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The Influence of Environmental Variability and
Media Coverage on the Dynamics of an Epidemic

Model∗
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Abstract Various infectious diseases seriously affect human health and social
economy. It is a never-ending battle that human beings fight against infec-
tious diseases. Media coverage has been an important weapon in virus war and
has contributed to the epidemic prevention. In this paper, we focus on the
dynamics of a stochastic SIRS epidemic model with media coverage and two
mean-reverting Ornstein-Uhlenbeck processes. Firstly, we present the exis-
tence and uniqueness of the solution. Then, the sufficient condition for disease
extinction is provided. In order to get the condition for disease persistence,
we verify the existence of stationary distribution by constructing appropriate
Lyapunov functions. Moreover, it is theoretically proved that the solution fol-
lows a normal probability density function around the endemic equilibrium of
corresponding deterministic model. Finally, some numerical simulations are
carried out to confirm theoretical results.

Keywords Media coverage, Ornstein-Uhlenbeck process, stationary distri-
bution, density function
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1. Introduction

Infectious diseases seem to have become an unavoidable problem for mankind. The
history of the development of human society is also a history of constant struggle
against infectious diseases. In recent years, the outbreak of Ebola virus, Middle East
respiratory syndrome (MERS), Corona-virus diseases 2019 (COVID-19) and other
infectious diseases led to serious damage to human health worldwide. Several epi-
demics have brought great panic to the whole world, and even caused catastrophic
consequences in many regions, such as economic recession and social shutdown.
Therefore, a full understanding of transmission rules and control strategies of the
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disease is urgently needed. Mathematical modeling provides a reliable theoretical
analysis for studying the pathogenesis of infectious diseases and predicting the de-
velopment trend. It has become an effective tool to solve various phenomena and
problems caused by the infectious disease.

For the epidemic dynamics model, Kermack and Mckendrick [1] proposed a land-
mark SIR epidemic model, which makes the epidemic model enter the era of quan-
titative analysis. After that, many authors [2–8] assumed that the total population
N(t) is divided into three categories at time t, including susceptible individuals S(t),
infected individuals I(t) and recovered individuals R(t). Recovered individuals in
the SIR epidemic model are permanent immunity. But in fact, for most infectious
diseases, such as cholera, influenza and malaria, acquired immunity wears off over
time, which is a phenomenon well described by the SIRS infectious disease model.
Ma et al. [2] considered that acquired immunity may disappear after a period of
time and proposed a standard SIRS model:

Ṡ(t) = µ− β̄S(t)I(t)− µS(t) + γR(t),

İ(t) = β̄S(t)I(t)− (λ+ µ)I(t),

Ṙ(t) = λI(t)− (µ+ γ)R(t),

(1.1)

where µ is the natural birth and death rate coefficient. β̄ denotes the average
incidence rate. γ represents the immunity loss rate of recovered individuals. λ is
the recovery rate of infected individuals. All the parameters are considered to be
positive. Up to now, various versions of SIRS models have been studied and many
research results have been achieved [6–11].

It is now widely noted that the mass media (television, Internet, microblog, Tik
Tok, billboards and wechat) plays a key role in the spread of the disease [12–14]. For
the public, people can keep abreast of the transmission route and the epidemic data
through the media at any time. From the government’s point of view, they can make
full use of the powerful force of the media to publish essential disease prevention
measures as soon as possible and broadcast the latest public health policies. The
information reported by the media can affect the change of people’s social behavior.
People may go out less, receive vaccinations, self-isolation and wear masks, which
will indirectly reduce the number of infected individuals or incidence rate among
the population.

Research has found that the epidemic models with nonlinear incidence have
more accurate and complex dynamics than those with bilinear incidence (β̄SI) or
standard incidence (β̄SI/N) [14, 15]. The contact rates commonly used, bilinear
and standard, cannot describe the impact of media coverage on the dynamics of
the infectious disease well. Cai et al. [16] and Tchuenche et al. [17] held that the
incidence rate in a model considering media coverage should be a monotonically
decreasing nonlinear function with respect to I(t). Li et al. [18] and Tchuenche et
al. [19] constructed a modified nonlinear incidence rate β(I) with media coverage:

β(I(t)) = β̄ − β̄eI(t)

a+ I(t)
,

where β̄e is the maximum reduced contact rate due to the presence of infected
individuals. a is the half-saturation constant which reflects the impact of media
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coverage on the contact transmission.
β̄eI

a+ I
is used to measure the effect of reduc-

tion of the transmission rate when infected individuals are reported by the media.
When I → +∞, β(I(t)) approaches β̄ − β̄e. If I = 0, β(I(t)) = β̄. It is important
to recognize that media coverage cannot totally prevent the spread of the disease
and the incidence rate is non-negative. Assume β̄ ≥ β̄e. A SIRS epidemic model
with media coverage has the following form [12]:

Ṡ(t) = µ−
(
β̄ − β̄eI(t)

a+ I(t)

)
S(t)I(t)− µS(t) + γR(t),

İ(t) =

(
β̄ − β̄eI(t)

a+ I(t)

)
S(t)I(t)− (λ+ µ)I(t),

Ṙ(t) = λI(t)− (µ+ γ)R(t),

(1.2)

where parameters have the same definitions as model (1.1) expect for a and β̄e.

The basic reproduction number of system (1.2) is R0 = β̄
λ+µ . If R0 < 1, there is

a disease-free equilibrium E0(1, 0, 0), which is locally asymptotically stable. While,
if R0 > 1, E0 becomes unstable and there exists an endemic equilibrium E∗ =(

(a+I∗)(λ+µ)

aβ̄+(β̄−β̄e)I∗ , I
∗, λI∗

µ+γ

)
, which is locally asymptotically stable. I∗ is the positive

root of the following equation:[(
γλ

µ+ γ
− λ− µ

)
(β̄ − β̄e)

]
I2

+

[
µ(β̄ − β̄e)− (λ+ µ)(aβ̄ + µ) +

aβ̄γλ

µ+ γ

]
I + aµ(λ+ µ)(R0 − 1) = 0.

However, it is now well known that the real world is stochastic. Environmental
random variation has a significance impact on the spread of an epidemic [20, 21].
A deterministic model with fixed parameter values has certain limitations because
it does not take random factor into account. May [22] argued that parameter
values in the model are inevitably disturbed by environmental noise. Therefore, it
is valuable and meaningful to study stochastic SIRS epidemic model [23–25]. At
present, there are two common approaches to incorporate environmental variability
by modifying the parameters in epidemic models: linear function of Gaussian white
noise [7, 8, 13, 16, 23–28] and the mean-reverting Ornstein-Uhlenbeck process [29–
32]. A few authors [31, 32] pointed out that the first way to involve environmental
variability is problematic because the variance of the parameter tends to infinity
as time shortens, which implies that the mean value of the parameter becomes
more and more volatile as the time interval decreases. While, in the second way,
the variance of the parameter will approach zero. This means that the second
way is more consistent with the actual biological situation. Allen [33] compared
these two approaches to modify parameters from different aspects and found that
the mean-reverting Ornstein-Uhlenbeck process has the advantages of continuity,
strong practicability, non-negativity, asymptotic property and ease of modifying
the parameters for environmental data. Zhou et al. [32] devoted to a stochastic SIR
epidemic model considering media coverage and Ornstein-Uhlenbeck process. In this
paper, on the basis of the existing model (1.2), we will formulate a SIRS model with
media coverage and two Ornstein-Uhlenbeck processes. For system (1.2), we assume
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that β(t) and βe(t) are affected by the following Ornstein-Uhlenbeck processes:

dβ(t) = θ1(β̄ − β(t))dt+ σ1dB1(t), dβe(t) = θ2(β̄e − βe(t))dt+ σ2dB2(t), (1.3)

where θj > 0 is the speed of reversion and σj > 0 is the intensity of volatility
(j = 1, 2). B1(t) and B2(t) are two independent Brownian motions defined on a
complete probability space {Ω,F , {Ft}t≥0,P}, where {Ft}t≥0 is a σ− filtration
satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null
sets). Dixit and Pindyck [34] were the first to propose this form of mean-reverting
process in financial economics.

By adding both ends of the three equations of the model (1.2), we obtain

d(S + I +R) = [µ− µ(S + I +R)]dt.

It can easily be seen that the size of population is constant. In other words, there
is an invariant set Γ for any t ≥ 0 and the Γ satisfies

Γ = {(S, I,R) ∈ R3
+ : S + I +R = 1}.

Hence, we only need to study the dynamics of the following epidemic model for I
and R: dI(t) =

[(
β̄ − β̄eI(t)

a+ I(t)

)
(1− I(t)−R(t))I(t)− (λ+ µ)I(t)

]
dt,

dR(t) = [λI(t)− (µ+ γ)R(t)]dt,

(1.4)

where

(I,R) ∈ Γ1 := {(I,R) ∈ R2
+ : I +R < 1}.

Considering the Ornstein-Uhlenbeck process, system (1.4) with random variable (β̄,
β̄e) can be expressed as

dI(t) =

[(
β(t)− βe(t)I(t)

a+ I(t)

)
(1− I(t)−R(t))I(t)− (λ+ µ)I(t)

]
dt,

dR(t) = [λI(t)− (µ+ γ)R(t)]dt,

dβ(t) = θ1(β̄ − β(t))dt+ σ1dB1(t),

dβe(t) = θ2(β̄e − βe(t))dt+ σ2dB2(t).

(1.5)

For the sake of simplicity, letting r1(t) = β(t)− β̄, r2(t) = βe(t)− β̄e, system (1.5)
can be transformed into the following form:

dI(t) =

[((
β̄ − β̄eI(t)

a+ I(t)

)
+

(
r1 −

r2I(t)

a+ I(t)

))
(1− I(t)−R(t))I(t)

− (λ+ µ)I(t)

]
dt,

dR(t) = [λI(t)− (µ+ γ)R(t)]dt,

dr1(t) = −θ1r1dt+ σ1dB1(t),

dr2(t) = −θ2r2dt+ σ2dB2(t),

(1.6)
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where

Γ∗ := {(I,R, r1, r2) ∈ R2
+ × R2 : I +R < 1}.

For simplicity, there are some mathematical notations. Rn
+ = {(x1 · · ·xn) ∈

Rn|xi > 0, 1 ≤ i ≤ n}. In denotes the n-dimensional unit matrix and IX is the
indicator function of the set X. ∥ · ∥ is the Euclidean norm. If A is a matrix, AT

and A−1 represent its transpose and inverse matrix, respectively. Denote v1 ∨ v2 =
max{v1, v2}.

The aim of this paper is to probe into the long-time behavior of stochastic
system (1.6). The structure of the paper is arranged as follows. In section 2,
we prove that system (1.6) exists a unique solution. Sufficient condition for the
extinction of the disease is obtained in section 3. Section 4 gives the condition
for the existence of stationary distribution. The concrete expression of density
function of the stationary distribution is derived in section 5. In section 6, we use
some examples and numerical simulations to confirm our theoretical results. Lastly,
the brief conclusion is given.

2. The existence and uniqueness of the solution

In this section, we prove the existence and uniqueness of the solution to (1.6).

Theorem 2.1. For any initial value (I(0), R(0), r1(0), r2(0)) ∈ Γ∗, system (1.6)
has a unique global solution (I(t), R(t), r1(t), r2(t)), and this solution will also exist
in Γ∗ almost surely.

Proof. Clearly, the coefficients of system (1.6) all have locally Lipschitz property.
Consequently, for any initial value (I(0), R(0), r1(0), r2(0)) ∈ Γ∗, system (1.6) exists
a unique local solution (I(t), R(t), r1(t), r2(t)) on t ∈ [0, ψw), where ψw denotes the
explosion time. To show that the solution is global, we should prove ψw = ∞ a.s.
Select a sufficiently large integer n0 such that I(0), R(0), er1(0) and er2(0) ∈ [ 1

n0
, n0].

For each integer n ≥ n0, a stopping time can be defined as follows

ψn = inf

{
t ∈ [0, ψw) : min{I(t), R(t), er1(t), er2(t)} ≤ 1

n

or max{I(t), R(t), er1(t), er2(t)} ≥ n
}
,

where ψn is increasing as n approaches infinity. We denote inf{∅} = ∞ and
ψ∞ = lim

n→∞
ψn, thus ψ∞ ≤ ψw a.s. If ψ∞ = ∞ a.s., then ψw = ∞ a.s. and

(I(t), R(t), r1(t), r2(t)) ∈ Γ∗ a.s. for all t ≥ 0. But, if this assertion is incorrect,
then there exist two constants T > 0 and ϵ ∈ (0, 1) such that

P{ψ∞ ≤ T} > ϵ.

Therefore, there is an integer n1 ≥ n0 such that

P{ψn ≤ T} ≥ ε, ∀n ≥ n1.

Using the formula y − 1 − log y ≥ 0 for any y > 0, we construct an non-negative
C2-function V̂ (I,R, r1, r2) as follows:

V̂ = I − 1− log I +R− 1− logR+ (1− I −R)− 1− log(1− I −R) +
r21
2

+
r22
2
.
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Applying Itô′s formula derives

L(− log I) = −
(
β̄ − β̄eI

a+ I

)
(1− I −R) + (λ+ µ)−

(
r1 −

r2I

a+ I

)
(1− I −R).

(2.1)

L(− logR) = −λI
R

+ µ+ γ. (2.2)

L(− log(1− I −R)) =− µ

1− I −R
+ µ− γR

1− I −R

+

(
β̄ − β̄eI

a+ I

)
I +

(
r1 −

r2I

a+ I

)
I. (2.3)

L(r
2
1

2
) = −θ1r21 +

1

2
σ2
1 . (2.4)

L(r
2
2

2
) = −θ2r22 +

1

2
σ2
2 . (2.5)

Combining (2.1)-(2.5) gets

LV̂ =µ−
(
β̄ − β̄eI

a+ I

)
(1− I −R) + (λ+ µ)−

(
r1 −

r2I

a+ I

)
(1− I −R)

− λI

R
+ (µ+ γ)− µ

1− I −R
+ µ− γR

1− I −R
+

(
β̄ − β̄eI

a+ I

)
I

+

(
r1 −

r2I

a+ I

)
I − θ1r

2
1 +

σ2
1

2
− θ2r

2
2 +

σ2
2

2

≤4µ+ λ+ γ +
σ2
1 + σ2

2

2
+ β̄I −

(
r1 −

r2I

a+ I

)
(1− I −R) +

(
r1 −

r2I

a+ I

)
I

− θ1r
2
1 − θ2r

2
2

≤4µ+ λ+ γ +
σ2
1 + σ2

2

2
+ β̄ +

(
|r1|+

|r2|I
a+ I

)
(1− I −R) + |r1|I +

|r2|I2

a+ I

− θ1r
2
1 − θ2r

2
2

≤4µ+ λ+ γ +
σ2
1 + σ2

2

2
+ β̄ + 2|r1|+ 2|r2| − θ1r

2
1 − θ2r

2
2

≤4µ+ λ+ γ +
σ2
1 + σ2

2

2
+ β̄ +

1

θ1
+

1

θ2
:= G∗,

where G∗ is a positive constant. We omit the rest of the proof process, which can
be proved in a similar way in [26]. This completes the proof.

3. Extinction

In this part, we deduce the condition for infectious disease extinction.
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Theorem 3.1. Assume that (I(t), R(t), r1(t), r2(t)) is the solution of system (1.6)
with any initial value (I(0), R(0), r1(0), r2(0)) in Γ∗. If

R∗
0 := R0 +

1

2
√
π(λ+ µ)

(
σ1√
θ1

+
σ2

(a+ 1)
√
θ2

)
< 1,

then

lim sup
t→∞

log I(t)

t
≤ (λ+ µ)(R∗

0 − 1) < 0, a.s.

Namely, the disease of system (1.6) will eventually die out almost surely.

Proof. Applying Itô′s formula to the first equation of system (1.6) gets

d log I

dt
=

(
β̄ − β̄eI

a+ I

)
(1− I −R)− (λ+ µ) +

(
r1 −

r2I

a+ I

)
(1− I −R)

≤ β̄ − (λ+ µ) + r1(1− I −R) +
r2I

a+ I
(1− I −R)

≤ (λ+ µ)(R0 − 1) + (r1 ∨ 0) +
1

a+ 1
(r2 ∨ 0). (3.1)

Integrating (3.1) from 0 to t and dividing by t on both sides, one yields

log I(t)

t
− log I(0)

t
≤(λ+ µ)(R0 − 1) +

1

t

∫ t

0

(r1(τ) ∨ 0)dτ (3.2)

+
1

t

∫ t

0

1

a+ 1
(r2(τ) ∨ 0)dτ.

According to the results of [27], r1(t) and r2(t) will converge weakly to the invariant
densities

k1(y) =

√
θ1√
πσ1

e
−
θ1y

2

σ2
1 , (y ∈ R).

k2(z) =

√
θ2√
πσ2

e
−
θ2z

2

σ2
2 , (z ∈ R).

That is N(0,
σ2
1

2θ1
) and N(0,

σ2
2

2θ2
). Then, we get

∫ +∞

−∞
(y ∨ 0)k1(y)dy =

∫ +∞

0

√
θ1y√
πσ1

e
−
θ1y

2

σ2
1 dy

=
σ1

2
√
πθ1

∫ +∞

0

e
−


√
θ1y

σ1

2

d

(√
θ1y

σ1

)2

=
σ1

2
√
πθ1

, a.s. (3.3)

Similarly, ∫ +∞

−∞
(z ∨ 0)k2(z)dz =

σ2

2
√
πθ2

, a.s. (3.4)
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Taking the superior limit on both sides of the inequation (3.2) and combining (3.3)-
(3.4), one obtains

lim sup
t→∞

log I(t)

t

≤(λ+ µ)(R0 − 1) + lim
t→∞

1

t

∫ t

0

(r1(τ) ∨ 0)dτ + lim
t→∞

1

t

∫ t

0

1

a+ 1
(r2(τ) ∨ 0)dτ

=(λ+ µ)(R0 − 1) +

∫ +∞

−∞
(y ∨ 0)k1(y)dy +

1

a+ 1

∫ +∞

−∞
(z ∨ 0)k2(z)dz

=(λ+ µ)(R0 − 1) +
σ1

2
√
πθ1

+
σ2

2(a+ 1)
√
πθ2

=(λ+ µ)(R∗
0 − 1) < 0, a.s. (3.5)

It implies that lim
t→∞

I(t) = 0. That is to say, the disease will go to extinction with

probability 1. This completes the proof.

4. Stationary distribution

In this section, the conditions for infectious disease persistence will be studied. For
deterministic model (1.2), we investigate the persistence of the disease by endemic
equilibrium point. But the endemic equilibrium does not exist for stochastic model.
We can prove that stochastic system (1.6) admits stationary distribution, which
also shows the persistence of the disease. We define

Rs
0 = R0 −

1

2
√
π(λ+ µ)

(
σ1√
θ1

+
σ2

(a+ 1)
√
θ2

)
.

Condider an n-dimensional stochastic differential equation with initial value Ψ(0):

dΨ(t) = h1(Ψ(t))dt+ h2(Ψ(t))dB(t), (4.1)

where h1 : Rn → Rn and h2 : Rn → Rn×m are Borel measurable. B(t) is an
m-dimensional Brownian motion on the space {Ω,F , {Ft}t≥0,P}. Based on the
searches of Dieu [28] and Zhou et al. [32], we can obtain the sufficient condition for
the existence of stationary distribution as Lemma 4.1.

Lemma 4.1. If there is a bounded closed domain Ξ ⊂ Rn with a regular boundary
Λ, for any initial value Ψ(0) ∈ Rn,

lim inf
t→+∞

1

t

∫ t

0

P(τ,Ψ(0),Ξ)dτ > 0 a.s.,

where P(τ,Ψ(0), ·) is the transition probability of Ψ(t). Then system (4.1) has a
solution and admits at least one invariant probability measure on Rn, which implies
system (4.1) has at least one stationary distribution on Rn.

Theorem 4.1. If Rs
0 > 1, there exists at least one stationary distribution of system

(1.6) on Γ∗.

Proof. According to Lemma 4.1, the proof of Theorem 4.1 is divided into three
steps.
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Step 1. (Construction of a C2-function):
Construct a C2-function V̄ (I,R, r1, r2) : Γ∗ → R as follows:

V̄ =M0

(
− log I +

β̄

µ+ γ
R

)
− logR− log(1− I −R) +

r21
2

+
r22
2

:= −M0V1 + V2 + V3,

where V1 = − log I +
β̄

µ+ γ
R, V2 = − logR − log(1 − I − R), V3 =

r21
2

+
r22
2
, and

M0 is a sufficiently large positive number satisfying the following inequality:

−M0(λ+ µ)(Rs
0 − 1) + β̄ + 2µ+ γ +

σ2
1 + σ2

2

2

+ sup
(r1,r2)∈R2

{
|r1|+

|r2|
a+ 1

− θ1
2
r21 −

θ2
2
r22

}
≤ −2. (4.2)

We make the differential operator L act on − log I to get

L(− log I) = −
(
β̄ − β̄eI

a+ I

)
(1− I −R)−

(
r1 −

r2I

a+ I

)
(1− I −R) + (λ+ µ)

≤ −β̄ + (λ+ µ) + β̄I + β̄R+
β̄eI

a+ I
− r1(1− I −R) +

r2I

a+ I
(1− I −R)

≤ −(λ+ µ)(R0 − 1) + β̄I + β̄R+
β̄eI

a+ I
− r1(1− I −R) +

r2I

a+ I

≤ −(λ+ µ)(R0 − 1) + β̄I + β̄R+
β̄eI

a
+ (r1 ∨ 0) +

1

a+ 1
(r2 ∨ 0).

(4.3)

Combining (3.3)-(3.4) and (4.3) leads to

LV1 ≤− (λ+ µ)(R0 − 1) + β̄(I +R) +
β̄eI

a
+ (r1 ∨ 0)

+
1

a+ 1
(r2 ∨ 0) +

β̄

µ+ γ
[λI − (µ+ γ)R]

≤− (λ+ µ)(R0 − 1) +

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I + (r1 ∨ 0) +

1

a+ 1
(r2 ∨ 0)

=− (λ+ µ)(R0 − 1) +

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I

+
σ1

2
√
πθ1

+ (r1 ∨ 0)−
∫ +∞

−∞
(y ∨ 0)k1(y)dy

+
σ2

2(a+ 1)
√
πθ2

+
1

a+ 1

[
(r2 ∨ 0)−

∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
=− (λ+ µ)

(
R0 − 1− σ1

2
√
πθ1(λ+ µ)

− σ2

2(a+ 1)
√
πθ2(λ+ µ)

)
+

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I + (r1 ∨ 0)−

∫ +∞

−∞
(y ∨ 0)k1(y)dy

+
1

a+ 1

[
(r2 ∨ 0)−

∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
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=− (λ+ µ)(Rs
0 − 1) +

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I + (r1 ∨ 0)

−
∫ +∞

−∞
(y ∨ 0)k1(y)dy +

1

a+ 1

[
(r2 ∨ 0)−

∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
. (4.4)

Making use of Itô′s formula to V2 and V3, one obtains

LV2 =− λI

R
+ (µ+ γ)− µ

1− I −R
+

(
β̄ − β̄eI

a+ I

)
I

+

(
r1 −

r2I

a+ I

)
I + µ− γR

1− I −R

≤− λI

R
+ 2µ+ γ − µ

1− I −R
+ β̄I + |r1|I +

|r2|I2

a+ I

≤− λI

R
+ 2µ+ γ − µ

1− I −R
+ β̄ + |r1|+

|r2|
a+ 1

, (4.5)

and

LV3 =
σ2
1 + σ2

2

2
− θ1r

2
1 − θ2r

2
2. (4.6)

Combining (4.4)-(4.6), one derives

LV̄ =−M0(λ+ µ)(Rs
0 − 1) +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I − λI

R
− µ

1− I −R

+ β̄ + 2µ+ γ +
σ2
1 + σ2

2

2
+ |r1|+

|r2|
a+ 1

− θ1r
2
1 − θ2r

2
2

+M0

[
(r1 ∨ 0)−

∫ +∞

−∞
(y ∨ 0)k1(y)dy

]
+

M0

a+ 1

[
(r2 ∨ 0)−

∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
≤−M0(λ+ µ)(Rs

0 − 1) +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I + β̄ + 2µ+ γ

+ sup
(r1,r2)∈R2

{
|r1|+

|r2|
a+ 1

− θ1
2
r21 −

θ2
2
r22

}
− µ

1− I −R
− λI

R
+
σ2
1 + σ2

2

2

− θ1
2
r21 −

θ2
2
r22 +M0

[
(r1 ∨ 0)−

∫ +∞

−∞
(y ∨ 0)k1(y)dy

]
+

M0

a+ 1

[
(r2 ∨ 0)−

∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
:=F (I,R, r1, r2) +M0

[
(r1 ∨ 0)−

∫ +∞

−∞
(y ∨ 0)k1(y)dy

]
+

M0

a+ 1

[
(r2 ∨ 0)−

∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
, (4.7)

where

F (I,R, r1, r2)
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=−M0(λ+ µ)(Rs
0 − 1) + β̄ + 2µ+ γ +

σ2
1 + σ2

2

2
+M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I

+ sup
(r1,r2)∈R2

{
|r1|+

|r2|
a+ 1

− θ1
2
r21 −

θ2
2
r22

}
− µ

1− I −R
− λI

R
− θ1

2
r21 −

θ2
2
r22

:=−M0(λ+ µ)(Rs
0 − 1) +K +M0

(
β̄ +

β̄e
a

+
β̄λ

µ+ γ

)
I

− µ

1− I −R
− λI

R
− θ1

2
r21 −

θ2
2
r22, (4.8)

in which K = β̄ + 2µ+ γ +
σ2
1 + σ2

2

2
+ sup

(r1,r2)∈R2

{
|r1|+

|r2|
a+ 1

− θ1
2
r21 −

θ2
2
r22

}
.

Step 2. (Construction of a compact set):
Construct a bounded set Dε

Dε =

{
(I,R, r1, r2) ∈ Γ∗|I ≥ ε, R ≥ ε2, I +R ≤ 1− ε, |r1| ≤

1

ε
, |r2| ≤

1

ε

}
,

where ε is a sufficiently small positive number satisfying

M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
ε ≤ 1. (4.9)

K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
− λ

ε
≤ −1. (4.10)

K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
− µ

ε
≤ −1. (4.11)

K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
− θ1

2ε2
≤ −1. (4.12)

K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
− θ2

2ε2
≤ −1. (4.13)

Next, we divide the set Γ∗ \ Dε into five subsets Dc
ε,j , j = 1, 2, . . . , 5, where

Dc
ε,1 = {(I,R, r1, r2) ∈ Γ∗|I < ε} ,

Dc
ε,2 = {(I,R, r1, r2) ∈ Γ∗|R < ε2, I ≥ ε},

Dc
ε,3 = {(I,R, r1, r2) ∈ Γ∗|I +R > 1− ε}, Dc

ε,4 =

{
(I,R, r1, r2) ∈ Γ∗||r1| >

1

ε

}
,

Dc
ε,5 =

{
(I,R, r1, r2) ∈ Γ∗||r2| >

1

ε

}
.

We discuss the following five cases:
(I) If (I,R, r1, r2) ∈ Dc

ε,1, combining (4.8) and (4.9) gets

F (I,R, r1, r2) ≤ −M0(λ+ µ)(Rs
0 − 1) +K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I
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≤ −2 +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
ε

≤ −1.

(II) If (I,R, r1, r2) ∈ Dc
ε,2, from (4.8) and (4.10), we have

F (I,R, r1, r2) ≤ K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I − λI

R

≤ K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
− λ

ε

≤ −1.

(III) If (I,R, r1, r2) ∈ Dc
ε,3, combining (4.8) and (4.11), we get

F (I,R, r1, r2) ≤ K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I − µ

1− I −R

≤ K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
− µ

ε

≤ −1.

(IV) If (I,R, r1, r2) ∈ Dc
ε,4, using (4.8) and (4.12) obtains

F (I,R, r1, r2) ≤ K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I − θ1

2
r21

≤ K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
− θ1

2ε2

≤ −1.

(V) If (I,R, r1, r2) ∈ Dc
ε,5, applying (4.8) and (4.13), we have

F (I,R, r1, r2) ≤ K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I − θ2

2
r22

≤ K +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
− θ2

2ε2

≤ −1.

Taking the above five cases into consideration, we can conclude

F (I,R, r1, r2) ≤ −1, ∀(I,R, r1, r2) ∈ Γ∗ \ Dε. (4.14)

Let

Û := sup
(I,R,r1,r2)∈Γ∗

{
−2 +M0

(
β̄ +

β̄e
a

+
λβ̄

µ+ γ

)
I− µ

1− I −R
− λI

R
− θ1

2
r21−

θ2
2
r22

}
.

Then, there exists U > 0, such that U > Û and

F (I,R, r1, r2) ≤ U <∞, ∀(I,R, r1, r2) ∈ Γ∗. (4.15)
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Since the function V̄ (I,R, r1, r2) tends to +∞ as (I,R) approaches the boundary
of R2

+ or as ∥(I,R, r1, r2)∥ → +∞, there is a point (I⋇, R⋇, r⋇1 , r
⋇
2 ) in the interior

of Γ∗, which makes V̄ (I,R, r1, r2) be minimized. Therefore, a non-negative C2-
function V (I,R, r1, r2) is defined by

V (I,R, r1, r2) = V̄ (I,R, r1, r2)− V̄ (I⋇, R⋇, r⋇1 , r
⋇
2 ).

Using (4.7), we draw

LV ≤F (I,R, r1, r2) +M0

[
(r1 ∨ 0)−

∫ +∞

−∞
(y ∨ 0)k1(y)dy

]
+

M0

a+ 1

[
(r2 ∨ 0)−

∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
. (4.16)

Step 3. (Existence):
For any initial value (I(0), R(0), r1(0), r2(0)) ∈ Γ∗ and the interval [0, t], using Itô′s
integral and mathematical expectation to V (I,R, r1, r2), we can get

0 ≤EV (I(t), R(t), r1(t), r2(t))

t

≤EV (I(0), R(0), r1(0), r2(0)

t
+

1

t

∫ t

0

E(F (I(τ), R(τ), r1(τ), r2(τ)))dτ

+M0E
[
1

t

∫ t

0

(r1(τ) ∨ 0)dτ −
∫ +∞

−∞
(y ∨ 0)k1(y)dy

]
+

M0

a+ 1
E
[
1

t

∫ t

0

(r2(τ) ∨ 0)dτ −
∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
. (4.17)

Making use of the strong law of large numbers [32,35], we subsequently infer

lim
t→∞

E
[
1

t

∫ t

0

(r1(τ) ∨ 0)dτ −
∫ +∞

−∞
(y ∨ 0)k1(y)dy

]
=E

[∫ ∞

0

yk1(y)dy

]
−

∫ ∞

0

yk1(y)dy = 0, a.s., (4.18)

and

lim
t→∞

E
[
1

t

∫ t

0

(r2(τ) ∨ 0)dτ −
∫ +∞

−∞
(z ∨ 0)k2(z)dz

]
=E

[∫ ∞

0

zk2(z)dz

]
−

∫ ∞

0

zk2(z)dz = 0, a.s. (4.19)

On the one hand, taking the limit on both sides of (4.17) and using (4.18)-(4.19),
we launch

0 ≤ lim
t→+∞

EV (I(0), R(0), r1(0), r2(0))

t
+ lim

t→+∞

1

t

∫ t

0

E(F (I(τ), R(τ), r1(τ), r2(τ)))dτ

+ lim
t→+∞

{
M0E

[
1

t

∫ t

0

(r1(τ) ∨ 0)dτ −
∫ +∞

−∞
(y ∨ 0)k1(y)dy

]
+

M0

a+ 1
E
[
1

t

∫ t

0

(r2(τ) ∨ 0)dτ −
∫ +∞

−∞
(z ∨ 0)k2(z)dz

]}
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= lim
t→+∞

1

t

∫ t

0

E(F (I(τ), R(τ), r1(τ), r2(τ)))dτ a.s. (4.20)

On the other hand, combining (4.14) and (4.15) gets

1

t

∫ t

0

E(F (I(τ), R(τ), r1(τ), r2(τ)))dτ

=
1

t

∫ t

0

E(F (I(τ), R(τ), r1(τ), r2(τ)))1{(I(τ),R(τ),r1(τ),r2(τ))∈Dε}dτ

+
1

t

∫ t

0

E(F (I(τ), R(τ), r1(τ), r2(τ)))1{(I(τ),R(τ),r1(τ),r2(τ))∈(Γ∗\Dε)}dτ

≤U
t

∫ t

0

1{(I(τ),R(τ),r1(τ),r2(τ))∈Dε}dτ −
1

t

∫ t

0

1{(I(τ),R(τ),r1(τ),r2(τ))∈(Γ∗\Dε)}dτ

≤− 1 +
U + 1

t

∫ t

0

1{(I(τ),R(τ),r1(τ),r2(τ))∈Dε}dτ. (4.21)

In view of (4.20) and (4.21), taking the inferior limit obtains

lim inf
t→+∞

1

t

∫ t

0

1{(I(τ),R(τ),r1(τ),r2(τ))∈Dε}dτ ≥ 1

U + 1
> 0 a.s. (4.22)

By the definition of event probability and Fatou’s lemma [28], we acquire the equiv-
alent form of (4.22)

lim inf
t→+∞

1

t

∫ t

0

P(τ, (I(τ), R(τ), r1(τ), r2(τ)),Dε)dτ ≥ 1

U + 1
> 0 a.s., (4.23)

where P(t, (I,R, r1, r2),Dε) is the transition probability of (I(t), R(t), r1(t), r2(t)) ∈
Dε. Thus, according to Lemma 4.1, system (1.6) has at least one stationary distri-
bution on Γ∗. This completes the proof.

Theorem 4.1 indicates that if Rs
0 > 1, then the disease will prevail in a long

term.

5. Probability density function

In this part, we will give the exact expression for the probability density function.

Lemma 5.1. For the real algebraic equation K2 + ÂΣ̄ + Σ̄ÂT = 0, where K =
diag(σ̃, 0, 0), Σ̄ is a real symmetric matrix, and

Â =


−a1 −a2 −a3
1 0 0

0 1 0

 .

If a1 > 0, a3 > 0 and a1a2−a3 > 0, then Σ̄ is positive definite. Here, a1, a2 and a3
are the coefficients of characteristic polynomial λ3+a1λ

2+a2λ+a3 of Â. Appendix
A gives the detail proof of Lemma 5.1.
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The dynamical property of system (1.6) is the same as system (1.5). As a matter
of convenience, we study the density function of system (1.5). Epidemic system (1.5)
without stochastic noises is shown below:

dI(t) =

[(
β(t)− βe(t)I(t)

a+ I(t)

)
(1− I(t)−R(t))I(t)− (λ+ µ)I(t)

]
dt,

dR(t) = [λI(t)− (µ+ γ)R(t)]dt,

dβ(t) = θ1(β̄ − β(t))dt,

dβe(t) = θ2(β̄e − βe(t))dt.

(5.1)

There exists a positive equilibrium Ê∗=(Î∗, R̂∗, β̄, β̄e) in system (5.1) when R0 >

1, where Î∗ = I∗ and R̂∗ = R∗ are the same as Section 2. Ê∗ is the same as
E∗ without considering two mean-reverting Ornstein-Uhlenbeck processes. Letting
Z = (z1, z2, z3, z4) = (I − I∗, R−R∗, β − β̄, βe − β̄e), we can get the corresponding

linearized system of (1.5) at point Ê∗, that is

dz1 =

[(
(1− 2I∗ −R∗)

(
β̄ − β̄eI

∗

a+ I∗

)
− (1− I∗ −R∗)

aβ̄eI
∗

(a+ I∗)2
− (λ+ µ)

)
z1

−
(
β̄ − β̄eI

∗

a+ I∗

)
I∗z2 + (1− I∗ −R∗)I∗z3 − (1− I∗ −R∗)

(I∗)2

a+ I∗
z4

]
dt,

dz2 = [λz1 − (µ+ γ)z2]dt,

dz3 = −θ1z3dt+ σ1dB1(t),

dz4 = −θ2z4dt+ σ2dB2(t).

(5.2)

Let

a11 = (2I∗ +R∗ − 1)

(
β̄ − β̄eI

∗

a+ I∗

)
+ (1− I∗ −R∗)

aβ̄eI
∗

(a+ I∗)2
+ λ+ µ,

a12 =

(
β̄ − β̄eI

∗

a+ I∗

)
I∗, a13 = (1− I∗ −R∗)I∗, a14 = (1− I∗ −R∗)

(I∗)2

a+ I∗
,

a21 = λ, a22 = µ+ γ, a33 = θ1, a44 = θ2.

System (5.2) can be expressed as the following form:

dZ(t) = AZ(t)dt+QdB∗(t), (5.3)

where

A =


−a11 −a12 a13 −a14
a21 −a22 0 0

0 0 −a33 0

0 0 0 −a44

 ,

and

Z(t) = (z1(t), z2(t), z3(t), z4(t))
T , Q = diag(0, 0, σ1, σ2), B

∗(t) = (0, 0, B1(t), B2(t))
T .
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Theorem 5.1. If R0 > 1, for any initial value (z1(0), z2(0), z3(0), z4(0)), the
solution Z(z1, z2, z3, z4) follows a normal density function Φ(z1, z2, z3, z4) around
(I∗, R∗, β̄, β̄e) such that

Φ(z1, z2, z3, z4) = (2π)−2|Σ|− 1
2 e−

1
2 (z1,z2,z3,z4)Σ

−1(z1,z2,z3,z4)
T

, (5.4)

where Σ is positive definite and the form is given as follows

Σ = (R1J1)
−1Σ̂∗

1 [(R1J1)
−1]T + (R2J2)

−1Σ̂∗
2 [(R2J2)

−1]T

:= Σ1 +Σ2,

where

J1 =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 , J2 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 ,

R1 =


a13a21 −(a11 + a22)a21 a

2
22 − a12a21 −a14a21

0 a21 −a22 0

0 0 1 0

0 0 0 1

 ,

R2 =


−a14a21 −(a11 + a22)a21 a

2
22 − a12a21 a13a21

0 a21 −a22 0

0 0 1 0

0 0 0 1

 ,

Σ̂∗
1 =



d2(a13a21σ1)
2

2(d1d2 − d3)
0 − (a13a21σ1)

2

2(d1d2 − d3)
0

0
(a13a21σ1)

2

2(d1d2 − d3)
0 0

− (a13a21σ1)
2

2(d1d2 − d3)
0

d1(a13a21σ1)
2

2d3(d1d2 − d3)
0

0 0 0 0


,

Σ̂∗
2 =



b2(a14a21σ2)
2

2(b1b2 − b3)
0 − (a14a21σ2)

2

2(b1b2 − b3)
0

0
(a14a21σ2)

2

2(b1b2 − b3)
0 0

− (a14a21σ2)
2

2(b1b2 − b3)
0

b1(a14a21σ2)
2

2b3(b1b2 − b3)
0

0 0 0 0


.
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Proof. System (5.3) has a unique explicit solution according to the results of
Oksendal [20] and Mao [36]

Z(t) = eAtZ(0) +

∫ t

0

eA(t−τ)QdB(τ).

Since the martingale

∫ t

0

eA(t−τ)QdB(τ) follows the Gaussian distribution N4(0, Σ̃(t))

at time t, where Σ̃(t) =

∫ t

0

eA
T (t−τ)Q2eA(t−τ)dτ , it is clear Z(t) obeys a unique

Gaussian distribution N4(e
AtZ(0), Σ̃(t)). The characteristic polynomial of A is

φA(λ) = |λI4 −A| = (λ+ a33)(λ+ a44)[λ
2 + (a11 + a22)λ+ a11a22 + a12a21]

= λ4 + a1λ
3 + a2λ

2 + a3λ+ a4, (5.5)

where

a1 = a11 + a22 + a33 + a44,

a2 = a11(a22 + a33 + a44) + a22(a33 + a44) + a33a44 + a12a21,

a3 = (a33 + a44)a11a22 + (a11 + a22)a33a44 + (a33 + a44)a12a21,

a4 = (a11a22 + a12a21)a33a44.

Clearly, it has two eigenvalues −a33 < 0 and −a44 < 0. Notice that a11+a22 > 0 and
a11a22+a12a21 > 0. With the help of Vieta’s Theorem , we can get that φA(λ) = 0
has four negative real roots. By means of the stability theory of zero solution to
the general linear equation [37], we derive lim

t→∞
eAt = 0 , lim

t→∞
eAtZ(0) = 0 and

Σ := lim
t→∞

Σ̃(t) = lim
t→∞

∫ t

0

eA
T (t−τ)Q2eA(t−τ)dτ =

∫ ∞

0

eA
T tQ2eAtdt,

where Σ is positive semi-definite due to Q is positive semi-definite. Then, because

of the complexity of calculating

∫ ∞

0

eA
T tQ2eAtdt, the property of Σ can be studied

by matrix equation. Applying the continuity of matrix function eA
T tQ2eAt, we have

d

dt

∫ ∞

0

(eA
T tQ2eAtdt) = AΣ +ΣAT ,

∫ ∞

0

d

dt
(eA

T tQ2eAt)dt = Q2.

Thus Σ can be defined by the following algebraic equation:

Q2 +AΣ +ΣAT = 0. (5.6)

According to the finite independent superposition principle, we can study the cor-
responding solution of the following two algebraic sub-equations:

Q2
i +AΣi +ΣiA

T = 0, (i = 1, 2),

where Q1 = diag(0, 0, σ1, 0), Q2 = diag(0, 0, 0, σ2). We obtain that Σ = Σ1 + Σ2

and Q2 = Q2
1 +Q2

2. There are two steps to prove.
Step 1. Consider the algebraic equation

Q2
1 +AΣ1 +Σ1A

T = 0. (5.7)
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Let

J1 =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 .

Calculation derives

A1 = J1AJ
−1
1 =


−a33 0 0 0

a13 −a11 −a12 −a14
0 a21 −a22 0

0 0 0 −a44

 .

Hence, equation (5.7) can be obtained by similarity transformation

J1Q
2
1J

T
1 + J1AJ

−1
1 J1Σ1J

T
1 + J1Σ1J

T
1 (J1AJ

−1
1 )T = 0. (5.8)

We denote

J1Q1J
T
1 = diag(σ1, 0, 0, 0) := H1. (5.9)

J1Σ1J
T
1 := Σ̂1 =

 Σ̂
(3)
1 0

0 0

 . (5.10)

Thus, equation (5.8) can be written as follows

H2
1 +A1Σ̂1 + Σ̂1A

T
1 = 0. (5.11)

There is a standard transform matrix

R1 =


a13a21 −(a11 + a22)a21 a

2
22 − a12a21 −a14a21

0 a21 −a22 0

0 0 1 0

0 0 0 1

 .

Here, R1 can be got by the method in Appendix B. Let

B1 = R1A1R
−1
1 =


−d1 −d2 −d3 −d4
1 0 0 0

0 1 0 0

0 0 0 −a44

 ,
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where

d1 = a11 + a22 + a33 > 0,

d2 = a11a22 + a11a33 + a22a33 + a12a21 > 0,

d3 = a11a22a33 + a12a21a33 > 0,

d4 = a14a21(a33 − a44).

Furthermore, simple calculation yields

d1d2 − d3 =(a11 + a22 + a33)(a11a22 + a11a33 + a22a33 + a12a21)

− (a11a22a33 + a12a21a33)

=(a11 + a22)(a11a22 + a11a33 + a22a33 + a12a21) + a33(a11a33 + a22a33)

>0.

Hence, it follows from (5.11) that

R1H
2
1R

T
1 +R1A1R

−1
1 R1Σ̂1R

T
1 +R1Σ̂1R

T
1 (R1A1R

−1
1 )T = 0.

That is

G2
1 +B1Σ̂

∗
1 + Σ̂∗

1B
T
1 = 0, (5.12)

where

G1 = diag(a13a21σ1, 0, 0, 0), (5.13)

Σ̂∗
1 = R1Σ̂1R

T
1 . (5.14)

By substituting matrices G1 and B1 into equation (5.12), one gets

Σ̂∗
1 =



d2(a13a21σ1)
2

2(d1d2 − d3)
0 − (a13a21σ1)

2

2(d1d2 − d3)
0

0
(a13a21σ1)

2

2(d1d2 − d3)
0 0

− (a13a21σ1)
2

2(d1d2 − d3)
0

d1(a13a21σ1)
2

2d3(d1d2 − d3)
0

0 0 0 0


. (5.15)

Since the elements of the first row of matrix B
(3)
1 satisfy d1 > 0, d3 > 0 and

d1d2−d3 > 0, we get Σ̂
∗(3)
1 is positive definite according to Lemma 5.1. Thus, Σ̂

(3)
1

is positive definite. Assume that l1 is the minimum eigenvalue of Σ̂
(3)
1 . We obtain

Σ̂
(3)
1 ⪰ l1diag(1, 1, 1) and Σ̂1 ⪰ l1diag(1, 1, 1, 0).

It follows from (5.10) that

Σ1 = J−1
1 Σ̂1(J

−1
1 )T ⪰ l1J

−1
1 diag(1, 1, 1, 0)(J−1

1 )T = l1


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 . (5.16)
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It is easy to see that

ZTΣ1Z ⪰ l1(z
2
1 + z22 + z23). (5.17)

Combining (5.10) and (5.14), one gets

Σ1 = (R1J1)
−1Σ̂∗

1 [(R1J1)
−1]T . (5.18)

Step 2. Consider the algebraic equation

Q2
2 +AΣ2 +Σ2A

T = 0. (5.19)

Let

J2 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 ,

such that

A2 = J2AJ
−1
2 =


−a44 0 0 0

−a14 −a11 −a12 a13

0 a21 −a22 0

0 0 0 −a33

 .

By similarity transformation, equation (5.19) can be transformed into the following
equation:

J2Q
2
2J

T
2 + J2AJ

−1
2 J2Σ2J

T
2 + J2Σ2J

T
2 (J2AJ

−1
2 )T = 0. (5.20)

We denote

J2Q2J
T
2 = diag(σ2, 0, 0, 0) := H2. (5.21)

J2Σ2J
T
2 := Σ̂2 =

 Σ̂
(3)
2 0

0 0

 . (5.22)

Thus, equation (5.20) can be written as follows

H2
2 +A2Σ̂2 + Σ̂2A

T
2 = 0. (5.23)

There exists a standard transform matrix R2, which can be obtained by the method
in Appendix B.

R2 =


−a14a21 −(a11 + a22)a21 a

2
22 − a12a21 a13a21

0 a21 −a22 0

0 0 1 0

0 0 0 1

 .
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Then direct calculation yields

B2 = R2A2R
−1
2 =


−b1 −b2 −b3 −b4
1 0 0 0

0 1 0 0

0 0 0 −a33

 ,

where

b1 = a11 + a22 + a44 > 0,

b2 = a11a22 + a11a44 + a22a44 + a12a21 > 0,

b3 = a11a22a44 + a12a21a44 > 0,

b4 = a13a21(a33 − a44).

Moreover, calculation derives

b1b2 − b3 =(a11 + a22 + a44)(a11a22 + a11a44 + a22a44 + a12a21)

− (a11a22a44 + a12a21a44)

=(a11 + a22)(a11a22 + a11a44 + a22a44 + a12a21) + a44(a11a44 + a22a44)

>0.

Therefore, from (5.23), it follows that

R2H
2
2R

T
2 +R2A2R

−1
2 R2Σ̂2R

T
2 +R2Σ̂2R

T
2 (R2A2R

−1
2 )T = 0.

That is

G2
2 +B2Σ̂

∗
2 + Σ̂∗

2B
T
2 = 0, (5.24)

where

G2 = diag(a14a21σ2, 0, 0, 0), (5.25)

Σ̂∗
2 = R2Σ̂2R

T
2 . (5.26)

Substituting matrices G2 and B2 into equation (5.24) gets

Σ̂∗
2 =



b2(a14a21σ2)
2

2(b1b2 − b3)
0 − (a14a21σ2)

2

2(b1b2 − b3)
0

0
(a14a21σ2)

2

2(b1b2 − b3)
0 0

− (a14a21σ2)
2

2(b1b2 − b3)
0

b1(a14a21σ2)
2

2b3(b1b2 − b3)
0

0 0 0 0


. (5.27)

Since the elements of the first row of matrix B
(3)
2 satisfy the conditions of b1 > 0,

b3 > 0 and b1b2−b3 > 0, one gets Σ̂
∗(3)
2 is positive definite from Lemma 5.1. Hence,
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Σ̂
(3)
2 is positive definite. Assume that l2 is the minimum eigenvalue of Σ̂

(3)
2 . We

obtain

Σ̂
(3)
2 ⪰ l2diag(1, 1, 1) and Σ̂2 ⪰ l2diag(1, 1, 1, 0).

It follows from (5.22) that

Σ2 = J−1
2 Σ̂2(J

−1
2 )T ⪰ l2J

−1
2 diag(1, 1, 1, 0)(J−1

2 )T = l2


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 . (5.28)

Evidently

ZTΣ2Z ⪰ l2(z
2
1 + z23 + z24). (5.29)

Combining (5.22) and (5.26), one gains

Σ2 = (R2J2)
−1Σ̂∗

2 [(R2J2)
−1]T . (5.30)

Thus, given the above two cases, from (5.17) and (5.29), we get

ZTΣZ ⪰ min{l1, l2}(2z21 + z22 + 2z23 + z24).

And from (5.18) and (5.30), one can easily see that

Σ = (R1J1)
−1Σ̂∗

1 [(R1J1)
−1]T + (R2J2)

−1Σ̂∗
2 [(R2J2)

−1]T .

It is clear that Σ is positive definite. Namely, the solution follows an exact normal
density function around (I∗, R∗, β̄, β̄e). The proof has been completed.

6. Simulations

In this section, we will give some examples and numerical simulations to validate the
above theories. Using higher-order numerical methods of Milstein [38], we obtain
the corresponding discretization equation of system (1.5)

Ii = Ii−1 +

[(
βi−1 − βi−1

e Ii−1

a+ Ii−1

)
(1− Ii−1 −Ri−1)Ii−1 − (λ+ µ)Ii−1

]
∆t,

Ri = Ri−1 +
[
λIi−1 − (µ+ γ)Ri−1

]
∆t,

βi = βi−1 + θ1(β̄ − βi−1)∆t+ σ1
√
∆tδ1,j ,

βi
e = βi−1

e + θ2(β̄e − βi−1
e )∆t+ σ2

√
∆tδ1,j ,

(6.1)

where (Ii, Ri, βi, βi
e)

T is the value of the i-th iteration of the discretization equation
(6.1). The time increment ∆t > 0. δi,j is a random variable which obeys the
Gaussian distribution N(0, 1) for i = 1, 2; j = 1, 2, . . . , n. Let the initial value
(I(0), R(0), β(0), βe(0)) = (0.2, 0.2, 0.8, 0.8).
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6.1. The impact of β̄

In this part, we study the impact of average transmission rate β̄ on the long-term
behavior of epidemic system (1.5). The parameter values for numerical simulations
are shown as follows:

a = 1; β̄e = 0.1; γ = 0.05;λ = 0.2;µ = 0.1;σ1 = 0.2;σ2 = 0.2; θ1 = 2; θ2 = 2.

Fig. 1 shows the variation trends of R0, R
∗
0 and Rs

0 with β̄ ∈ [0.1, 0.5]. We have
the following conclusions:

• The disease of system (1.5) will go to extinction if 0 ≤ β̄ < 0.2402.
• There is at least one stationary distribution when β̄ > 0.3598.
• The solution follows a normal density function when β̄ > 0.3000.
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Figure 1. The variation trends of R0, R
∗
0 and Rs

0 with the variable β̄ ∈ [0.1, 0.5].

Example 6.1. (Persistence). We focus on the persistence of the disease when
β̄ > 0.3598. For the following four cases: (i) β̄=0.5, (ii) β̄=0.6, (iii) β̄=0.7, (iv)
β̄=0.8, Fig. 2 presents the solution (I(t),R(t)) of system (1.5).

Then, choosing β̄ = 0.5, we can compute that R0 = 1.6667 > 1 and Rs
0 =

1.4672 > 1. If Rs
0 > 1, system (1.5) has at least a stationary distribution. Besides,

R0 = 1.6667 > 1, the solution has a normal probability density function Φ ∼
N4(E

∗
1 , Σ1), where E

∗
1 = (0.1640, 0.2186, 0.5, 0.1) and

Σ1 =


0.000366 0.000226 0.000483 −0.000068

0.000226 0.000302 0.000045 −0.000006

0.000483 0.000045 0.01 0

−0.000068 −0.000006 0 0.01

 .

Furthermore, we can calculate the joint density function of (I,R):

Φ(I,R)

=652.7130e−2539.6932(I−0.1640)2+3801.1302(I−0.1640)(R−0.2186)−3077.9064(R−0.2186)2 .

The left of Fig. 3 reflects the numbers of I and R in both stochastic system (1.5)
and deterministic system (1.4). The right of Fig. 3 shows the frequency distribution
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histogram of the stochastic solution. Fig. 4 depicts the joint density function of
(I,R).

Figure 2. The stochastic solution (I(t),R(t)) under β̄ =0.5, 0.6, 0.7, 0.8, respectively.
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Figure 3. Left-hand column shows the numerical simulations of the solution (I(t), R(t)) in stochastic

system (1.5) (blue) and its corresponding deterministic system (red) when β̄ = 0.5. Right-hand column
reflects the frequency distribution histogram of I and R of system (1.5).

Figure 4. Computer simulations for Φ(I, R) ⊆ [0.1, 0.25] × [0.16, 0.28].
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Example 6.2. (Extinction). If β̄ ∈ [0, 0.2402), the disease of system (1.5) will go
to extinction almost surely. Hence, we choose β̄=0.05, 0.1, 0.15, 0.2 to study the
impact of β̄ on disease extinction in Fig. 5. Fig. 6 shows simulations of the solution
(I(t),R(t)) in deterministic model (1.4) and stochastic model (1.5) when β̄=0.2.

Figure 5. The stochastic solution (I(t),R(t)) under β̄ =0.05, 0.1, 0.15, 0.2, respectively.
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Figure 6. The numbers of infected individuals I and recovered individuals R in stochastic system (1.5)

and its deterministic system (1.4) when β̄=0.2.

Summing up, Fig. 3 and Fig. 6 show that the stochastic solution (I(t), R(t))
fluctuates around the deterministic solution regardless of the persistence or extinc-
tion. In other words, the long-time behavior of stochastic epidemic model (1.5) is
consistent with that of the corresponding deterministic model (1.4). Obviously, the
numbers of infectious individuals I and recovered individuals R will decrease and
the rate of disease extinction will be faster when β̄ decreases in Fig. 2 and Fig.
5. To put it another way, the small β̄ plays a positive and effective role in pre-
venting the spread of the disease. Therefore, during the COVID-19 pandemic, the
public health department publishes some effective prevention measures, which can
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reduce the contact rate β̄. Measures include wearing a mask, putting in quarantine,
keeping maximum social distancing and lockdown of the city.

6.2. The impact of β̄e

In this part, for the dynamics of system (1.5), we will focus on the impact of the
maximum reduced contact rate β̄e due to coverage media. The parameters are
shown as follows:

a = 1; β̄ = 0.8; γ = 0.05;λ = 0.3;µ = 0.1;σ1 = 0.1;σ2 = 0.1; θ1 = 3; θ2 = 3.

Example 6.3. We consider four cases: (i) β̄e = 0, (ii) β̄e = 0.2, (iii) β̄e = 0.6, (iv)
β̄e = 0.8. Fig. 7 presents paths of I(t) and R(t) for stochastic system (1.5) and
deterministic system (1.4). Looking at Fig. 7 from left to right, we can find that the
numbers of infectious individuals and recovered individuals decrease as β̄e increases
and the stochastic solution (I(t), R(t)) fluctuates around the endemic equilibrium
of system (1.4). It is easy to conclude that the spread of the infectious diseases can
be effectively controlled by media coverage.

Figure 7. The deterministic solution (red) and stochastic solution (blue) for I(t) and R(t) when β̄e=0,
0.2, 0.6, 0.8, respectively.

6.3. The impact of µ

In this part, we concentrate on the impact of the natural birth and death rate µ on
long-time behavior of model (1.5). Fig. 8 depicts the variation tendency of R0, R

∗
0

and Rs
0 with variable µ ∈ [0, 0.4]. Fig. 8 indicates that the existence of stationary

distribution of system (1.5) when µ ∈ [0, 0.0522). And the stationary distribution
obeys a normal density function when µ ∈ [0, 0.1). Besides, the disease of system
(1.5) will die out if µ > 0.2572. The numerical simulation parameters are shown
below:

a = 1; β̄e = 0.1; γ = 0.05;λ = 0.2;σ1 = 0.2;σ2 = 0.2; θ1 = 2; θ2 = 2; β̄ = 0.3.

Example 6.4. For the following four cases of µ: (i) µ=0.01, (ii) µ=0.05, (iii)
µ=0.3, (iv) µ= 0.4, Figure. 9 gives information about the stochastic dynamics of
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I(t) and R(t). Clearly, the numbers of infected individuals and recovery individuals
will decline as µ rises. The numerical simulations verify a conclusion that a big µ
can result in disease extinction.

Then, choosing µ = 0.05, we can compute that R0 = 1.2 > 1, which means
that the solution has a normal probability density function Φ ∼ N4(E

∗
2 , Σ2), where

E∗
2 = (0.0510, 0.1020, 0.3, 0.1) and

Σ2 =


0.000234 0.000320 0.000214 −0.000010

0.000320 0.000640 0.000020 −0.000001

0.000214 0.000020 0.01 0

−0.000010 −0.000001 0 0.01

 .

In addition, we can calculate the joint density function of (I,R):

Φ(I,R)

=731.3315e−6756.7568(I−0.0510)2+6756.7568(I−0.0510)(R−0.1020)−2470.4392(R−0.1020)2 .

Computer simulations for the joint density function of Φ(I,R) are given in Fig. 10.
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0 with the variable µ ∈ [0, 0.4].
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Figure 9. The stochastic solution (I(t),R(t)) under µ =0.01, 0.05, 0.3, 0.4, respectively.

Figure 10. Computer simulations for Φ(I, R) ⊆ [0, 0.1] × [0, 0.2].

6.4. The impact of speed of reversions

In this part, we separately study the speed of reversions θ1 and θ2 on the dynamical
behavior of model (1.5) by the method of controlling variables. Assume that the
parameters of epidemic model (1.5) are given by:

a = 1, γ = 0.05, λ = 0.2, µ = 0.2, β̄e = 0.1, σ1 = 0.2, σ2 = 0.2.

Example 6.5. (Persistence). We choose β̄=0.6 to guarantee disease persistence
of the deterministic system. We separately consider two cases: (i) fixing θ2 = 3
to study the effect of θ1; (ii) fixing θ1 = 3 to study the impact of θ2. For case
(i), we can directly see that Rs

0 > 1 when θ1 ∈ [0, 12.8757) in the left of Fig. 11.
The specific changes of I and R with θ1=1, 2 and 3 can be seen in Fig. 12. In a
similar way, the right of Fig. 11 exhibits the variation trends of R0, R

∗
0 and Rs

0 with
θ2 ∈ [0, 10] under case (ii). Fig. 13 illustrates the stochastic solution (I(t), R(t))
with θ2=1, 2 and 3. In the above cases, the condition of Theorem 4.1 is satisfied.
Thus, the disease will persist in a long time.



542 Y. Jiang, M. Gao, D. Jiang & J. Ding

0 5 10 15 20

1

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
al

ue

R0

R*
0

Rs
0

0 2 4 6 8 10

2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
al

ue

R0

R*
0

Rs
0

7.076412.8757

Density functionDensity function

Stationary distributionStationary distribution

Figure 11. The variation trends of R0, R∗
0 and Rs

0 with the variable θ1 ∈ [0, 20] when θ2 = 3 (left).
The variation trends of R0, R

∗
0 and Rs

0 with the variable θ2 ∈ [0, 10] when θ1=3 (right).

Figure 12. The solutions of I and R under θ1 = 1, 2, 3 when θ2 = 3.

Figure 13. The solutions of I and R under θ2 = 1, 2, 3 when θ1 = 3.
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Example 6.6. (Extinction). To investigate the extinction of the disease, we choose
other parameters β̄=0.3 to guarantee R0 = 0.75 < 1. We think about two cases: (i)
fixing θ2 = 1 to focus on the effect of θ1; (ii) fixing θ1 = 1 to explore the impact of
θ2. The left of Fig. 14 shows the variation trends of R0, R

∗
0 and Rs

0 with θ1 ∈ [0, 3.5]
under case (i) and the disease will die out when θ1 ∈ [0, 2.3292). Fig. 15 explicitly
reveals the numbers of I(t) and R(t) with different θ1= 0.5, 1 and 1.5. Similarly,
for case (ii), the right of Fig. 14 depicts the variation trends when θ2 ∈ [0, 3]. If
θ2=0.5, 1 and 1.5, we can get R∗

0 < 1, which means that the disease will eventually
go extinct (see Fig. 16).

From Figs. 12-13 and 15-16, we can observe that a small speed of reversions has
an unfavorable effect on the stabilization whether persistence or extinction.
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Figure 15. The solutions of I and R under θ1 = 0.5, 1, 1.5 when θ2 = 1.
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Figure 16. The solutions of I and R under θ2 = 0.5, 1, 1.5 when θ1 = 1.

6.5. The impact of stochastic noises

In this part, we separately discuss the impact of environmental noises σ1 and σ2
on long-time behavior of epidemic model (1.5). The numerical simulations use the
following parameters:

a = 1, γ = 0.05, λ = 0.2, µ = 0.2, β̄e = 0.1.

Example 6.7. (Persistence). For the prevalence of the disease in deterministic
system (1.4), we choose (β̄, θ1, θ2)=(0.55, 2, 2) to guarantee R0 = 1.375 > 1.
The left of Fig. 17 shows the trends R0, R

∗
0 and Rs

0 with σ1 in the interval [0, 1]
when σ2 = 0. There exists a stationary distribution if σ1 ∈ [0, 0.7480). Fig. 18
visualizes the trends of I and R with σ1= 0, 0.1, 0.2 and 0.3. While, if σ1 = 0, the
trends R0, R

∗
0 and Rs

0 with different σ2 ∈ [0, 0.6] are presented in the right of Fig.
17, which shows the existence of the stationary distribution of system (1.5) when
σ2 ∈ [0, 0.3740). Similar data simulations are demonstrated in Fig. 19.

0 0.2 0.4 0.6 0.8 1

1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
al

ue

R0

R*
0

Rs
0

0 0.1 0.2 0.3 0.4 0.5 0.6

2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
al

ue

R0

R*
0

Rs
0

0.7480 0.3740

Stationary distribution Stationary distribution

Density function Density function
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parameter values (β̄, θ1, θ2)=(0.55, 2, 2).
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Figure 18. The solutions of I and R under σ1=0, 0.1, 0.2, 0.3 when σ2 = 0.

Figure 19. The solutions of I and R under σ2=0, 0.1, 0.2, 0.3 when σ1 = 0.

Example 6.8. (Extinction). We choose (β̄, θ1, θ2)=(0.35, 0.6, 0.6) to guarantee
R0 = 0.875 < 1, which implies that the infectious disease will not exist for deter-
ministic system (1.4). The left of Fig. 20 illustrates the trends of R0, R

∗
0 and Rs

0

with σ1 ∈ [0, 1] when σ2 = 0 and shows disease extinction of system (1.5) when
σ1 ∈ [0, 0.4552). The right of Fig. 20 depicts the similar trends when σ2 ∈ [0, 0.5]
and σ1 = 0. If σ2 ∈ [0, 0.2276), the disease of system (1.5) will be extinct. When
σ2= 0, Fig. 21 describes disease extinction with different σ1= 0, 0.06, 0.12, 0.18. If
σ1 = 0, Fig. 22 shows the analogous data simulations.
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Figure 21. The solutions of I and R under σ1=0, 0.06, 0.12, 0.18 when σ2 = 0.

Figure 22. The solutions of I and R under σ2=0, 0.06, 0.12, 0.18 when σ1 = 0.
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Summing up, from Figs.18-19 and 21-22, we can find that small stochastic noises
make the solution of the stochastic system closer to that of the deterministic sys-
tem. In other words, the obvious conclusion is that the fluctuation of the solution
(I(t), R(t)) will become larger as stochastic noises increase.

7. Conclusions

We propose a stochastic SIRS epidemic model with media coverage and two Ornstein-
Uhlenbeck processes. We first show the existence and uniqueness of the solution
with any initial value. Then, we provide sufficient conditions for extinction and per-
sistence, which gives theoretical support for gaining insight into the complex dynam-
ics of disease transmission. Our results reveal that the disease will be extinct with
probability one when R∗

0 := R0 +
1

2
√
π(λ+µ)

(
σ1√
θ1

+ σ2

(a+1)
√
θ2

)
< 1 , and the disease

will be persistent in a long term when Rs
0 := R0 − 1

2
√
π(λ+µ)

(
σ1√
θ1

+ σ2

(a+1)
√
θ2

)
> 1.

Besides, if R0 = β̄
λ+µ > 1, the solution follows a density function, which provides us

a more comprehensive of distribution character near the positive equilibrium point
of corresponding deterministic system. To further analyze the effect of parameters
in detail, Figs. 1-22 show the impact of β̄, β̄e, µ, the speed of reversions (θ1, θ2) and
stochastic noises (σ1, σ2) on stochastic SIRS model. It is possible to visually see the
specific impact of these parameters on the development of epidemic and validate
our findings. As a result of our simulations, we conclude that small β̄ will effectively
keep down the spread of the disease. Larger µ and suitable β̄e play a positive role
in preventing the spread of the disease. The speed of reversions and the stochastic
noises are the main factors affecting the stability of stochastic epidemic model.

Some valuable research issues are worth in-depth study. Firstly, due to the lim-
itation of our mathematical approaches to stochastic epidemic model, it is hard to
find a threshold for disease persistence and extinction. Secondly, pulse vaccination
is an important policy to control and prevent the spread of the infectious dis-
ease [39–41]. Therefore, we expect to learn a stochastic SIRS epidemic model with
pulse vaccination and mean-reverting Ornstein-Uhlenbeck process. In addition, in
order to analyze and deal with the probability density function more numerically,
we need to build a more complete and systematic theory. Finally, it is also a signif-
icant question to investigate whether the method used in this paper can be applied
to other stochastic models.
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Appendix A

We give the specific proof of Lemma 5.1.

For the algebraic equation K2 + ÂΣ̄ + Σ̄ÂT = 0, where K = diag(σ̃, 0, 0), Σ̄ is
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a real symmetric matrix, and

Â =


−a1 −a2 −a3
1 0 0

0 1 0

 .

Solving the algebraic equation obtains

Σ̄ =



a2σ̃
2

2(a1a2 − a3)
0 − σ̃2

2(a1a2 − a3)

0
σ̃2

2(a1a2 − a3)
0

− σ̃2

2(a1a2 − a3)
0

a1σ̃
2

2a3(a1a2 − a3)

 := (θij)(3×3),

where θ12 = θ21 = θ23 = θ32 = 0. If a1 > 0, a3 > 0 and a1a2 − a3 > 0, then we can
get

θ11 = a2
σ̃2

2(a1a2 − a3)
> 0, θ11θ22 = a2

σ̃4

4(a1a2 − a3)2
> 0,

θ22(θ11θ33 − θ213) = θ22(
a1a2
a3

− 1)
σ̃2

4(a1a2 − a3)2
> 0,

which implies that all leading principal minors of the matrix Σ̄ are positive. Hence
Σ̄ is positive definite. The proof of the Lemma 5.1 is confirmed. □

Appendix B

The method of transforming standard is provided.
Consider the algebraic equation G̃2+ ÃΣ̆+ Σ̆ÃT = 0, where G̃ = (σ, 0, 0, 0) and

Ã =


ã11 ã12 ã13 ã14

ã21 ã22 ã23 ã24

0 ã32 ã33 ã34

0 0 0 ã44

 .

Assume that ã21 ̸= 0, ã32 ̸= 0 and ã44 ̸= 0. Using the linear transformation of
ordinary differential equations, we set dX = ÃXdt, X = (x1, x2, x3, x4)

T , Y =
(y1, y2, y3, y4)

T and let

y4 = x4,

y3 = x3,

y2 = y′3 = dx3 = ã32x2 + ã33x3 + ã34x4,

y1 = y′2 = ã32dx2 + ã33dx3 + ã34dx4

= ã21ã32x1+(ã22+ã33)ã32x2+(ã23ã32+ã
2
33)x3+(ã24ã32+ã33ã34+ã34ã44)x4.
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We get

M̄ =


ã21ã32 (ã22 + ã33)ã32 ã23ã32 + ã233 ã24ã32 + ã34(ã33 + ã44)

0 ã32 ã33 ã34

0 0 1 0

0 0 0 1

 .

Here, M̄ is the standard transformation matrix. Then one has

dY = M̄dX = M̄ÃXdt = M̄ÃM̄−1Y dt.

That is

dY = d


y1

y2

y3

y4

 =


−e1 −e2 −e3 −e4
1 0 0 0

0 1 0 0

0 0 0 −ã44




y1

y2

y3

y4

 dt, (7.1)

where

M̄ÃM̄−1 =


−e1 −e2 −e3 −e4
1 0 0 0

0 1 0 0

0 0 0 −ã44

 .

Hence, the standard transform matrix M̄ is obtained.
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