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Abstract This study investigates a novel SEIS epidemic model that incorpo-
rates fractional-order derivatives to account for the memory effects of the dis-
ease spread. The Caputo derivative is specifically employed. Furthermore, the
model considers the influence of behavioral changes in susceptible individuals
by incorporating a general non-linear function that depends on their popula-
tion size. Leveraging recent advancements in fractional differential equations
theory, we establish the existence of solutions and analyze the critical con-
ditions for the system’s steady states to achieve global asymptotic stability.
Finally, the validity and applicability of the theoretical model are corrobo-
rated through numerical simulations using real-world data on the prevalence
of Pneumococcus.
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1. Introduction

This work deals with the long-term behavior of a nonlinear fractional SEIS epidemic
model with recruitment and varying total population size. Indeed, we divide the
host population into three interactive compartments denoted by (S), (E), and (I),
where S(t) represents the number of susceptible individuals at time t, E(t) is the
number of individuals exposed to the infection but not yet infectious, and I(t) is
the number of infected individuals. We assume that the susceptible population has
a constant recruitment rate A. Furthermore, we model the number of new cases
per unit of time by βφ (S(t)) I(t) where β is the transmission rate and φ is an
increasing function defined on [0,∞[ such that φ(0) = 0. The function φ can be
used to describe how different factors affect the rate of infection. For instance,
if φ(s) = s, it means that the contact rate is fixed and does not depend on the
number of susceptible individuals. However, φ(s) = s

1+ks , means that the contact
rate declines as more people become aware of the disease, where k is a parameter
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Essaâdi University, Tetouan, Morocco.

http://dx.doi.org/10.12150/jnma.2025.583


584 J. El Amrani, H. El Mahjour, I. Serroukh & A. Lahrouz

that measures the effect of awareness [1]. The function φ includes in addition other
forms of infection rates, such as the square root factor

√
s [31], which is a special

case of the power form Sp that was studied in [22]. We are interested in the long-
term effects of the disease outbreak, so we include both the natural death rate
µ and the disease-induced death rate ϵ. We also assume that an exposed person
becomes infected at the rate α and that an infected person recovers without any
disease-acquired immunity, thus becoming susceptible again at the rate λ. Based
on these assumptions, the following integer-order SEIS epidemic model is derived:

dS
dt (t) = A− µS (t)− βφ (S(t)) I(t) + λI (t) ,

dE
dt (t) = − (µ+ α)E (t) + βφ (S(t)) I(t),

dI
dt (t) = − (µ+ ϵ+ λ) I (t) + αE (t) ,

(1.1)

under positive initial conditions S(0) = S0, I(0) = I0, E(0) = E0. In the paper
[10], using the geometrical approach of Li and Muldowney, the authors found the
threshold for system model (1.1) in the special case φ(s) = s which determines
whether the disease dies out or persists in an endemic level. The same results
for SEIS with vertical and horizontal transmission are established by Korobeinikov
using Lyapunov functions [18]. Recently, Naim et al. [25] presented a detailed
analysis of a SEIS model with nonlinear force infection. It is shown that if the
basic reproduction number is less than one, then the disease-free equilibrium is
globally asymptotically stable. Otherwise, a unique positive equilibrium appears
and it is locally asymptotically stable. Furthermore, by using the Lyapunov function
approach, global asymptotic stability is obtained under additional conditions. Many
types of SEIS epidemic models are studied in the literature [2, 33, 35]. However, to
the best of our knowledge, the global stability of system (1.1) is not yet investigated.

On the other hand, many researchers used fractional differential equations to
model the evolution of transmissible diseases [20, 29, 30, 36, 37]. These equations
involve non-integer order derivatives defined by integrals, making them non-local
operators. This feature allows them to capture the memory effect seen in various
phenomena. This includes modeling viscoelasticity, polymers, and anomalous dif-
fusion. It also extends to medical applications, such as studying hyperthermia in
cancer treatment, and other fields where a non-Markovian approach is more appro-
priate [5,23,32]. Therefore, fractional derivatives have attracted considerable atten-
tion in recent years, as they can be applied to formulate simple and unified models
for complex materials and processes. The field of fractional calculus offers vari-
ous fractional-order derivatives, including Riemann-Liouville, Grünwald-Letnikov,
and Caputo derivatives [27]. Among these, the Caputo derivative offers distinct
advantages for modeling real-world phenomena. Notably, unlike Riemann-Liouville
derivatives, the Caputo derivative of a constant is zero. This simplifies the analysis
of fractional differential equations involving the Caputo derivative. Additionally,
the Caputo derivative allows for straightforward formulation of initial conditions,
similar to classical integer-order differential equations. This eases the process of
incorporating real-world data into the model. Finally, the Caputo derivative boasts
a well-developed mathematical framework with established results on existence,
uniqueness, and stability [27]. This robust foundation allows for confident analysis
and reliable conclusions when using the Caputo derivative in models. Due to these
advantages, we will employ the Caputo derivative in this work. A formal definition
is provided in Appendix A. By integrating system (1.1) and changing its uniform
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kernel (see [19]), one can transform it into the following Caputo’s fractional system
C
0 D

q
tS (t) = A− µS (t)− βφ (S(t)) I(t) + λI (t) ,

C
0 D

q
tE (t) = − (µ+ α)E (t) + βφ (S(t)) I(t),

C
0 D

q
t I (t) = − (µ+ ϵ+ λ) I (t) + αE (t) ,

(1.2)

with the same initial conditions in the integer system (1.1). The system (1.2) gives
rise to several fundamental inquiries. For instance, does the disease described by
(1.2) converge to a constant level, either positive or null? Does it exhibit stability or
fluctuate periodically or in an unpredictable manner? To address these questions,
it is crucial to comprehend the asymptotic behavior of the system (1.2), which will
be thoroughly examined in section 3. However, before delving into the analysis
of the system’s asymptotics, we establish in section 2 that system (1.2) is both
mathematically and biologically well-posed. Additionally, in section 4, we present
a series of numerical simulations that depict solutions to the system (1.2), utilizing
actual data on Pneumococcus prevalence among children under 2 years old.

2. Basic model properties

The sub-population sizes S(t), E(t), and I(t) can never be negative. So, first, we
show the existence, positivity, and boundedness of solutions of model (1.2) which
are useful in studying its asymptotic properties.

Lemma 2.1. Let (S,E, I) be a continuous solution to system (1.2) with positive
initial condition (S0, E0, I0). If (S,E, I) is defined on [0, T ] for some T ∈ (0,∞),
then, we have

S(t) > 0, E(t) > 0, I(t) > 0 , ∀t ∈ [0, T ] , (2.1)

N(t) ≤ min

(
A

µ
,N(0)

)
, ∀t ∈ [0, T ] , (2.2)

where N(t) = S(t) + E(t) + I(t).

Proof. Define τ+ as follows τ+ = inf{t ≥ 0, S(t)E(t)I(t) = 0}. Note that τ+ > 0.
This results from the positivity of S0, E0, I0 and the continuity of the functions
solution S(t), E(t) and I(t). We claim that τ+ = T . For the sake of contradiction,
suppose that τ+ < T. Then, for all t ∈ [0, τ+], we have

C
0 D

q
tE(t) ≥ − (µ+ α)E(t),

C
0 D

q
t I(t) ≥ − (µ+ ϵ+ α) I(t).

Therefore, by Lemma A.2, we infer that

E(t) ≥ E0 Eq (− (µ+ α) tq) ,

I(t) ≥ I0Eq (− (µ+ ϵ+ α) tq) .

In particular, we deduce that E(τ+), I(τ+) > 0. Hence, S(τ+) = 0. Furthermore,
φ(0) = 0, thereby

C
0 D

q
tS(τ+) = A+ λI(τ+) > 0. (2.3)
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On the other hand, by Lemma A.1, we have

C
0 D

q
tS(τ+) =

S(τ+)− S0

Γ(1− q)τ q+
+

q

Γ(1− q)

∫ τ+

0

(τ+ − s)−q−1 [S(τ+)− S(s)] ds,

=
−S0

Γ(1− q)τ q+
− q

Γ(1− q)

∫ τ+

0

(τ+ − s)−q−1 [S(s)] ds,

< 0,

(2.4)

which contradicts (2.3). Then, our claim is true. That is, the assertion (2.1) holds.
Now, summing the three equations of (1.2) yields that

CDq
tN(t) = A− µN(t)− εI(t),

≤ A− µN(t).
(2.5)

Using Lemma A.2 again, we get

N(t) ≤ A

µ
+

(
N(0)− A

µ

)
Eq (−µtq) ∀t ∈ [0, T ]

≤ max

(
A

µ
,N(0)

)
, (2.6)

because Eq (−µtq) ≤ 1. This completes the proof of Lemma 2.1.

Theorem 2.1. Assume that φ is a locally Lipschitz continuous function on [0,∞).
For any positive initial condition (S0, E0, I0), system (1.2) possesses a unique solu-
tion for all t ∈ [0,∞).

Proof. Set X(t) = (S(t), E(t), I(t)) . The system (1.2) can be written concisely
as

C
0 D

q
tX(t) = f(X(t)),

where f = (f1, f2, f3) : R3 → R such that
f1 (x1, x2, x3) = A− µx1 − βφ(x1)x3 + λx3,

f2 (x1, x2, x3) = −(µ+ α)x2 + βφ(x1)x3,

f3 (x1, x2, x3) = −(µ+ ε+ λ)x3 + αx2.

(2.7)

Since φ is supposed locally Lipschitz continuous, it is the same for the field f .
Therefore, system (1.2) has a unique local solution [6]. Furthermore, owing the
prior estimates (2.1) and (2.2) of Lemma 2.1, and the continuation theorem in [34],
the solution X(t) is defined on [0,∞).

3. Mains results

First, denote φ−1 the inverse mapping of the continuous increasing function φ. The
equilibria of model (1.2) are the solutions of the system equations f (S,E, I) = 0.
Direct calculation shows that system (1.2) has two equilibrium states: the disease-

free equilibriumX0
(

A
µ , 0, 0

)
, and a unique positive equilibrium stateX∗ (S∗, E∗, I∗)



NL SEIS Fractional-Order Time 587

determined by

S∗ = φ−1

(
(µ+ α)(µ+ ε+ λ)

αβ

)
, I∗ =

α

µ(µ+ ε+ λ) + α(µ+ ε)
(A− µS∗),

E∗ = µ+ε+λ
α I∗, provided that A− µS∗ > 0 which is equivalent to

R0 ≜ βφ

(
A

µ

)
× α

µ+ α
× 1

µ+ ε+ λ
> 1. (3.1)

Note that βφ
(

A
µ

)
is the number of new cases per unit time caused by a single

infectious person in a population of A
µ susceptible individuals, α

µ+α is the fraction

of individuals progressing from exposed to infectious and 1
µ+ε+λ is the average in-

fectious time taking death into account. Thus, R0 represents the average number of
secondary infections from a single infectious host in a totally susceptible population
of size A

µ . It is the basic reproduction number for a disease modeled by system

(1.2). In the following results, we prove that the dynamics of (1.2) are completely
determined by the threshold parameter R0.

Theorem 3.1. Suppose that φ is a differentiable function on (0,∞). If R0 > 1,
the endemic equilibrium state X∗ is uniformly stable and globally Mittag-Leffler
attractive. That is

∃C1, C2 > 0, ∀t ⩾ 0, (S(t)−S∗)2+(E(t)−E∗)2+(I(t)− I∗)2 ⩽ C1Eq(−C2t
q).

Proof. See Appendix C.1.

Theorem 3.2. Suppose that φ is a differentiable function on (0,∞). The disease-
free equilibrium state X0 is uniformly stable and globally attractive if and only if
R0 ≤ 1.

Proof. See Appendix C.2.

4. Numerical simulations

In the previous section, we discussed theoretical findings related to the solutions
of the fractional-order model (1.1). To illustrate the practicality of these findings,
following the research by Chikhaoui et al. [3], we utilize the dataset presented in their
work to simulate the spread of the pneumococcal infectious disease among children
under 2 years old. Their study, based on data from the Pediatric Hospital of Ibn
Rochd in Casablanca, suggests a significant decrease in patient numbers following a
vaccination program implementation. The observed reduction corresponds to a rate
of 13.5% per 100, 000 children. Therefore, we will simulate a sample of N = 5, 000
for this purpose, and consider that the infection rate is β = 0.000135, which is the
same transmission rate observed in [4]. To account for mortality, we incorporate a
daily death rate µ of 0.000015753. This value is derived from the average annual
death rate of 18.9% reported in the data bank [24] conducted during the same
timeframe as the clinical investigation by Chikhaoui et al. [3]. To streamline the
model, particularly the birth rate parameter is assumed to be A = µN = 6.868.
This simplification is due to the short simulation period in the fractional order scale
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and also due to the young age of the population. To ensure comprehensive analysis,
additional parameters were retrieved from another source (details in Table 1).

Parameter symbol Description Estimate or range Source

µ natural death rate of the population 1.5753× 10−5 day−1 [24]

ϵ death rate due to the disease 0.05 day−1 [28]

β disease transmission rate 1.35× 10−4 person−1 day−1 [3, 4]

1/α mean duration of incubation 1− 3 day [28]

1/λ mean duration of infectious period 49.7 day [14]

q fractional order 0.5− 1 assumed

Table 1. Estimates and ranges of input parameters of the system model (1.2).

To implement the numerical simulations, we used Julia which is a high-level,
general-purpose dynamic programming language. Since the main objective is to
solve numerically our fractional system (1.1), the principle package used is FDE-
Solver, which tackles fractional differential equations and focuses on the Caputo
definition of fractional derivatives, and offers numerical solutions for these equa-
tions. The method used in this code is based on the predictor-corrector approach of
Adams-Bashforth-Moulton described in [7]. This approach’s convergence and accu-
racy properties are analyzed in [8]. The stability issues of this method are discussed
in [13]. The idea of using multiple iterations for the corrector step when dealing with
multiterm FDEs comes from [9]. This code also uses the FFT algorithm from [15]
to compute the discrete convolutions efficiently, reducing the computational cost
from N 2 to N log2 N , where N is the number of time points for the solution. For
more detailed information about the code, we refer to [11, 16, 26]. In the following,
we propose the functional response φ(s) = exp(1−a)

√
s where the parameter a rep-

resents the control measures used to reduce infectious contacts. Figure 1 represents
the simulated results from system model (1.2) during a period of 360 days with the
parameter values of Table 1 and fractional orders q = 0.8. In the first row of this
figure, a = 0 and thus endemic dynamics are predicted since R0 = 1.1503 > 1.
Whereas in the second row, R0 = 0.4232 < 1 because a = 1, the disease is pre-
dicted to die out i.e limt→∞ I(t) = 0. However, as we can see from both cases in
Figure 1, it is not clear for this period time when the time series S(t), I(t) or E(t)
starts to stabilize either around endemic or disease-free equilibrium states. That
is why we show figure 2 to depict the long time behavior of the solutions as the
final time is 3600 days. More specifically, as we see in the right plot in Figure 2,
since the basic reproduction number is R0 > 1, then, according to Theorem 3.1, the
Pneumonia disease will persist at an endemic level. Besides, in virtue of Theorem
3.2, to control the propagation of the disease in the population it is imperative to
reduce the value of R0. One way to achieve this goal is to introduce a control
parameter a. The effect of this parameter a on the dynamics of the infectious pop-
ulation will be shown in Figure 3 depicting the curves of the infectious population
for different values of a. A specific form of the term multiplied by the contact term√
s was chosen, which is exp(1 − a). This modeling approach allows us to express

the influence of measures taken to prevent contact between susceptible and infec-
tious individuals. If the measures taken are nonexistent, or rather, if the effort to
prevent transmission is negligible, the consequences are exponentially proportional,
meaning that 0% effort causes an increase of exp(1) in the contact rate. If the
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efforts made are almost exemplary, then the value of a is equal to 1 or 100%. This
can be interpreted as a significant reduction in contacts while only maintaining the
“natural” rate intrinsic to the nature of the disease itself. Thus, as the simulations
show, the decrease in the number of infectious individuals is significantly important
when the value of a tends towards 1. This control parameter acts as a proxy for
the vaccination program mentioned in [3]. It indirectly influences the prevalence
of new invasive pneumococcal disease (IPD) cases in neonates, similar to how a
vaccine reduces a specific infection. Finally, the influence of fractional order on the
dynamics of different population classes remains an intriguing question. In fact, the
fractional order does not alter the long-term behavior (asymptotic behavior) of the
population class sizes. Although only the infective population is explicitly shown,
this observation holds true for the other two classes as well. However, smaller values
of q can dampen the solution, hindering it from reaching its equilibrium state as
quickly. This is clearly depicted in Figure 4 where the solutions I(t) corresponding
to each fractional order (see color code) take the longest time to converge toward
I∗ ≈ 689 when q = 0.65 for example.

Figure 1. Time series of model (1.2) with the parameter values of Table 1 and q = 0.8. In the first row
a = 0. In the second row a = 1.
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Figure 2. Phase portraits (S(t), E(t), I(t) with q = 0.95 and T = 3600 days.

Figure 3. The increase in the value of a causes a decrease in the number of infected individuals.
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Figure 4. Time series of I(t) with multiple values of q from 0.65 to 0.95. The initial values are
exceptionally here S(0) = 4200, E(0) = 50 and I(0) = 750.

5. Conclusion

In conclusion, this study introduces novel modifications to the classical SEIS epi-
demic model. Caputo derivatives are incorporated to capture memory effects in
disease dynamics, while a generalized incidence rate allows for the modeling of
diverse transmission scenarios. The model’s mathematical and biological validity
is established by demonstrating the existence, positivity, and boundedness of solu-
tions. Furthermore, we derive global asymptotic stability conditions for the system’s
equilibria based on the basic reproduction number. Notably, the convergence rate
for the endemic equilibrium exhibits a Mittag-Leffler-type behavior, analogous to
the exponential convergence observed in integer-order models.

Future work focuses on two key areas: expanding model generality and incorpo-
rating additional disease stages. Firstly, extending the model to encompass more
general incidence functions warrants investigation. This would enable the repre-
sentation of a broader spectrum of transmission dynamics observed in real-world
outbreaks. Secondly, including a recovered compartment with waning immunity
is a promising direction for further research. Such a modification would enhance
the model’s realism by capturing the temporary immunity acquired by recovered
individuals, leading to a more accurate representation of disease dynamics. Ad-
dressing these areas has the potential to significantly improve our ability to model
and predict the complexities of infectious disease outbreaks.
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A. Appendix A

A.1. Basic definitions

We start by introducing some key definitions and results from fractional calculus
that we will use in the proofs of the main results. For further details on this subject,
we refer the reader to the references [6, 17,27].

Definition A.1. The Riemann-Liouville fractional integral operator of order q > 0
of a function f : R+ → R is defined by

Iqf(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

where Γ(x) =
∫∞
0
tx−1e−tdt is the gamma function.

Definition A.2. The Caputo fractional derivative of order q of a function f : R+ →
R is defined by

C
0 D

q
t f(t) = In−qDnf(t) =

1

Γ(n− q)

∫ t

0

(t− τ)n−q−1f (n)(s)ds,

where n − 1 < q < n, n ∈ N) and f has absolutely continuous derivatives up to
order (n− 1). In particular, when 0 < q ≤ 1, we have

C
0 D

q
t f(t) =

1

Γ(1− q)

∫ t

0

f ′(s)

(t− s)α
ds.

Definition A.3. The one and two parameter Mittag-Leffler functions are defined
as

Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
,

where α, β > 0 and z ∈ C.

A.2. Useful lemmas

Lemma A.1. For q ∈ (0, 1) and X ∈ C([0, T ]) with CDq
tX ∈ C([0, T ]), it holds

C
0 D

q
tX(t) =

X(t)−X(0)

Γ(1− q)tq
+

q

Γ(1− q)

∫ t

0

(t− s)−q−1 [X(t)−X(s)] ds.

Lemma A.2. Let X be a continuous function such that

C
0 D

q
tX(t) ≤ a− bX(t), ∀t ∈ [0, T ],

where q ∈ (0, 1), a, b ∈ R2 and b ̸= 0. Then

X(t) ≤ a

b
−
(
X(0)− a

b

)
Eq(−bt).

Theorem A.1. Let V : Ω → R and X : [t0,∞) → Ω be two continuous and
differential functions, where Ω ⊂ Rd is a convex set. Suppose that V is convex over
Ω. Then, for any time instant t ≥ t0

C
t0D

α
t V (X(t)) ≤ (∇V (X(t)))

⊺ C
t0D

α
t X(t), ∀α ∈ (0, 1).
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B. Appendix B

B.1. Useful estimates

A continuous function ψ : [0,∞) → [0,∞) is said to belong to class K if it is
increasing and ψ(0) = 0. We have the following double inequality for such types of
functions.

Lemma B.1. Let ψ be a function of class K differentiable on (0,∞), and a, b > 0.
Then, if c ∈ (a, b) there exists positive constants M1,M2 and M3 such that

(x− c) (ψ(x)− ψ(c))

ψ(x)
≥M1(x− c)2, ∀x ∈ [a, b], (B.1)

M2 (x− c)
2 ⩽

∫ x

c

ψ(s)− ψ(c)

ψ(s)
ds ⩽M3 (x− c)

2
, ∀x ∈ [a, b]. (B.2)

Proof. Define the function F on (0,∞) by

F (x) =


ψ(x)− ψ(c)

(x− c)ψ(x)
if x ̸= c,

ψ′(x)

2ψ(x)
if x = c.

(B.3)

Since ψ is a differentiable function of class K, the function F is a positive continuous
on (0,∞). Then

M1 = inf
x∈[a,b]

F (x) > 0, M2 = sup
x∈[a,b]

F (x) > 0.

Thereby, (x−c)2F (x) ≥M1(x−c)2 on [a, b], which proves (B.1). For the inequality
(B.2), we take M2 = 1

2M1 and M3 = 1
2M2. Using the assumption c ∈ (a, b), (B.1)

can be easily obtained by studying, on the interval [a, b], the real functions

x 7→
∫ x

c

ψ(s)− ψ(c)

ψ(s)
ds−Mi (x− c)

2
, i = 2, 3.

C. Appendix C

C.1. Proof of Theorem 3.1

Define the non-negative functions

JS(t) =

∫ S(t)

S∗

φ(x)− φ(S∗)

φ(x)
dx,

JE(t) =

∫ E(t)
E∗

1

x− E∗

x
dx,

JI(t) =

∫ I(t)
I∗

1

x− I∗

x
dx.
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Using the equations verified by the components of the positive equilibrium state
X∗, one can write the system (1.2) as follows.

C
0 D

q
tS(t) = −µ(S(t)− S∗)− βφ(S∗)I∗

(
φ(S(t))I(t)

φ(S∗)I∗
− 1

)
+ λ(I(t)− I∗),

C
0 D

q
tE(t) = βφ(S∗)I∗E(t)

(
−1 +

φ(S(t))I(t)E∗

φ(S∗)I∗E(t)

)
,

C
0 D

q
t I(t) = αE∗I(t)

(
−1 +

I∗E(t)

I(t)E∗

)
.

Therefore, using Theorem A.1, we get

C
0 D

q
t JS(t) ≤slant

φ(S(t))− φ(S∗)

φ(S(t))
C
0 D

q
tS(t)

=− µ(S(t)− S∗)(φ(S(t))− φ(S∗))

φS(t)
− βφ(S∗)I∗

(
φ(S(t))I(t)

φ(S∗)I∗
− 1

)
×
(
1− φ(S∗)

φ(S(t))

)
+
λ(φ(S(t))− φ(S∗))(I(t)− I∗)

φ(S(t))

=− µ(S(t)− S∗)(φ(S(t))− φ(S∗))

φ(S(t))
− βφ(S(t)I(t)) + βφ(S∗)I∗

I(t)

I∗

+ βφ(S∗)I∗ − βφ(S∗)I∗
φ(S∗)

φ(S(t))
+
λ(φ(S(t))− φ(S∗))(I(t)− I∗)

φ(S(t))
.

(C.1)

Using again Theorem A.1, we obtain

C
0 D

q
t JE(t) ⩽

(
E(t)

E∗ − 1

)
C
0 D

q
tE(t)

= βφ(S∗)I∗
(
E(t)

E∗ − 1

)(
−1 +

φ(S(t))I(t)E∗

φ(S∗)I∗E(t)

)
= βφ(S∗)I∗

(
−E(t)

E∗ +
φ(S(t))I(t)

φ(S∗)I∗
+ 1− φ(S(t))I(t)E∗

φ(S∗)I∗E(t)

)
= βφ(S(t))I(t) + βφ(S∗)I∗

(
1− E(t)

E∗ − φ(S(t))I(t)E∗

φ(S∗)I∗E(t)

)
.

(C.2)

Similarly, one can estimate the fractional derivative of JI as follows.

C
0 D

q
t JI(t) ⩽

(
I(t)

I∗
− 1

)
C
0 D

q
t I(t)

= αE∗
(
I(t)

I∗
− 1

)(
−1 +

I∗E(t)

E∗I(t)

)
= αE∗

(
−I(t)
I∗

+
E(t)

E∗ + 1− I∗E(t)

E∗I(t)

)
.

(C.3)

Now, consider the following combination of JS , JI and JE defined as follows.

J1(t) = JS(t) + JE(t) +
βφ(S∗)I∗

αE∗ JI(t).
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It follows from the inequalities (C.13), (C.14), (C.3) and the linearity of Caputo’s
derivative that

C
0 D

q
t J1(t) ⩽

−µ(S(t)− S∗)(φ(S(t))− φ(S∗))

φ(S(t))
+
λ(I(t)− I∗)(φ(S(t))− φ(S∗))

φ(S(t))

+ βφ(S∗)I∗
(
3− φ(S∗)

φ(S(t))
− φ(S∗)I(t)E∗

φ(S∗)I∗E(t)
− I∗E(t)

E∗I(t)

)
.

Using the classical comparison between arithmetic and geometric means, we can see
that

3− φ(S∗)

φ(S(t))
− φ(S(t))I(t)E∗

φ(S∗)I∗E(t)
− I∗E(t)

I(t)E∗ ⩽ 0.

Hence,

C
0 D

q
t J1(t) ⩽

−µ(S(t)− S∗)(φ(S(t))− φ(S∗))

φ(S(t))

+
λ(I(t)− I∗)(φ(S(t))− φ(S∗))

φ(S(t))
.

(C.4)

Now, we rewrite the S-equation as follows

C
0 D

q
tS(t) = −µ(S − S∗)− βI(t)(φ(S)− φ(S∗))− (βφ(S∗)− λ)(I(t)− I∗).

In this case, using the monotonicity of φ, we obtain

C
0 D

q
t JS(t) ⩽

−µ(S(t)− S∗)(φ(S(t))− φ(S∗))

φ(S(t))
− βI(t)(φ(S(t))− φ(S∗))2

φ(S(t))

− (βφ(S∗)− λ)
(I(t)− I∗)(φ(S(t))− φ(S∗))

φ(S(t))

⩽− (βφ(S∗)− λ)
(I(t)− I∗)(φ(S(t))− φ(S∗))

φ(S(t))
.

(C.5)

Note that βφ(S∗)−λ = A−µS∗

I∗ > 0. Hence, if we consider the non-negative function

J2(t) =
λ

βφ(S∗)− λ
JS(t) + J1(t),

the inequalities (C.4) and (C.5) gives

C
0 D

q
t J2(t) ⩽

−µ(S(t)− S∗)(φ(S(t))− φ(S∗))

φ(S(t))
. (C.6)

In particular, we have
C
0 D

q
t J2(t) ⩽ 0, (C.7)

and therefore the equilibrium endemic equilibrium state X∗ is uniformly stable
(see, Theorem 3 in [21]). However, in the absence of a similar fractional version of
Lassale’s principal [12], the inequality (C.5) is not sufficient to show the asymptotic
stability of X∗. To reach our goal, we shall show that inf

t≥0
E(t) > 0. Indeed, if not,

there will exist a sequence of time (tn) such that E(tn) −→
n→∞

0. On the other hand,

integrating (C.7), yields that

JE(tn) ⩽ J2(tn) ⩽ J2(0) ∀n,
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which gives by substituting JE(tn) by its expression

E(tn)

E∗ − 1− log
E(tn)

E∗ ⩽ J2(0) ∀n, (C.8)

and this is clearly a contradiction because the left hand of (C.8) is unbounded and
tends to ∞ when n→ ∞. Similarly, one can show that inf

t≥0
I(t) > 0 and inf

t≥0
S(t) > 0.

Let η > 0 be a sufficiently small real number such that η < inf
t⩾0

S(t). Choose in (B.1)

of lemma B.1 a = η, b = max(Aµ , N(0)) and c = S∗. So, c ∈ (a, b). Moreover, in

view of the inequality (2.6), S(t) ∈ (a, b) for all t ⩾ 0. Then, for the function φ,
there exists M1 > 0 such that

(S(t)− S∗)(φ(S(t))− φ(S∗))

φ(S(t))
⩾M1(S(t)− S∗)2 ∀t ⩾ 0.

Thereby, from the inequality (C.6), we deduce that

C
0 D

q
t J2(t) ⩽ −µM1(S(t)− S∗)2. (C.9)

We continue our proof by considering the non-negative function

J3(t) =

∫ N(t)

N∗
(x−N∗)dx+

2µ+ ε

λ

∫ S(t)+E(t)

S∗+E∗
(x− S∗ − E∗)dx,

where N = S∗ + E∗ + I∗. The application of Theorem (A.1) and straightforward
computation, leads to

C
0 D

q
t J3(t) ⩽ −µ(S(t)−S∗)2−µ(E−E∗)2−(µ+ε)(I(t)−I∗)2+J4 (S(t)− S∗, E(t)− E∗) ,

(C.10)
where J4 is the quadratic given by

J4(x, y) =
−µ(2µ+ ε)

λ
x2 −

(
2µ+

(2µ+ ε)(2µ+ α)

λ

)
xy − (µ+ α)y2.

Let M2 > 0 be a sufficiently large number such that the quadratic J4(x, y)−M2x
2

is negative definite. Then, we have

J4 (S(t)− S∗, E(t)− E∗) ⩽M2(S(t)− S∗)2. (C.11)

Finally, we define the function

J5(t) =
M2

µM1
J2(t) + J3(t).

Combining (C.9), (C.10) and (C.11) yields that

c
0D

q
t J5(t) ⩽ −µ(S(t)− S∗)2 − µ(E(t)− E∗)2 − (µ+ ε)(I(t)− I∗)2.

Furthermore, in view of (B.2) of lemma B.1, and the fact that inf
t⩾0

S(t), inf
t⩾0

E(t),

inf
t⩾0

I(t) > 0, there exists M3 > 0 such that

−µ(S(t)− S∗)2 − µ(E(t)− E∗)2 − (µ+ ε)(I(t)− I∗)2 ⩾M3J5(t).
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Hence, c
0D

q
t J5(t) ⩽ −M5J5(t), which gives by comparison

J5(t) ⩽ J5(0)Eq (−M3t
q) .

Using again (B.2), there exists also M4 > 0 such that

(S(t)− S∗)2 + (E(t)− E∗)2 + (I(t)− I∗)2 ⩽M4J5(t)

⩽M4J5(0)Eq(−M3t
q).

This, implies the attractivity of the positive equilibrium state (S∗, E∗, I∗) of any
solution (S(t), E(t), I(t)) starting from any positive initial condition (S0, I0, R0).

C.2. Proof of Theorem 3.2

Suppose that R0 ≤ 1. In the following, we discuss two cases.
Case 1. If φ(Aµ ) < λ. So, we choose the variables S, I, N instead of S, E, I and we
write their equations as follows

c
0D

q
tS(t) = −µ

(
S(t)− A

µ

)
− βI(t)

(
φ(S(t))− φ

(
A

µ

))
+

(
λ− βφ(

A

µ
)

)
I(t),

c
0D

q
t I(t) = −(µ+ ε+ λ+ α)I(t) + α

(
N(t)− A

µ

)
− α

(
S(t)− A

µ

)
,

c
0D

q
tN(t) = −µ

(
N(t)− A

µ

)
− εI(t).

Then, define the non-negative function

L1(t) =
α

λ− βφ
(

A
µ

) ∫ S(t)

A
µ

(
x− A

µ

)
dx+

∫ I(t)

0

xdx+
α

ε

∫ N(t)

0

(
x− A

µ

)
dx.

Using Theorem (A.1), direct computations leads to

c
0D

q
tL1(t) ⩽

−αµ
λ− βφ(Aµ )

(
S(t)− A

µ

)2

− (µ+ ε+ λ+ α)I2(t)− µα

ε

(
N(t)− A

µ

)2

⩽ −2(µ+ ε+ λ+ α)L1(t).

Thus, L1(t) ⩽ L1(0)Eq (−2(µ+ ε+ λ+ α)tq) , which guarantee the global asymp-
totic stability of E0.

Case 2. If βφ
(

A
µ

)
⩾ λ. In this case, we return to the original variables S, E and

I, but we rewrite their equations as follows

c
0D

q
tS(t) = −µ

(
S(t)− A

µ

)
+ βI(t)

(
φ(S(t))− φ(

A

µ
)

)
−
(
λ− βφ(

A

µ
)

)
I(t),

c
0D

q
tE(t) = −(µ+ α)E(t) + β

(
φ(S(t))− φ(

A

µ
)

)
I(t) + βφ(

A

µ
)I(t),

c
0D

q
t I(t) = −(µ+ ε+ λ)I(t) + αE(t).

Then, we consider the function

L2(t) =

∫ S(t)

A
µ

(
φ(x)− φ

(
A

µ

))
dx+

βφ
(

A
µ

)
− λ

β
E(t)+

(µ+ α)(βφ
(

A
µ

)
− λ)

βα
I(t).
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Therefore

c
0D

q
tL2(t) ⩽− µ(S(t)− A

µ
)(φ(S)− φ

(
A

µ

)
)− βI(t)

(
φ(S(t))− φ

(
A

µ

))2

+

(
βφ

(
A

µ

)
− λ

)(
φ

(
A

µ

)
− (µ+ α)(µ+ ε+ λ)

βα

)
I(t)

⩽ −µ
(
S(t)− A

µ

)(
φ(S(t))− φ

A

µ

)
⩽ C1

(
S(t)− A

µ

)2

,

(C.12)

where C1 is a non-negative constant. So, according to Theorem 3 in the refer-
ence [21], the disease-free equilibrium E0 is uniformly asymptotically stable. To
complete its attractivity, we proceed as in the proof of Theorem 3.1. So, we need
the additional function

L3(t) =

∫ N(t)

A
µ

(x− A

µ
)dx+

2µ+ ε

λ

∫ S(t)+E(t)

A
µ

(x− A

µ
)dx,

where its fractional derivative is estimated by

c
0D

q
tL3(t) ⩽ −µ

(
S(t)− A

µ

)2

−µE2(t)−(µ+ε)I2(t)+C2

(
S(t)− A

µ

)2

, (C.13)

such that C3 > 0. Hence, if we put L4(t) =
C2

µC1
L2(t) + L3(t), we get from (C.12)

and (C.13) that

c
0D

q
tL4(t) ⩽ −µ

((
S(t)− A

µ

)2

+ E2(t) + I2

)
. (C.14)

On the other hand, it is easy to see that there exists C4, C5 > 0 such that

L4(t) ⩽ C4

((
S(t)− A

µ

)2

+ E2(t) + I2

)
+ C5(E + I).

Let η > 0 sufficiently small, from the elementary inequality ab ⩽ ηa2 + 1
4η b

2, one
can write

L4(t) ⩽ C4

((
S(t)− A

µ

)2

+ E2(t) + I2

)
+
C5

4η
(E2 + I2) + 2C5η

⩽
C5

2η

((
S(t)− A

µ

)2

+ E2 + I2

)
+ 2C5η.

Hence,

(
S(t)− A

µ

)2

+ E2 + I2 ⩾ −4η2 +
2η

C5
L4(t), which gives with (C.14) that

c
0D

q
tL4(t) ⩽ 4µη2 − 2µη

C5
L4(t).
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Therefore, by Lemma (A.2), we get

L4(t) ⩽ 2C5η − (L4(0)− 2C5η)Eq

(
−2µη

C5
tq
)
.

Since lim
t→+∞

Eq

(
−2µη

C5
tq
)

= 0, we have lim sup
t→+∞

L4(t) ⩽ 2C5η. Then, letting η → 0,

gives
lim sup
t→+∞

L4(t) = 0 = lim
t→+∞

L4(t).

Thus, the attractivity of E0 is obtained since it is easy to see that there exists a

positive constant C6 such that for all t ≥ 0, we have I(t) + E(t) +
(
N(t)− A

µ

)2
≤

CL4(t).
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