1(u))]λ(du)

+ α

∫
Y
[γ2(u)− ln(1 + γ2(u))]λ(du).

Choosing M = µ
βC(x,y) and keeping in mind the fact that

0 ≤
∫
Y
[γi(u)− ln(1 + γi(u))]λ(du) ≤ K0, i = 1, 2,

where K0 is a constant, we have

LV ≤− βr(x)

K
P 2(t) + P (t)(βr(x) +

βMr(x)

K
+

αθ

2m
) + αµ+

1

2
βMσ2

1 +
1

2
ασ2

2

+ β

∫
Y
[Mγ1(u)−M ln(1 + γ1(u))]λ(du) + α

∫
Y
[γ2(u)− ln(1 + γ2(u))]λ(du)

≤K1,

and K1 here is a positive constant. Thus we have

dV (P (t), Z(t)) ≤K1dt+ βσ1(P (t)−M)dB1(t) + ασ2(Z(t)− 1)dB2(t)
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+ β

∫
Y
(γ1(u)P (t−)−M ln(1 + γ1(u))Ñ(dt,du)

+ α

∫
Y
(γ2(u)Z(t−)− ln(1 + γ2(u))Ñ(dt,du). (2.3)

Integrating both sides of (2.3) from 0 to τk ∧ T and taking expectation, we can
obtain that,

EV (P (τk ∧ T ), Z(τk ∧ T )) ≤ V (P (0), Z(0)) +K1E(τk ∧ T )

≤ V (P (0), Z(0)) +K1T. (2.4)

Set Ωk = {τk ≤ T}, and by (2.2) we get P(Ωk) ≥ ε. For each ω ∈ Ωk, it exists
that P (τk, ω), Z(τk, ω) equals either k or 1

k . Thereby, we have

V (P (τk, ω), Z(τk, ω))

≥ min

{
β[k −M −M ln(

k

M
)],

α(k − 1− ln k), β[
1

k
−M +M ln kM ], α(

1

k
− 1 + ln k)

}
:= H(k).

It follows from (2.4) that it is not difficult to see

V (P (0), Z(0)) +K1T ≥ E [IΩk
(ω)V (P (τk, ω), Z(τk, ω))]

≥ P (Ωk)H(k)

≥ εH(k),

where IΩk
is the indicator function of Ωk. Letting k → +∞ leads to the contradic-

tion

+∞ > V (P (0), Z(0)) +K1T ≥ +∞.

Therefore we show that τ∞ = +∞ a.s., so τe = +∞. Then (P (t), Z(t)) is the
unique global positive solution of system (1.1). This completes the proof of the
theorem.

Lemma 2.3. [16] For any initial value (P (0), Z(0)) ∈ R2
+, there is a unique global

positive solution (P (t), Z(t)) to model (1.1) a.s., Moreover, there exists a positive
constant ζ such that

lim
t→+∞

supE(P (t)) ≤ ζ, lim
t→+∞

supE(Z(t)) ≤ ζ.

2.3. Extinction and persistence in the mean

Based on Theorem 2.1 and from the perspective of population dynamics, it is nec-
essary and important to predict and control the development of population. There-
fore, we will discuss the properties of extinction and persistence in the mean of
system (1.1) in this subsection, and derive some sufficient conditions for them.

For simplicity, we introduce the following notations:

⟨f(t)⟩ = 1

t

∫ t

0

f(s)ds, f∗ = lim
t→∞

sup f(t), f∗ = lim
t→∞

inf f(t).
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µi =
1

2
σ2
i −

∫
Y
[ln(1 + γi(u))− γi(u)]λ(du), i = 1, 2.

Ni(t) =

∫ t

0

∫
Y
ln(1 + γi(u))Ñ(ds,du), i = 1, 2.

Theorem 2.2. The phytoplankton P (t) of system (1.1) is

(i) extinct if r(x)− µ1 < 0;

(ii) non-persistent in mean if r(x)− µ1 = 0;

(iii) weakly persistent in mean if r(x)− µ1 > 0.

Proof. Applying the Itǒ formula to the equation of system (1.1), we have

d lnP (t) =[r(x)(1− P (t)

K
)− αZ(t)C(x, y)− σ2

1

2

+

∫
Y
[ln(1 + γ1(u))− γ1(u)]λ(du)]dt

+ σ1dB1(t) +

∫
Y
[ln(1 + γ1(u))]Ñ(dt,du), (2.5)

d lnZ(t) =[βC(x, y)P (t)− µ− θP 2(t)

m2 + P 2(t)
− σ2

2

2

+

∫
Y
[ln(1 + γ2(u))− γ2(u)]λ(du)]dt

+ σ2dB2(t) +

∫
Y
[ln(1 + γ2(u))]Ñ(dt, du). (2.6)

Integrating both sides of the above equalities on the interval [0, t] yields

1

t
ln

P (t)

P (0)
= r(x)− µ1 −

r(x)

K
⟨P (t)⟩ − αC(x, y) ⟨Z(t)⟩+ σ1B1(t)

t
+

N1(t)

t
, (2.7)

1

t
ln

Z(t)

Z(0)
= βC(x, y) ⟨P (t)⟩ − µ− µ2 − θ

〈
P 2(t)

m2 + P 2(t)

〉
+

σ2B2(t)

t
+

N2(t)

t
.

(2.8)

From (2.7), we get

1

t
ln

P (t)

P (0)
≤ r(x)− µ1 +

σ1B1(t)

t
+

N1(t)

t
. (2.9)

Based on Theorem 3.4 in [17], taking upper limits on both sides of (2.9) and
using condition (i) leads to[

1

t
ln

P (t)

P (0)

]∗
≤ r(x)− µ1 < 0,

which implies limt→∞ P (t) = 0, a.s. This completes the proof of (i).
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We are now to prove (ii). Given ϵ > 0 small,

1

t
ln

P (t)

P (0)
≤ r(x)− µ1 + ϵ− r(x)

K
⟨P (t)⟩+ σ1B1(t)

t
+

N1(t)

t
.

By Lemma 2.1, if r(x)− µ1 + ϵ ≥ 0, then

⟨P (t)⟩∗ ≤ K(r(x)− µ1 + ϵ)

r(x)
, a.s.

Particularly, if r(x) − µ1 = 0, we have ⟨P (t)⟩∗ ≤ ϵK
r(x) , a.s. Then the desired

result ⟨P (t)⟩∗ = 0 follows from the arbitrariness of ϵ.
Now we prove (iii). Similarly, by taking upper limits on both sides of (2.7) we

can have

[
1

t
ln

P (t)

P (0)
]∗ ≥ r(x)− µ1 −

r(x)

K
⟨P (t)⟩∗ − αC(x, y) ⟨Z(t)⟩∗ . (2.10)

Because the left of inequality (2.10) is non-positive from Lemma 2.2, it follows
from condition (iii) that

r(x)

K
⟨P (t)⟩∗ + αC(x, y) ⟨Z(t)⟩∗ ≥ r(x)− µ1 > 0. (2.11)

We then claim that ⟨P (t)⟩∗ > 0 a.s. Otherwise, for ∀ω ∈
{
⟨P (t, ω)⟩∗ = 0

}
, we

know ⟨Z(t, ω)⟩∗ > 0 by (2.11). But from (2.8), we obtain[
lnZ(t, ω)

t

]∗
≤ βC(x, y) ⟨P (t)⟩∗ = 0,

which implies ⟨Z(t, ω)⟩∗ = 0. This is a contradiction, so we have ⟨P (t)⟩∗ > 0 a.s.
That is, the phytoplankton P (t) is weakly persistent in mean.

Clearly, the zooplankton Z(t) goes to extinction when the phytoplankton P (t)
is extinct. For this reason, we always assume that r(x) − µ1 > 0 in the following
discussions. The following theorem gives the survival analysis of zooplankton.

Remark 2.1. The extinction and weakly persistent in the mean are in the sense
of Wang [18]. Specifically, population P (t) is called extinction if limt→∞ P (t) = 0
almost surely; population P (t) is called non-persistence in the mean if ⟨P (t)⟩∗ = 0
almost surely; population P (t) is called weak persistence in the mean if ⟨P (t)⟩∗ >
0 almost surely. Again Theorem 2.2 implies that r(x) − µ1 is the threshold of
phytoplankton between extinction and weak persistence in the mean.

Theorem 2.3. The zooplankton Z(t) of system (1.1) is

(i) extinct if β K
r(x) (r(x)− µ1)C(x, y) < µ+ µ2;

(ii) weakly persistent in mean if β K
r(x) (r(x)− µ1)C(x, y) > µ+ µ2 + θ.

Proof. From (2.7), r(x)− µ1 > 0 and Lemma 2.2, we have

⟨P (t)⟩∗ ≤ K

r(x)
(r(x)− µ1). (2.12)
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Moreover, (2.8) indicates

1

t
ln

Z(t)

Z(0)
< βC(x, y) ⟨P (t)⟩ − µ− µ2 +

σ2B2(t)

t
+

N2(t)

t
.

Together with (2.12) and Theorem 3.4 in [17], it follows from condition (i) that[
1

t
ln

Z(t)

Z(0)

]∗
≤ βC(x, y) ⟨P (t)⟩∗ − µ− µ2

≤ βKC(x, y)

r(x)
(r(x)− µ1)− µ− µ2 < 0 a.s.

Thus, limt→∞ Z(t) = 0, i.e., the zooplankton Z(t) is extinct. This completes
the proof of (i).

From (2.7) and (2.8), we obtain

βC(x, y)
1

t
ln

P (t)

P (0)
+

r

K

1

t
ln

Z(t)

Z(0)

=βC(x, y)(r(x)− µ1)−
r

K
(µ+ µ2)−

θr

K

〈
P 2(t)

m2 + P 2(t)

〉
− αβC2(x, y) ⟨Z(t)⟩

+
βC(x, y)σ1B1(t)

t
+

βC(x, y)N1(t)

t
+

r

K

σ2B2(t)

t
+

r

K

N2(t)

t

≥βC(x, y)(r(x)− µ1)−
r

K
(µ+ µ2)−

θr

K
− αβC2(x, y) ⟨Z(t)⟩

+
βC(x, y)σ1B1(t)

t
+

βC(x, y)N1(t)

t
+

r

K

σ2B2(t)

t
+

r

K

N2(t)

t
. (2.13)

Taking upper limits on both sides of (2.13) leads to[
βC(x, y)

1

t
ln

P (t)

P (0)
+

r

K

1

t
ln

Z(t)

Z(0)

]∗
≥ βC(x, y)(r(x)− µ1)−

r

K
(µ+ µ2 + θ)− αβC2(x, y) ⟨Z(t)⟩∗ . (2.14)

In view of Lemma 2.2, the left of inequality (2.14) is non-positive, then it can
be seen from condition (ii) that we have

⟨Z(t)⟩∗ ≥
βC(x, y)(r(x)− µ1)− r

K (µ+ µ2 + θ)

αβC2(x, y)
> 0,

which implies the zooplankton is weakly persistent. The proof is now completed.

According to Theorems 2.2 and Theorems 2.3, the following Corollary 2.1 is
obvious.

Corollary 2.1. For system (1.1), the following results hold.

(i) If r(x) − µ1 < 0, then both the phytoplankton P (t) and the zooplankton Z(t)
are extinct;

(ii) If r(x)−µ1 > 0 and β K
r(x) (r(x)−µ1)C(x, y) < µ+µ2, then the phytoplankton

P (t) is weakly persistent in mean and the zooplankton Z(t) is extinct;

(iii) If β K
r(x) (r(x)−µ1)C(x, y) > µ+µ2 + θ, then both the phytoplankton P (t) and

the zooplankton Z(t) are weakly persistent in mean.
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2.4. Stationary distribution

It is known if the noise intensity is sufficiently large then the population may become
extinct with probability one. The interesting question is: what happens if the noise
is relatively small? Is there a stationary distribution? Our aim in this section is to
study the existence of a unique stationary distribution of the solution.

Theorem 2.4. Suppose that Assumption 2.1 holds. Denote by δi the cofactor of
the i−th diagonal element of the Kirchhoff matrix DH , where

DH =

 αC(x, y) −αC(x, y)

−βC(x, y) βC(x, y)

 , H =

 r(x)
K αC(x, y)

βC(x, y) 0


and δ1 = βC(x, y) > 0, δ2 = αC(x, y) > 0. If δ1

r(x)
K − δ2βC(x, y) > 0 , then

for any given intial value (P0, Z0) ∈ R2
+, system (1.1) admits a unique stationary

distribution π(·), that is to say, all the species do not die out almost surely.

Proof. We shall divide the proof into two parts.
Part 1. Define

U(t) = δ1

∣∣∣lnP (P0; t)− lnP ˜(P0; t)
∣∣∣+ δ2

∣∣∣lnZ(Z0; t)− lnZ ˜(Z0; t)
∣∣∣ ,

where P (P0; t), P ˜(P0; t), Z(Z0; t), Z ˜(Z0; t) stand for arbitrary solutions of model
(1.1) with initial values (P0, Z0) ∈ R2

+ and (P̃0, Z̃0) ∈ R2
+, respectively. Making

use of Itǒ formula yields

dU(t) =δ1sgn
(
P (P0; t)− P ˜(P0; t)

)[
−r(x)

K

(
P (P0; t)− P ˜(P0; t)

)
−αC(x, y)

(
Z(Z0; t)− Z ˜(Z0; t)

)]
dt

+ δ2sgn
(
Z(Z0; t)− Z ˜(Z0; t)

) [
βC(x, y)

(
P (P0; t)− P ˜(P0; t)

)
−θ

(
P 2(P0; t)

m2 + P 2(P0; t)
− P 2(P̃0; t)

m2 + P 2(P̃0; t)

)]
dt

≤− δ1
r(x)

K

∣∣∣P (P0; t)− P ˜(P0; t)
∣∣∣ dt− δ1αC(x, y)

∣∣∣Z(Z0; t)− Z ˜(Z0; t)
∣∣∣dt

+ δ2βC(x, y)
∣∣∣P (P0; t)− P ˜(P0; t)

∣∣∣ dt.
Consequently,

U(t) ≤U(0)− (δ1
r(x)

K
− δ2βC(x, y))

∫ t

0

∣∣∣P (P0; t)− P ˜(P0; t)
∣∣∣ds

− δ1αC(x, y)

∫ t

0

∣∣∣Z(Z0; t)− Z ˜(Z0; t)
∣∣∣ds.

It then follows from U(t) ≥ 0 that(
δ1

r(x)

K
− δ2βC(x, y)

)∫ t

0

∣∣∣P (P0; t)− P ˜(P0; t)
∣∣∣ds ≤ U(0) < ∞,
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αC(x, y)

∫ t

0

∣∣∣Z(Z0; t)− Z ˜(Z0; t)
∣∣∣ds ≤ U(0) < ∞.

Therefore,∣∣∣P (P0; t)− P ˜(P0; t)
∣∣∣ ∈ L1[0,∞),

∣∣∣Z(Z0; t)− Z ˜(Z0; t)
∣∣∣ ∈ L1[0,∞). (2.15)

Now by (1.1),

E(P (t)) = P (0) +

∫ t

0

[
r(x)E(P (t))− r(x)

K
E(P (t))2 − αC(x, y)E(P (t)Z(t))

]
dt.

That is to say, E(P (t)) is differentiable. Thanks to Lemma 2.3,

dE(P (t))

dt
= r(x)E(P (t))− r(x)

K
E(P (t))2 − αC(x, y)E(P (t)Z(t))

≤ r(x)E(P (t)) ≤ r(x)ζ,

where ζ > 0 is a constant. Thus E(P (t)) is uniformly continuous. Similarly, E(Z(t))
is uniformly continuous. It then follows from (2.15) and Barbalat’s result [20] that

lim
t→+∞

E
∣∣∣P (P0; t)− P ˜(P0; t)

∣∣∣+ lim
t→+∞

E
∣∣∣Z(Z0; t)− Z ˜(Z0; t)

∣∣∣ = 0. (2.16)

Part 2. Denote by L (R̄2
+) all the probability measures defined on R̄2

+. For
arbitrary Q1, Q2 ∈ L , define

dN (Q1, Q2) = sup
φ∈N

∣∣∣∣∣
∫
R̄2

+

φ(z)Q1(dz)−
∫
R̄2

+

φ(z)Q2(dz)

∣∣∣∣∣ ,
where

N =
{
φ : R̄2

+ → R
∣∣∣|φ(z1)− φ(z2)| ≤ ||z1 − z2||, |φ(·)| ≤ 1

}
.

For any bounded Borel measurable function φ ∈ N and t ≥ s > 0, denoting
Y = (P (t), Z(t)), for the above Y0 = (P0, Z0), we have∣∣∣Eφ(Y (Y0; t+ s))− Eφ(Y (Y0; t))

∣∣∣ =∣∣∣E [E(φ(Y (Y0; t+ s))
∣∣∣Fs)

]
− E(φ(Y (Y0; t))

∣∣∣
=
∣∣∣ ∫

R̄2
+

Eφ(Y (Ỹ0; t))P(s, Y0,dỸ0)− Eφ(Y (Y0; t))
∣∣∣

≤
∫
R̄2

+

∣∣∣Eφ(Y (Ỹ0; t))− Eφ(Y (Y0; t))
∣∣∣P(s, Y0,dỸ0).

From (2.16), there is a T > 0 such that for t ≥ T,

sup
φ∈N

∣∣∣E(φ(Y (Ỹ0; t))− E(φ(Y (Y0; t))
∣∣∣ ≤ ε.

That is to say, ∣∣∣Eφ(Y (Y0; t+ s))− Eφ(Y (Y0; t))
∣∣∣ ≤ ε.
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It then follows from the arbitrariness of φ that

sup
φ∈N

∣∣∣Eφ(Y (Y0; t+ s))− Eφ(Y (Y0; t))
∣∣∣ ≤ ε.

Hence for t ≥ T and s > 0,

dN (P(t+ s, Y0, ·),P(t, Y0, ·)) ≤ ε.

In other words, {P(t, Y0, ·) : t ≥ 0} is Cauchy in L (R̄2
+). It follows that there

exists a unique probability measure π(·) ∈ L (R̄2
+) such that for any given initial

value Y0 = (P0, Z0) ∈ R2
+

lim
t→+∞

P(t, Y0, ·) = π(·).

Hence, system (1.1) admits a unique stationary distribution π(·), all the species
do not die out almost surely. The proof is complete.

3. Numerical simulations

In this section, we will verify the correctness of the theoretical results obtained
through numerical simulation. We choose the same initial value P (0) = 5, Z(0) = 5,
and the other parameters are: K = 6.5, c1 = 0.5, c2 = 0.2, c3 = 0.8, β = 1, µ =
0.05, α = 1.5, θ = 0.005, Cm = 1.8, d = 0.5, e = 0.5,m = 1,Y = (0,+∞), λ(Y) = 1.

First, when the plankton body size remains unchanged(such as x = 1, y = 5),
we will reveal the impact of white noise and Lévy noise on the system (1.1) by
considering the following examples.

Example 3.1. On the one hand, let σ2
1 = 4.9, σ2

2 = 2.2, γ1 = 2.1, γ2 = 1.1. It can
be calculated that r(x) − µ1 = −0.8147 < 0, β K

r(x) (r(x) − µ1)C(x, y) − µ − µ2 =

−0.6717 < 0, thus the conditions (i) in Theorem 2.2 and Theorem 2.3 are satisfied,
so that all the plankton populations in the system (1.1) become extinct (see Figure
1). On the other hand, let σ2

1 = 0.1, σ2
2 = 0.001, γ1 = 0.51, γ2 = 0.001. It can

be calculated that r(x)− µ1 = 0.7145 > 0, β K
r(x) (r(x)− µ1)C(x, y)− µ− µ2 − θ =

0.0647 > 0, thus the condition (iii) in Theorem 2.2 and the condition (ii) in Theorem
2.3 are satisfied, so that all the plankton populations in the system (1.1) are weakly
persistent in mean(see Figure 2).
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Figure 1. (a) represents the sample paths of phytoplankton P (t); (b) represents the sample paths of
zooplankton Z(t).
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Figure 2. (a) represents the sample paths of phytoplankton P (t); (b) represents the sample paths of
zooplankton Z(t).

Example 3.2. Let σ2
1 = 0.1, σ2

2 = 1.1, γ1 = 0.51, γ2 = 0.001. It can be calculated
that r(x)− µ1 = 0.7145 > 0, β K

r(x) (r(x)− µ1)C(x, y)− µ− µ2 = −0.4798 < 0, thus

the condition (iii) in Theorem 2.2 and the condition (i) in Theorem 2.3 are satisfied,
so that the phytoplankton in the system (1.1) is weakly persistent in mean, and the
zooplankton becomes extinct (see Figure 3).
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Figure 3. (a) represents the sample paths of phytoplankton P (t); (b) represents the sample paths of
zooplankton Z(t).

Next, we will explore the impacts of plankton body size on the dynamics of
model (1.1) when the stochastic environmental noise and Lévy noise remains lower
intensity to ensure the survival of plankton.(such as σ2

1 = 0.1, σ2
2 = 0.001, γ1 =

0.01, γ2 = 0.001,).

Example 3.3. If x < 0.0404 or x > 39.5994, then it can be calculated that r(x)−
µ1 < 0, so that the phytoplankton population in the system (1.1) becomes extinct
(see Figure 4). Furthermore, the zooplankton population becomes extinct.
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Figure 4. (a) represents the sample paths of phytoplankton P (t) with x = 0.02; (b) represents the
sample paths of phytoplankton P (t) with x = 42.
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Example 3.4. Let x = 1.5, y = 5 < 6.2767. It can be calculated that r(x)− µ1 =
0.6242 > 0, β K

r(x) (r(x) − µ1)C(x, y) − µ − µ2 − θ = 1.4105 > 0, thus the condition

(iii) in Theorem 2.2 and the condition (ii) in Theorem 2.3 are satisfied, so that
all the plankton populations in the system (1.1) are weakly persistent in mean(see
Figure 5).
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Figure 5. (a) represents the sample paths of phytoplankton P (t) with x = 1.5, y = 5; (b) represents
the sample paths of zooplankton Z(t) with x = 1.5, y = 5.

Example 3.5. Let x = 1.5, y = 7 > 6.2767. It can be calculated that r(x)− µ1 =
0.6242 > 0, β K

r(x) (r(x) − µ1)C(x, y) − µ − µ2 = −0.0469 < 0, thus the condition

(iii) in Theorem 2.2 and the condition (i) in Theorem 2.3 are satisfied, so that the
phytoplankton in the system (1.1) is weakly persistent in mean, and the zooplankton
becomes extinct (see Figure 6).
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Figure 6. (a) represents the sample paths of phytoplankton P (t) with x = 1.5, y = 7; (b) represents
the sample paths of zooplankton Z(t) with x = 1.5, y = 7.

Example 3.6. Let x = 20, y = 37 ∈ (36.9250, 43.0750). It can be calculated that
r(x)−µ1 = 0.0477 > 0, β K

r(x) (r(x)−µ1)C(x, y)−µ−µ2 − θ = 0.0079 > 0, thus the

condition (iii) in Theorem 2.2 and the condition (ii) in Theorem 2.3 are satisfied, so
that all the plankton populations in the system (1.1) are weakly persistent in mean
(see Figure 7).
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Figure 7. (a) represents the sample paths of phytoplankton P (t) with x = 20, y = 37; (b) represents
the sample paths of zooplankton Z(t) with x = 20, y = 37.

Example 3.7. Let x = 20, y = 36. It can be calculated that r(x)− µ1 = 0.0477 >
0, β K

r(x) (r(x)−µ1)C(x, y)−µ−µ2 = −0.0486 < 0. Or let x = 20, y = 45. It can be

calculated that r(x)−µ1 = 0.0477 > 0, β K
r(x) (r(x)−µ1)C(x, y)−µ−µ2 = −0.0505 <

0, thus the condition (iii) in Theorem 2.2 and the condition (i) in Theorem 2.3 are
satisfied, so that the phytoplankton in the system (1.1) is weakly persistent in mean,
and the zooplankton becomes extinct (see Figure 8 and 9).
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Figure 8. (a) represents the sample paths of phytoplankton P (t) with x = 20, y = 36; (b) represents
the sample paths of zooplankton Z(t) with x = 20, y = 36.
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Figure 9. (a) represents the sample paths of phytoplankton P (t) with x = 20, y = 45; (b) represents
the sample paths of zooplankton Z(t) with x = 20, y = 45.

Example 3.8. Let x = 1.5, y = 5,K = 1.5, and other parameter values remain

unchanged. It can be calculated that δ1
r(x)
K − δ2βC(x, y) > 0, thus the condition

in Theorem 2.4 is satisfied, so that all the plankton populations in the system (1.1)
are persistent (see Figure 10).
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Figure 10. (a) represents the sample paths of phytoplankton P (t) with x = 1.5, y = 5, K = 1.5; (b)
represents the sample paths of zooplankton Z(t) with x = 1.5, y = 5, K = 1.5.

4. Conclusion

Due to the unpredictable changes in the natural environment and the adaptive
evolution of species size, the stochastic disturbances effect and body sizes should be
considered and incorporated into the biological models, which could be represented
by the standard Brownian motion, Lévy noise and cell size. In this paper, taking
into account the effects of plankton body size, we have studied the dynamic system
of the phytoplankton-zooplankton model with white noise and Lévy noise.

In some random environment effects, we find that the small stochastic fluctua-
tions and Lévy noise can remain the long-term survival of plankton (as shown in
Figure 2). When the cells of phytoplankton are extremely small or extremely large,
plankton will become extinct (as shown in Figure 4). This means that intermediate
sized phytoplankton cells are more beneficial to the survival of plankton. When
phytoplankton cells are small, increasing the size of zooplankton body can lead to
the extinction of zooplankton (as shown in Figures 5 and 6). When the size of phy-
toplankton cells is large, the size of larger or smaller zooplankton body can lead to
their extinction (as shown in Figures 8 and 9), and only the middle sized zooplank-
ton cell can sustain their survival (as shown in Figure 7). In summary, a moderate
plankton body size is necessary to maintain the long-term survival of plankton. In
addition, we found that under the large environmental fluctuations and Lévy noise,
no matter how phytoplankton cells and zooplankton body size change, the plankton
will go extinct (as shown in Figure 1).

In the real aquatic environments, however, the growth of plankton is affected by
many factors, such as oxygen [35], diffusion and chlorophyll [36], water temperature
[37] etc.. So it is necessary to consider the impact of other factors on the growth
of plankton. For example, the plankton model with cell size subject to impulsive
perturbation could be examined.
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Sobrino, M. Huete-Ortega, J. M. Blanco, J. Rodriguez, Unimodal size scaling
of phytoplankton growth and the size dependence of nutrient uptake and use,
Ecology Letters, 2013,16 (3), 371–379.

[4] S. Brucet, D. Boix, X. D. Quintana, E. Jensen, L. W. Nathansen, C. Trochine,
et al. Factors influencing zooplankton size structure at contrasting temperatures
in coastal shallow lakes: implications for effects of climate change, Limnology
and Oceanography, 2010, 55 (4), 1697–1711.

[5] Z. C. Pu, M. H. Cortez, L. Jiang, Predator-prey coevolution drives productivity-
richness relationships in planktonic systems, American Naturalist, 2017, 189
(1), 28–42.

[6] Q. Y. Zhao, S. T. Liu, X. L. Niu, Stationary distribution and extinction of a
stochastic nutrient-phytoplankton-zooplankton model with cell size, Mathemat-
ical Methods in the Applied Sciences, 2020, 43 (7), 3886–3902.

[7] Q. Y. Zhao, S. T. Liu, X. L. Niu, Turing instability and Hopf bifurcation for
a diffusion-plankton system with cell size, International Journal of Computer
Mathematics, 2021, 98 (3), 480–501.

[8] Q. Y. Zhao, S. T. Liu, D. D. Tian, Dynamic behavior analysis of phytoplankton-
zooplankton system with cell size and time delay, Chaos, Solitons and Fractals,
2018, 113, 160–168.

[9] J. H. Bao, X. R. Mao, G. Yin, C. G. Yuan, Competitive Lotka-Volterra popu-
lation dynamics with jumps, Nonlinear Analysis: An International Multidisci-
plinary Journal, 2011, 74 (17), 6601–6616.

[10] M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, B. Walker, Catastrophic shifts
in ecosystems, Nature, 2001, 413, 591–596.

[11] J. H. Bao, C. G. Yuan, Stochastic population dynamics driven by Lévy noise,
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