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Error Bounds for Corrected Euler-Maclaurin
Formula in Tempered Fractional Integrals
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Abstract In this paper, an equality is established for tempered fractional
integrals. With the help of this equality, we prove several corrected Euler-
Maclaurin-type inequalities for the case of differentiable convex functions in-
volving tempered fractional integrals. Moreover, we provide our results by
using special cases of obtained theorems.
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1. Introduction & preliminaries

Simpson-type inequalities are inequalities that are created from Simpson’s following
rules:

i. Simpson’s quadrature formula (Simpson’s 1/3 rule) is formulated as follows:

[rmas T [rwsar () esw].

ii. Simpson’s second formula or Newton-Cotes quadrature formula (Simpson’s
3/8 rule (cf. [8])) is formulated as follows:

[ rmete o (B2 s (52) o 0.

iii. There is also the corresponding dual Simpson’s 3/8 formula - the Maclaurin
rule based on the Maclaurin formula (cf. [8]):

[ o=t for (22 o2 (5) wor (552)] 0

Formulae (1.1), (1.2) and (1.3) are satisfied for any function f with continuous
4" derivative on [a, b].

The most popular Newton-Cotes quadrature involving three-point is Simpson-
type inequality as follows:

fthe corresponding author.
Email address:fatihezenci@gmail.com(F. Hezenci),
hsyn.budak@gmail.com(H. Budak)
1Department of Mathematics, Faculty of Science and Arts, Duzce University,
Duzce 81620, Tiirkiye.
2Department of Mathematics, Faculty of Science and Arts, Kocaeli University,
Kocaeli 41001, Tirkiye.


http://dx.doi.org/10.12150/jnma.2025.602

Corrected Euler-Maclaurin-Type Inequalities 603

Theorem 1.1. Let f : [a,b] — R be a four times continuously differentiable func-
tion on (a,b), and let Hf(‘l)Hoo = sup |f(4) (x)‘ < 00. Then, one has the following
( 7b)

ze(a
iequality

§ @+ (“50) + ] -

One of the classical closed type quadrature rules is the Simpson 3/8 rule based
on the Simpson 3/8 inequality as follows:

< g |7 ¢

Theorem 1.2 (See [8]). If f : [a,b] = R is a four times continuously differentiable
function on (a,b) and Hf(‘l)HOo = sup ‘f(4) (x){ < 00, then one has the inequality
)

re(a

;{f() 3f<2a+b>+3f(a—;2b)+f }
f@)Haza’_

The corresponding dual Simpson’s 3/8 formula - the Maclaurin rule based on
the Maclaurin inequality is as follows:

<giso |
~ 6480

Theorem 1.3 (See [8]). Assume that f : [a,b] — R is a four times continuously
differentiable function on (a,b) and Hf(4)||oo = sup |f(4)(:c)| < oo. Then, the
z€(a,b

following inequality holds:

Ff(wﬁh)+2f<a;b>+3f(a2%>}—biaéaﬂ@¢x

Mw (b—a)*.

<
~ 51840 Hf

Finally, three-point open formula known as corrected Euler-Maclaurin’s inequal-
ities (see [15]) is as follows:

Theorem 1.4 (See [15]). Suppose that f : [a,b] — R is a four times continuously
differentiable function on (a,b) and ||f(4)HOo = sup |f(4 | < oo. Then, it yields
z€(a,

1 5a+b a+b a+5b 1 b
80[27f( 5 )+26f< 5 >—|—27f( 6 )]—b_a/af(x)dx

_ 2401
<4” (b—a)*.
=98800 Hf @)

Fractional calculus has been grown interest because of its applications in a wide
range of disparate domains of science. Because of the importance of fractional
calculus, mathematicians have investigated different fractional integral inequalities.
Riemann-Liouville fractional integrals, tempered fractional, conformable fractional
integrals, and many types of fractional integrals have been considered with several
important types of inequalities. The bounds of new formulas can be established by
using not only Hermite-Hadamard and Simpson type inequalities but also Newton
and Euler-Maclaurin-type inequalities.
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Dragomir et al. [11] proved new inequalities of Simpson-type and their applica-
tion to quadrature inequalities in numerical analysis. Dragomir [12] presented an
estimation of remainder for Simpson’s quadrature formula for functions of bounded
variation and applications in the theory of special means. Several fractional Simpson-
type inequalities were established in the case of a function whose second derivatives
in absolute value are convex as given in [20]. Budak et al. [1] proved some vari-
ants of Simpson-type for differentiable convex functions using generalized fractional
integrals. See Refs. [2,5,42] and the references therein for further information.

Simpson’s second rule has the rule of three-point Newton-Cotes quadrature,
hence evaluations for the case of three steps quadratic kernel are usually called
Newton type results. These results are known as Newton-type inequalities in the
literature. Many mathematicians have investigated Newton type inequalities ex-
tensively. For instance, Erden et al. presented several Newton-type inequalities for
the case of functions whose first derivative in absolute value at certain power are
arithmetically-harmonically convex in paper [14]. Moreover, several Newton-type
inequalities for the case of differentiable convex functions through the well-known
Riemann-Liouville fractional integrals were established and several inequalities of
Riemann-Liouville fractional Newton’s type for functions of bounded variation were
given in [22]. Furthermore, new Newton-type inequalities based on convexity were
presented and several applications for special cases of real functions were also proved
in paper [18]. It can be referred to [4,6,7,23-25,35,39] and the references therein
to the case of more information associated with Newton-type inequalities including
convex differentiable functions.

Sets of inequalities are established by applying the Euler-Maclaurin formulae and
the results are applied in order to obtain several error estimates for the case of the
Maclaurin quadrature rules in [9]. Upon this, Franjié and Pecarié¢ [15] investigated
the corrected Euler-Maclaurin’s formulae, i.e. open type quadrature formulae where
the integral is approximated not only with the values of the function at points
(5a 4+ 0)/6, (a+b)/2, and (a + 5b)/6, but also with values of the first derivative at
end points of the interval. These formulae will have a higher degree of exactness than
the ones obtained in [9]. Furthermore, a set of inequalities is proved by using the
Euler-Simpson 3/8 formulae. The results are applied to get several error estimates
for the Simpson 3/8 quadrature rules in [10]. Thereupon, Franji¢ and Pecari¢ [16]
established the corrected Euler-Simpson’s 3/8 formulae, i.e. closed type quadrature
formulae where the integral is approximated not only with the values of the function
at points a , (2a+b)/3, (a+2b)/3, and b, but also with values of the first derivative
at boundary points of the interval. These formulae will have a higher degree of
exactness than those obtained in [10]. With the help of the derived inequalities,
several inequalities for the case of different classes of functions are presented. We
refer to [21,32,33,36,37] and the references therein for further information about
these kinds of inequalities.

Recall that the gamma function, incomplete gamma function, A-incomplete
gamma function are described by

I'(a):= /ta_le_tdt,
0
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Y (o, ) : to~le tdt,

Il
o\&

and

T
Y (a,z) = /t“_le_ktdt7
0

respectively. Here, 0 < a < co and A > 0.
There are some properties A-incomplete gamma function as follows:

Remark 1.1. [34] For the real numbers o > 0; 2, A > 0 and a < b, we readily
have
1

i Ya@p—a) (o, 1) = Oft‘l’lef)‘(b’a)tdt = ﬁ Y (a,b—a),

1
.. a,b—a pe b—a
i [ Yap-a) (@ 2)dz = Y?é,a)a ) _ Yk(lgi)luﬂ )
0

Recall that the Riemann-Liouville integrals of order oo > 0 are given by

J2 fz) = ﬁ /m (z— ) f(t)dt, =>a (1.4)
and . , 1
J f(x) = F(a)/ (t—2)* L ft)dt, = <b (1.5)

for f € Li[a,b]. See [19,28] for details and unexplained subjects. Note that the
Riemann-Liouville integrals become classical integrals for the condition o = 1.

We shall now present the fundamental definitions and new notations of tempered
fractional operators.

Definition 1.1. [29,31] The fractional tempered integral operators ja(i’)‘)f and
jb(f’)‘)f of order @ > 0 and A > 0 are given by

TEN [ (@) = %a) / S e fdt, wefal] (L6)

and

1

b
Jb(f’”f(x)Zm / (t—2)* e M f()dt, wefa,b],  (LT)

respectively for f € Lq[a, b].

If we assign A = 0, then the fractional integrals in (1.6) and (1.7) coincide with
the Riemann-Liouville fractional integrals in (1.4) and (1.5), respectively.

Tempered fractional calculus can be specified as the generalization of frac-
tional calculus. The definitions of fractional integration with weak singular and
exponential kernels were firstly reported in Buschman’s earlier work [3]. See the
Refs. [17,26,27,30,38,40,41] and references therein for more information connected
with the different definitions of the tempered fractional integration. In paper [34],
Mohammed et al. established several Hermite-Hadamard-type inequalities associ-
ated with the tempered fractional integrals for the case of convex functions which
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cover the previously published results such as Riemann integrals, Riemann-Liouville
fractional integrals.

The aim of this paper is to derive corrected Euler-Maclaurin-type inequalities
for the case of differentiable convex functions by tempered fractional integrals. The
fundamental definition of fractional calculus and other relevant research in this dis-
cipline are presented in above. We will prove an integral equality in Section 2 that is
critical in establishing the primary results of the presented paper. Furthermore, we
will prove some corrected Euler-Maclaurin-type inequalities for the case of differen-
tiable convex functions involving tempered fractional integrals. By using the special
cases of the obtained results, several important inequalities will be presented. In
Section 3, we will give several ideas about corrected Euler-Maclaurin-type inequal-
ities for further directions of research.

2. Principal outcomes

Lemma 2.1. Let us consider that f : [a,b] — R is an absolutely continuous function
(a,b) so that f' € Ly [a,b]. Then, the following equality holds:

1 5a+b a+b a+ 5b
80[271”( : )+26f< ! >+27f( . )]

- e (AN @+ a5 )
- w(rb;(oi);ila) ZZI (2.1)
Here,
L= jYA(b—a) (. t) [f" (b + (1 =t)a) = f' (ta+ (1 — 1) b)] dt,
I = f {Yap—a) (0, 8) =25 Y apay (a0, 1)} [/ (tb+ (1 = t) a)— f' (ta+(1—t) b)] dt,
I3 = f {Ya0-a) (@)= 5§ Yap-a) (@, D} [ (tb+(1-t)a) — f' (ta+ (1 - t)D)] dt,
Iy = :fl {¥ap—a) (@) = Yap—a) (. D} [f' (tb+ (1 —t)a) — f' (ta+ (1 — ) b)] dt.

Proof. From the facts of integration by parts, we get

I = | Yap—a) () [f (tb+ (1 —t)a) — f' (ta+ (1 —t)b)]dt (2.2)

o — ..

- ﬁ Y)\(b—a) (a’t) [f (tb + (1 - t) a) + f (tCL + (1 N t) b)] g
0

/t"‘_le_’\(b_“)t f (tb+ (1—t)a) + f (ta+ (1 — ) b)) dt

1

b—a
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e (b))

b

1

: /ta_le_’\(b_a)t [f b+ (1 —t)a)+ f(ta+ (1 -t)b)]dt.

b—a
0

Then, similar to foregoing process, we readily obtain

2 1 27 a+b
I, = " a {Y,\(ba) (a, 2) 30 Y x(b—a) (@, 1)} f ( 5 )

b
7 b 5b
bia {Y)\(ba) (mé) - % Y A(b—a) (041)} [f (5@(;1— > +f (a—g )}

(2.3)

g [T @4 (1 e+ fta+ (1= DY) at

L () o (52 1 (52)

S — 80
b
- ﬁ {Y,\(ba) (047 ;) - % Ya(—a) (@, 1)} f (a;— )
- /Gta Lem A=)t (£ (th 4 (1 —t)a) + f (ta+ (1 —t)b)] dt (2.4)
b—a ’
and
I, = *ﬁ {YA(b—a) <Ot, Z) = Ya@—a) (@, 1)} [f (5(1; b) +f <a—;5b>}
1 1
- /ta-le-Mb—a)t F(th+ (1 —t)a)+ f(tat (1—t)b)dt.  (2.5)
If we add (2.2) to (2.5), then we have
4
_ Ya(b—a) 5a +b a+b 5a+b
Y=g [ (5 +0r (57) -t (357
(2.6)

)
a/ta Le A= [f (th+ (1 —t)a) + f (ta+ (1 —t)b)] dt.
0

With the help of the change of the variable t = tb+ (1 —t)a and © = ta+ (1 —¢) b
for ¢t € [0, 1] respectively, equality (2.6) can be rewritten as follows

4
o Y (a,b—a) [ <5a+b> <a+b) <5a+b)}
;IZ Bo_a™ 7f 26f +27f (7
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- [A @+ 2 )] 27

Multiplying both sides of (2.7) by % the equality (2.1) is obtained. O

Theorem 2.1. If the assumptions of Lemma 2.1 hold and the function |f’| is convex
on [a,b], then we have the following corrected Euler-Maclaurin-type inequality

1 5a+b a+b a + 5b
&)[m( : >+26f< ! )+z7f( . )]

I'(a) (@) (@)
e [V @+ g2 0|
)™ (anh) + R ) + D () + 04 () [ (@) + 1 B)]
—_— 2 YA (a7 b _ a) 1 9 2 9 3 9 4 9 .
Here,
Ql (Oé, )‘) = 6/6’ |Y)\(b7a) (Oé,t)| dta
Qs (a, )‘) = fé |Y)\(b—a) (a7t) - % Y A(b—a) (av, 1)’ dt,
Q3 (a,A) = fg |Y)\(b—a) (a,t) — % Y A(b—a) (av, 1)| dt,
21
Qq (o, A) = f |Y)\(b a) (o, t) — Y x(b—a) (o, 1)‘ dt.

Proof. Let us take modulus in Lemma 2.1. Then, we have

[ 7f(5“”) +26f(”3 e (557)]

TV b )H

(b_a)a—H % / ’
Sm O/’YA(ba) a,t)“f (tb+ (1 —t)a) — f (ta+ (1 —t)b)|dt

+/ ’YA(ba) (avt) - g Y)\(bfa) (047 1) |f/ (tb+ (1 - t) a‘) - f/ (ta + (1 - t) b)| dt

[0 (@00 = 2 Yapma (@1 0+ (1 =) @) = f (ta+ (1= 1) 1)

Y a-a) (1) = Yap—a) (0, D[ 1f (th+ (1= t)a) — f' (ta+ (1 — 1) b)| dt

ol vl ol=
= ol

(2.8)
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It is known that |f’| is convex. Then, it yields

% {ZU <5ag—b) 265 (a;rb) orf (azsbﬂ
_m e, f(b)+J§“f(a>}’
(b—a)*
“2Ya(ab-a)

1
6

x / Y aw—a) ()] LS O]+ @ =) |f (@] +¢]f (@) + (1 =) [f (b)) dt

i 27
+/ ’YA(b—a) (o, t) — 30 A0 (a, 1)’

1
6

X[ @)+ @ =) () +t[f (@) + (A=) [/ (b)]] dt

+

\m\m

53
Y \(b—a) (1) — 30 MA0-a (v, 1)'

<[ @)+ @ =) () +t[f (@) + (A=) [f (B)]] dt

1
+ / }Y)\(b—a) (aat) - Y)\(b—a) (aa 1)|

5

<[t O)+ A=) [f (@) +t[f (@) + (1= t) £ (b)]] dt]
(b—a)*t

v (ab—a) (u (@) + Q2 (@) + Q3 (a) + Qa (@) [If (@) + ] (B)]].-
This finishes the proof of Theorem 2.1. O

Remark 2.1. Let us consider A = 0 in Theorem 2.1. Then, the following corrected
Euler-Maclaurin-type inequality holds:

o [271’ (5"6+b) +26f <a;rb> +27f (a?b)]
_m [Jlf‘_f(a)+J3+f(b)]‘

a(b—a)
2

< (21 (a,0) + Q22 (@, 0) + Q3 (v, 0) + Q4 (0, 0)) [If ()| + [/ B)I]

which is given in paper [21].

Remark 2.2. If we assign A = 0 and o = 1 in Theorem 2.1, then we get the
following corrected Euler-Maclaurin-type inequality

b
1 5a+b a+b a+5b 1
Lo (2 anr (“22) wors (5] 1L [ rio
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2401 (b — a)

<=2 @)+ 1 01

which is given in paper [21].

Theorem 2.2. Suppose that the assumptions of Lemma 2.1 hold and the function
|1, ¢ > 1 is convex on [a,b]. Then, the following corrected Euler-Maclaurin-type
inequality holds:

5a +b a+b a + 5b
w711 (%57 vor (757) v (7))

I (a) (@) g
—m[jbf)\f(> )\f()H
—a a+1
e (A @ + e a)

X

_<11 | (a)|;2+ i (b>|q>é . (If’ (@) 11 I (b”q)é]

+ (98 (00 N) + ¢ (0, 1)

§ '(2|f’ @I+ 17 <b>‘f)3 . (f’ @I+ 217 <b>|‘I>5”’

1,1 _
whereEJrEfl and

1

% P
9011) (av )‘) = (f ’Y)\(b—a) (avt)’pdt> ’
0 1
p % 27 p ’
©y (Oé, )\) = ‘1/‘ ’Y)\(b—a) (Oé,t) —~ 20 Y A(b—a) (OZ, 1)| dt s
65 1
5 P
90"13,) (OL, >‘) = (! ’Y)\(b—a) (Oé,t) - % Y)\(b—a) (Ot, 1)|p dt) )
2
1 » P
f|Y,\(b o) (0, t) = Y ap—a) (@, 1)|" dt
6)

Proof. If we apply Holder inequality in (2.8), then it follows

5a + b a+b a + 5b
80[2”( G )”67( 2 )*2”( 6 ﬂ

I (a) (a (er3)
Tovy (ab—a) [jb— V() + 75 f(b)H

(b - a)a+1 i P f / q
Sm ‘Y)\(b—a) (aat)‘ dt |f" (tb+ (1 —t)a)|" dt
0 0



Corrected Euler-Maclaurin-Type Inequalities 611

q

+ /é|f'(ta+(1—t)b)th +/

Nl

p

27
= Yap-a) (o, 1)| dt

Y/\(bfa) (aat) - 30

6

1 1
q < q
2

X /|f’(tb+(1—t)a)|th + /lf’(ta+(1—t)b)|th

5
6
+ /
1
2
q 1 P

+ / |f/ (ta + (1 - t) b)‘q dt + / |Y>\(b7a) (O(,t) - Y)\(bfa) (Oé, 1)’pdt

5
6

p

dt /|f’(tb—|—(1—t)a)|th

3
— YA(b— 1
30 A(b—a) (Oé, )

Y/\(bfaz) (Oé, t) -

q 1 q

X /|f’(tb+(1—t)a)|th + /|f’(m+(1—t)b)|th

5

6

By using convexity of |f/|?

1 5a 4+ b a+b a+ 5b
SO{W( - )+26f( ! >+27f< - )}

, we readily get

Q=

x /tlf’(b)|q+(1*t)\f’(a)lth
0

+ /tlf’(a)|q+(1—t)\f’(b)lth
0

2 27 P '
+ / Ya(—a) (@, 1) — 30 MAe-a (o, 1)| dt
1

6

=

Q=
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x (/tf’(b)q+(1t)f’(a)th)

q

q

+ /tf’(a>q+(1t)f’<b)th)

1
5 P
[ 53 ’
+ Y)\(bfa) (O(,t) - @ Y)\(bfa) (057 1) dt

2

x (/tf’ O+ @ =0 (a)th)

q

q

+ /tf’(a)"+(1t)f’(b)th)

. 5
+ / 1Y a—a) (@, ) = Ya@p—a) (o, 1)lpdf)
5

6
1
q

x (/tf’(b)qﬂlt)f’(a)th)

5
6

+ (/tf’ @+ -0f (b)th)

Q=

B (b_a)onrl
27, (a,b—a)

} P/ }
X (/ Y Ap—a) (1) ? dt) + (/ Y a—a) (@ 1) = Ya@p—a) (o, 1)|p dt)
) /

6

x '<11 7@l 1 <b>|q>5 W CACIET <b>|Q>i]

) 1
3 »
27 p
+ Y A(b—a) (a,t) - 30 Y A(b—a) (a, 1) dt
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p

53
dt

%
+ / ‘Y)\(ba) (Oé,t) - n Y)\(bfa) (Oé, 1)
1

80

. l(w' @I+ 17 <b>‘f)3 . <f’ @I+ 217 <b>|‘I>i] }

which completes the proof of Theorem 2.2. O

Remark 2.3. Let us consider A = 0 in Theorem 2.2. Then, the following corrected
Euler-Maclaurin-type inequality holds:

% [27f (5a;—b> +26f<a;rb> L orf (az5b)]
g i £ @)+ 5 £ ) \

<O (6 (0,0 + % (0,0)
y [(11 CEly <b>|q>i . (If’ @'+ 1117 (b)qﬂ

+ (¢4 (@, 0) + ¢ (@, 0))

(2 iRl <b>|q)3 . <|f’ @ + 21/ <b>|q>‘1*] }

which is given in paper [21].

Remark 2.4. If we choose A = 0 and a = 1 in Theorem 2.2, then we obtain the
following corrected Euler-Maclaurin-type inequality

b
1 S5a+b a+b a+ 5b 1
SO[W( - >+26f< ! >+27f( . )]—b_a/f(t)dt

<(b-a) (W)
x [(11 IR <b>|q>é (et Wﬂ

N <(pil) <(;410)p+1+ <;3>p+1>>p

. [<2|f’ (@)l +1f" <b>|q>3 . <|f’ ()| +2|f" <b>|‘Z>3H |

9 9

which is presented in paper [21].

Theorem 2.3. Assume that the assumptions of Lemma 2.1 are valid. Assume
also that the function |f'|?, ¢ > 1 is convex on [a,b]. Then, the following corrected



614 F. Hezenci & H. Budak

FEuler-Maclaurin-type inequality holds:

1 5a + b a+b a+ 5b
80{2”( - >+26f( ! >+27f< - )}

I' (o) a, a,
e [ @+ 5 0)
(b—a)*™!

_m {(Ql (a, )\))1_5

X |(25 (0 V1S B + (21 (0, A) = 05 (0, ) 1 (@)])

Q=

1
q

(95 (0, W) 1 (@)1 + (2 (0, 3) = 9 (@, ) | (8)]) 7]

(922 (0, )7 [ (9 (@, V)1 (B + (9 (0, A) = 2 (0, ) I ()|)
+ (9 (0 M) 1 (@) + (2 (0, 0) = D (@, V) | (8)]) ]

(92 (0, )75 [ (@ (0, ) I (B + (93 (@, 3) = D (0, ) [ (0)])
(@ (N 1F (@) + (@3 (0, 3) — 2 (@, M) ()] F]

(52 ()7 [ (@ (0 M) 17 (B + (24 (0,3) = D (0, ) [ (@)])
(95 (0, N) 1 (@)1 + (€ (e A) = 95 (@, ) 1 @)) 7]}

Here, Q1 (a, A), Q2 (o, A), Q3 (a0, A) and Q4 (o, ) are defined in Theorem 2.1 and

1
6
Q5(Ol )\ :f|Y)\(b a) Ot t |tdt
0
1
2
Qg (Oz,/\ =f|Y)\(b a) (Oz t) 80 Y- a) Q, 1 ‘tdt
1
6%
Q7 (o, A) = [ [ Y apa) (1) = 32 Ya(p—a) (a, 1)| tdt,
1
1
Qs (o, A) = [ | Y ap—a) (1) = Y x(p—a) (v, 1) Lt
5
6

Proof. Let us first apply power-mean inequality in (2.8). Then, we get

5a + b a+b a4+ 5b
a2 (M50) vor (57) e (5]

I'() (@) )
vy (ab—a) [jb— V() + T f(b)H

1—1
(b_ DLJrl
S NCUED) |Wb o (0] dt
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Q=

1
6

< | [ a0mo @0l 17 @0+ (1= o)

1—% | 1
6 q
+ /|Y>\(b—a) (o, )| dt /|Y,\(b_a) ()] | (ta+ (1 —t)b)|" dt
0
1 17%
2
27
+ YA(b—a) (a,t) - % Y A(b—a) (a, 1) dt
5

Q=

27
Vab-a) (@:1) = 55 Yag-a) (@ DI If (b + (1= t)a)|" dt

Q=

27

Y a(b—a) (0, 1) — 20 Y A(b—a) (o, 1) dt

Q=

27
Y A(b—a) ( ) % Y)\(bfa) (Oé, 1) |f/ (tCL + (1 - t) b>|th

Q=

80

Q=

53
Y A(b— a)( ) % Y)\(bfa) (Oé,l) |f/ (tb+<1_t> a>|th

Q=

53

Y a(p—a) (0, 1) — 20 Y x(b—a) (o, 1) | dt

Q=

/
/
/
%_/wamﬂ o a0 1)|
/
/
/

53
Y x(b—a) (@, 1) 30 Ya—a) (0, V)| | f/ (ta+ (1 —t)b)|" dt

1—1
q

+ / |Y)\(b7a) ((X,t) - Y)\(bfa) (CM, 1)’ dt

5
3
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L i
X / I A(b—a) (@, ) = Y xp—a) (0, D)| | f/ (tb+ (1 —t) a)|* dt)

6

Q=

17
| A(b—a) (@, 1) = Y x(p—a) (a, 1) dt)

+
@\m\)_\

Q=

X / Y Ap—a) (@, 1) = Yxp—a) (o, D] |f (ta + (1 — ) b)| dt)

6

Using the fact that |f’|? is convex, it follows

1 5a + b a+b a+ 5b
80{2”( 6 )+26f< 2 >+27f( 6 ﬂ

1 1-
(b o a)a+1 G
Sm / |Y>\(b7a) (aat)| dt
0

x (/ [Yaw—a) ()] [t1/ O + 1 =) [ (a)]] dt)
0

Q=

1
a

1
q

+ /|YA(b—a) (e O [t1f (@) + @ =) |1 ()] dt)
0

\/

x ( [ ra0ma (@00) = 3 ¥y @) 7 @F + (1= 01 @) dt)

N|=
Q=

1—
27
YA(b—a) (aat) - % Y)\(b—a) (0‘7 1)’ dt)

o=

q

1
q

80

+
ol \N‘H

Y)\(b—a) (avt) - z YA(b—a) (av 1) [t |f/ (a’)|q + (1 - t) |f/ (b)|q] dt)

Q=

1—
/ 53
+ Y a(b—a) (@, 1) — 20 Yab-a) (@, 1)|dt
1
2
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_ 1
5 q
f 53
X (/ Y A(b—a) (@, 1) — 20 Y a(b—a) (@, 1)‘ [t lF O+ =t)f (a)‘q] dt)
| \z
1
5 q
/ 53
+ / Y x(b—a) (1) — 20 Y xb-a) (@, 1)‘ [E1f (@) + (L =) | (b)|] dt)
%
1 =g
+ / |Y>\(b—a) (Ol,t) - Y)\(b—a) (057 1)| dt)
5
6
1
1 q
X / Y xp—a) (@, 1) = Y apay (. D)| [E1f 0)|" + (1 =) | f (a)|"] dt
1
1 q
+ / ‘Y)\(bfa) (a7t> - Y)\(bfa) (CY, 1)| [t |f/ (a)|q + (1 - t) |f/ (b>|q] dt
3
Finally, we obtain the desired result of Theorem 2.3. O

Remark 2.5. Consider A = 0 in Theorem 2.3. Then, the following corrected

Euler-Maclaurin-type inequality holds:

8710 {27f <5ag—b> 26 (a;b> yorf (a?bﬂ
_ QF((I)‘)‘_‘LJZ [Jef (a) + Jg f (1) ’

a(b—a) 11
< (@ (o0

% [ (@5 (@,0) 1 B)I7 + (21 (2,0) = 05 (@, 0)) f' (a)|) ®

which is presented in paper [21].

+ (05 (0,0) 1 (@) + (91 (0, 0) — 95 (o, 0)) | ()]%) ]
(9 (0,00 [ (€ (0,0) 7 (B)]" + (22 (,0) ~ 2 (2,0)) I (@)])
+ (0 (0,0) | (@) + (92 (0, 0) — D (o, 0)) | (1)) 7]
(25 (0,0) 7% [(92r (0, 0) 17 B + (925 (a1, 0) — O (0, 0)) | (a)])
+ (01 (@, 0) 1 @) + (9 (0,0) — 21 (0, 0)) | (D)) ]
(2 (0,0)7F (925 (0, 0) 17 )" + (9 (0, 0) — O (0, 0)) | a)])
+ (@5 (0, 0) 1 @] + (924 (0,0) — D (0,0)) ' (D))

Q=

Q=
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Remark 2.6. Let us consider A = 0 and @ = 1 in Theorem 2.3. Then, the following
corrected Euler-Maclaurin-type inequality holds:

b
1 5a + b a+b a+ 5b 1
80[27f< 5 >+26f< 5 >+27f( ; )]b_a/f(t)dt

(b—a) [(u' (®)|" + 817" <a>|q>i G (@) + 8]/ (b)|">

Q

<
- 72 9 9

1601\ " [ /379441 | (8)]7 + 773279 | f (a)[*\ 7
800 576000

(379441 I ()| + 773279 | f' (b)|q> @
+ 576000 ’

which is established in paper [21].

3. Summary & concluding remarks

Several new versions of corrected Euler-Maclaurin-type inequalities are presented
for the case of differentiable convex functions by using tempered fractional integrals.
More precisely, corrected Euler-Maclaurin-type inequalities are obtained by taking
advantage of the convexity, the Holder inequality, and the power mean inequality.
Furthermore, previous and new results are presented by using special cases of the
obtained theorems.

In future works, the ideas and strategies for our results related to corrected
Euler-Maclaurin-type inequalities using tempered fractional integrals may open new
ways for mathematicians in this field. In addition to this, one can try to generalize
our results by utilizing a different version of convex function classes or other types
fractional integral operators. Moreover, one can obtain likewise corrected Euler-
Maclaurin-type inequalities using tempered fractional integrals for convex functions
by using quantum calculus.
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