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Characterization of Distributions through
Stochastic Models under Fuzzy Random Variables
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K.Kavitha® and S. Geethamalini®

Abstract This paper is noteworthy because it investigates a novel method
for comparing the expectations of stochastic models in fuzzy contexts. Actu-
arial science and economics both depend on stochastic models. Understanding
the novel concepts of stochastic comparison of stochastic models based on the
exponential order is the main advantage of this study. We solved the preserva-
tion properties and theorem, created a new definition, and put the fuzzy mean
inactive time order definition into practice. Stochastic models are handled in
a variety of applications.
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1. Introduction

Applied probability, statistics, dependability, operations research, economics, and
allied domains have demonstrated the value of stochastic ordering. A variety of
stochastic ordering and related features have quickly emerged over the years. Let
X be a nonnegative random variable that denotes the lifetime of a system with a
distribution function F, survival function F' = 1 — F, and density function f. The
conditional random variable X; = (X —t|x > t),¢t > 0, is known as the residual
life of the system after X;, given that it has already survived up to X;. The mean
residual life (MRL) function of X is the expectation of X, which is given by

The MRL function is an important characteristic in various fields such as relia-
bility engineering, survival analysis, and actuarial studies. It has been extensively
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studied in the literature, especially for binary systems, that is, when there are only
two possible states for the system: either working or failing. The hazard rate HR
function of X provides another useful reliability measure.

f(x)
re(t) = F(t)’ t>0

The HR function is very helpful in characterising how the probability of witness-
ing the event varies over time and in identifying the appropriate failure distributions
using qualitative data regarding the failure mechanism. The MRL function has been
shown to be more effective in replacement and repair procedures, even though the
shape of the HR function is still significant. The HR function only accounts for
the possibility of a sudden failure at any given time. According to A. Arriaza,
M.A. Sordo, and A. Surez Llorenz [1], there is a group of methods called transform
stochastic orderings that help compare the remaining lifetimes and inactive periods
at specific points. A new stochastic order, called the star order, was introduced.
It is positioned between the convex order and the other two transform orderings.
I. Arab, PE. Oliveira, and T. Wiklund [2] have developed a novel concept for the
simple and thorough characterisation of instances in which one beta distribution
is smaller than another based on the convex transform order. They find patterns
in how likely it is for a beta-distributed random variable to be greater than its
average or most common value. Arevalillo and H. Navarro [3] allow for stochastic
comparisons of vectors with a multivariate skew-normal distribution. The new way
of comparing is built on a specific change related to the multivariate skew-normal
distribution and a common method used for comparing single skewed parts of that
change. A. Arriaza, A. Crescenzo, M. A. Sordo, and Suarez-Llorens propose three
functional measures of the shape of univariate distributions [4]. These metrics are
appropriate with respect to the convex transform order. To close a gap in the liter-
ature, F. Belzunce, C. Martinez-Riquelme, and M. Perera [5] concentrate on giving
sufficient conditions for a few well-known stochastic orders in dependability while
handling their discrete forms. In particular, they discovered ways to compare two
discrete random variables in certain stochastic orders by looking at the unimodality
of the likelihood ratio. J.H. Cha and F.G. Badia [6] have studied the mean resid-
ual life, the bending property of the failure rate, the reversed hazard rate, and the
mean inactive duration in mixtures. The idea of relative spacing’s was first devel-
oped by F. Belzunce, C. Martinez-Riquelme, and M. Perera [7]. They demonstrate
the relevance of this idea in several situations, such as economy and reliability, and
we offer various results for evaluating relative spacing’s among two populations.
Belzunce, F., Ruiz, J.M., and Ruiz, M.C. [8] have compared organised structures
formed from either a single group of parts or two distinct groups, based on various
shifting and proportional stochastic orders. Izadkhah, S., and Kayid, M. [9] have
proposed and explored a new type of stochastic order. Izadkhah, S., and Kayid,
M. [9] look into important properties of the new stochastic order related to convo-
lution, mixture, and shock model reliability methods. Xie, M., and Lai, C.D. [10]
present an extensive summary of the theory and applications of dependence and
ageing using mathematical methods for survival and reliability studies. A. Patra
and C. Kundu [11] have enhanced the study of older properties of residual lifetime
mixture models and stochastic comparisons. They looked at two different mixture
models by using methods such as likelihood ratio, hazard rate, mean residual life,
and variance residual life orders, along with two kinds of mixing distributions and
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two kinds of baseline distributions. Recently, A. Patra and C. Kundu [12] dis-
cussed the stochastic comparison and ageing properties of RLRT (ITRT) based on
variance residual life and discovered a novel aspect of stochastic ageing. Sufficient
standards for the residual life and inactive time’s log-concavity and log-convexity
have been given by Misra, N., Gupta, N., and Dhariyal, I.D. [13]. In addition,
we perform stochastic comparisons between the inactivity time and residual life in
terms of the typical stochastic order, the mean residual life order, and the failure
rate order. A well-known MRL order has been introduced and examined in the
literature, based on the MRL function. Nanda.K, Bhattacharjee.S, and N. Balakr-
ishnan [15]. Numerous writers have studied the MRL order’s uses in survival and
reliability analysis throughout the years (see Shaked and Shanthikumar [17] and
Muller and Stoyan [14]). However, the literature suggests that the proportional
stochastic order generalises several existing concepts of stochastic comparisons of
random variables. Proportional stochastic orders have been explored by numerous
researchers as enlarged versions of the prominent stochastic orders prevalent in the
literature right now, such as Ramos-Romero and Sordo-Diaz [16]. Nanda et al. [15]
conducted a new study on various partial ordering effects related to the MRL order
and examined reliability models using the MRL function. Their review was quite
effective.

An Introduction to Stochastic Orders discusses this helpful tool, which may be
used to assess probabilistic models in a range of domains, including finance, eco-
nomics, survival analysis, risks associated with stock trading, and reliability. It
provides a general foundation on the subject for academics and students who wish
to use this data as a tool for their research. It includes thorough explanations of the
main findings in various areas, along with examples related to probabilistic mod-
els and talks about key features of many stochastic orders in both single-variable
and multiple-variable situations. In applied probability, stochastic ordering among
random variables has been shown to be an effective method for comparing system
reliability. Marketers view stochastic orderings as a crucial tool for making deci-
sions in the face of uncertainty. To create a mathematical or financial model that
can find every possible outcome for a particular circumstance or issue, stochastic
modelling uses random input variables. The probability distribution of potential
outcomes is its primary concern. Examples include Shaked, M. and Shanthikumar,
J.G. [17], Markov models, and regression models. The model functions as a realistic
case simulation to gain a more profound understanding of the system, investigate
unpredictability, and evaluate uncertain scenarios that delineate all possible out-
comes and the trajectory of the system’s evolution. Thus, to optimise profitability,
experts and investors can develop their own business practices and make better
management decisions with the aid of this modelling technique.

1.1. Fuzziness

There are two typical scenarios in the real world when an observed variable gets
fuzzy. In the first scenario, the response variable cannot be measured exactly due to
technical measurement conditions. As a result, data cannot be recorded explicitly
with precise (non-fuzzy) numbers; instead, it can only be done in linguistic terms to
demonstrate the necessary tolerance to errors in measurement. The second scenario
involves the response to the variable being given in linguistic forms, such as a
farmer’s report about his products or an expert’s linguistic report, which are not
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numeric. To analyse the experiment, the data in both scenarios may be represented
as a nation of fuzzy sets. Fuzzy set theory has to be used to model and manage
the findings from experiments in many applied fields since the values obtained from
experiment outcomes are often fuzzy. Many people have utilised the fuzzy sets
theory in a variety of scientific areas since Zadeh (1965) introduced it to the scientific
world.

Developing exponential stochastic models of fuzzy random variables is the aim
of this paper. A fundamental concept of fuzzy sets and stochastic ordering, as well
as a definition of fuzzy random variables and fuzzy random vectors, is provided in
Section 2 along with a few definitions and equations. Section 3 explains how to
compare randomness using the stop-loss premium of the convex order and describes
the characteristics of the convex ordering for fuzzy random variables. The convex
ordering of the set of fuzzy random variables was graphically depicted in a clear
and understandable manner. 3.5.5 Stochastic model comparisons aid the process of
making investment decisions by forecasting results in unpredictable circumstances,
particularly those involving the stock market. It is regarded as an insurance com-
pany that, for example, based its price list on the exponential principles of premium
computation, using a distribution function in the literature called inactivity time.
This section covers the exponential inactivity order of a random variable and preser-
vation features under specific dependability operations. With the aid of a theorem
and proof, the continuous nonnegative fuzzy random variable with a probability
density function is elaborated. Numerous fields, including agriculture, systems bi-
ology, production, weather forecasting, and biochemistry, have benefitted from the
extensive applications of stochastic models in real life. Finally, we have resolved
the question of what practical applications exist for stochastic ordering under fuzzy
random variables.

Ordinary stochastic order between system lives has been achieved when com-
ponents are interconnected, according to Sangita Das and Suchandan Kayal [18].
Sufficient conditions under which the reversed hazard rate order between the second-
largest order statistics hold are studied for the independent heterogeneous distri-
butions. Shrahili M [19] examines systems with heterogeneous components and
dependent exponential lifetimes, both in parallel and series. We intend to connect
the component lifetimes via an Archimedean copula, and we consider the underlying
dependence to be Archimedean.

2. Preliminaries

Definition 2.1. Let X be a set of all values. Next a fuzzy set A = {(z, pa(z))/z €
X'} of X is determined by the role it plays in membership p4 : X — [0,1].

Definition 2.2. The o — cut of the set of A is indicated by its for every

0<a<]) Ay ={z e X;u;(x) > al.

Definition 2.3.

1. For each a € (0,1], both [X{, X¥] defined as X/, (w)(x) = inf{x € w; X} (w)(x) >
a} and Xy = sup{z € w; XY (w)(z) > B} are finite real valued random variables

defined on (€2, A,P), that the mathematical expectations E (X.) and E (X.)
exist.

2. For each, w € Q and a € (0,1], X} (w)(z) > a and X% (w)(z) > B.
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Definition 2.4. If X and Y fuzzy random variables with fuzzy cumulative distri-
bution function F' and G respectively; then X <y YV <= F(t) > G(t)Vt.

Definition 2.5. If X and Y are two fuzzy random variables then
X<V = {P(Xé > 1) \/P(x > t)} < {P(yg > \/ P> t)},
Definition 2.6. If X and ) are two fuzzy random variables then

X<y = Bf ()] VEF @D < Eg(V)]VEl )]
, for all increasing functions f.

Example 2.1. If X and ) are two exponential fuzzy random variables with mean
A and p respectively such that A < u, then X <g ).

3. Stochastic comparison of the exponential orders

Definition 3.1. Consider two consecutive sequence set of fuzzy random variables
{Xl, XQ, Xg, ey Xn} and {yl, yg, yg, ‘e ,yn} such that, etXE[gO{Xl, XQ, X37 ey Xn}]
< eV E[p{V1,V,V3,...,Yn}], for all convex functions ¢, provided expectations ex-
ists. Then the sequence {X7, Xo, X3, ..., X, } is said to be stochastically dominant
of {V1,Y2,Ys,...,Vn} in the convex order denoted as X <gco ), where

X = [iEha g, v5)]

and
Y= [Z%ﬁgl{yé7y}a‘}] .

3.1. Properties of convex ordering of set fuzzy random vari-
ables

Let X = [XL, X% and Y = [V, V"] be two sets of fuzzy random variables. Then
the following conditions are satisfied;

o If {X1, X5, Xs5,..., X}, is said to be stochastically dominant of {V1, Vs, Vs,
..., Yn} in convex order, sense that, if X <pco Y,

E[{X17X23X37 . 7Xn}} SFCO E[{y1;y2ay37 s 7yn}]
and
VCLT [{X17X27X37"'7Xn}] SFCO VCLT [{y15y27y37" '7yn}] .

o If[{A), X2, A5,..., Xn}] <rco [({V1, Y2, Vs, ..., Vntland {Z1, Z2, Z3, . .., Zy}]
is independent of [{ Xy, X2, X, ..., X} and {1, o, V3, ..., Vntl,
[{X17X27X3a .. -,X'rl}] + [{ylayQay?n . 7y'rL}] SFCO [{y17y2)y37 e ayn}]+
{21, 25, Z3, ..., Z,}).

o Let {X1, X5, As5,...,X,} and {)V1,)s,)s,...,Vn}, be two sets of consecutive
fuzzy random variables. Then,

{XlaXQaX37"'7Xn} SCO {y17y27y3a--'ayn} = —{XlaXQaX37"'7Xn}7
SFCO _{y17y27y3)"'ayn}-
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e Let X and ), be two sets of consecutive fuzzy random variables such that
E(X) = E(Y). Then X <pco Y, if and only if |[EX — 6| <pco |EY — §| for
all d € @

e The convex order closed under mixtures: let X and Y and Z be random
variables such that [X/Z = @] <pco [(V/Z = @] for all & in the support of
Z. Then X SFCO y

e The convex order closed under convolution: let {Xy, Ao, X3, ..., X, } and
{V1,Y2,Y5,...,Yn} besets of independent fuzzy random variables. If X; <rco
yi 5 for i = 1,2,3,...,77,, Z;an gFCQ Z;”JJJ

e Let X be a set of consecutive fuzzy random variable with finite mean. Then,
—|—E[X] <rco 2X.

o Let {X),Xo, X3,..., X} and Y be (N + 1) sets of consecutive independent
fuzzy random variables. If X; <pco Y for i =1,2,3,...,n.
Z;ﬂ A;iX; <pco YV, whenever A; >0, j=1,2,3,...,nand " | A;=1.

e Let X and Y be two sets of non negative consecutive fuzzy random variables.
Then Z;n X; <rco Z;n Y;. If and only if
Elp({X1, Xo, X, ..., X0 1, {1, V2,3, ..., Vn})] <wco
E[Qp({yhynyS; s ayn}7 {Xla X27 X37 LR Xn})] for all p e g,
where @ = {30 22 5 o (,0({)(.1,.)(‘2,)(37...,Xn},{yl,yg,yg;,...,yn}) —
FUYL, V2, Vs ooy Vi, { X0, X, X, .o, X })is convex for all X € Y.}

o Let A} and A5 be a pair of consecutive independent fuzzy random variables
and let )1 and )» be a pair of consecutive independent fuzzy random variables.
[ ] If E;n Xj SFCO Z;n yj,j = 1, 2 then [{Xl, XQ, X3, ey Xn},
{Xla XQa X37 s Xm}] SFCO [{yl,yQa yf)’a cee 7yn}5 {y17y27y37 e ?ym}]
A clear illustration of the properties of convex ordering of set fuzzy random
variables by graphical representation can be found in the following figures.
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Figure 1. Fig(a)- convex orderings set of fuzzy random variables Fig (b)- non convex orderings set of
fuzzy random variables

3.2. Comparisons of stochastic models fuzzy random variables

The integral form has applications in actuarial science, reliability, and economics
in numerous stochastic comparison relations. A class F' of measurable functions
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generates a stochastic order relation referred to as an integral stochastic comparison,
or <p. In particular, given two sets of fuzzy random variables, {X;, Xa, X3,..., X}
and {V1, V2, V3, ..., Y}, { X1, Ao, A5, ..., Xy} is said to be stochastically dominant
over {V1,V2,Vs,...,Vn}, in the F sense, expressed as E[p{X1, X2, X5,..., X} <p
E[p{V1,Y2,V3,...,Vn}] for all the functions ¢ € F.

As long as the presumption in the equation above is met. Marshal and Muller[20]
looked at such stochastic evaluations in a fairly broad context. The frx, x, x,.. x,}
and fy, y,.3,,...,y,} corresponding to X and ) are ordered, not the particular
configurations of these fuzzy random variables, as should be noted. Here, we revisit
the exponential order as one of these analogies.

Let {Xy, X, X, ..., X} and {V1,)0,Ys,...,Vn} be two sets of fuzzy random
variables with distributions frx, a, x,,...x,) and  f{y, v, y,.....y,} and denote their
survival functions by

Fray a,x5,020,0 = (1= flan,a,x,,..,x.1)
and

F{y1,y2,y3,---73}n} = (1 - f{yhyz,ya,»--,yn})
respectively. Their exponential functions are defined as, for all S > 0,

@{Xl,XQ,Xg,...,Xn}(S) _ E[eS{XhXQ’XB’“"XTL}]

and

P{V1,Y2,V3,...,9n } (S) = E[eS{yljyznyW"yn}]'

Let us consider { X1, Ao, A5, ..., X} and {V1, Vo, Vs, . .., Vn } be two sets of fuzzy
random variables. X is said to be smaller than ) in the exponential order denoted as
{Xl, XQ, Xg, ceey Xn} SFEO {yl, yg, yg, . ,yn} if B (Gtoy) is finite for some to > 0,
and ©ra; x,,x5,...0,1 (9) < 091 30,95,.. 0,3 (), for all § > 0.

Notice that
{X, Xa, X, oo, X0} <wmo {Dh,D2,Vs,..., W0} < fooo eSUFx, 2,5, 2,1 (U)dU
<reo fo €% Fiy; y,94..,}(U)dU.

This is more important in the idea of reliability. From a probabilistic standpoint,
the exponential order mandates that the moment-generating functions of the non-
negative random factors X and ) be laid out in chronological order. Additionally,
the exponential order communicates the collective preferences of all decision-makers
via utility features from §(X) = 1 — e~*. Exponential orders of fuzzy random
variables have numerous meanings in an actuarial framework. For instance, consider
a financial institution that uses the quadratic premium calculation principle as its
basis for its cost list.

In this instance, the premium amount Y 75(X’) related to the risk X is provided
by

ZTS(X) = 1/SInE(e").

From the above equation, {X1, X2, X3, ..., X} <rro {V1,V2,V3,..., Vn} <
YN 15(X) =1/S InE(e!?) <ppo Y. 75(Y) = 1/SInE(e!?).

Here are other interpretations, features, and uses of the exponential order as
reported by Klar, Muller, and Denuit[20]. Variables of the type Ay = [t — X/X < {]
are of significance in many reliability engineering problems for fixed te(0, Ly ) and
Lx =sup {t: Fy) < 1}, with a distribution function F;(S) = P[t—X < S/X < {]
and a known inactivity time in the literature.
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Definition 3.2. Both X and ) are two continuous nonzero fuzzy random factors
with the following attributes: f and g are their probability density functions; F'
and G are their distribution functions; and F and G are their survival values. After
that, the progression of the

(i) Exponential of the likelihood ratio defined by X <grro Y,
her B (2 (¥0.23)) <o e BE) (2 (94.93)).
(ii) Exponential of a typical duration order of inactivity as stated by X <gyiro YV,
vEhoy B(eMY) (f(; I;j:((jj’jg))dx) <emiro J$h<i E(e) (fot %fgé;]?))dx>
(iii) The reversed hazard rate order’s exponential stated by X <gnrrro Y,

. vy ((Pel) “ G (9%.%)
Bher B6) (TR ) <ennno 150 B () (S35

(iv) Exponential of the hazard rate order defined by X <gnrrro YV,

V&A tx fa (XL, X5) V&A t 9y (V6. V§)
asss Ble )<M <pmro iZha B | G oty

(v) The mean residual life order exponential as described by X <gnrro VY,
[ Fr (XL, x%)dx JEGy (YL, Ye)dx
asher B() ( “Fnan ) SeMrLo ah< B(eY) | 2EHESET ).

(vi) Exponential serves as the decreasing order typical residual life order computed
by X <pemro Xy,
& 2y S Fa (Xl x)dx & g JE Ga(Xl,x)dx
ah<1 B (P FREay ) Seommio adha Bl (MGGt 2 )-

Following figure describes the graphical representation of stochastic orders of
fuzzy random variables.
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Figure 2. (a-d) Graphical representation of stochastic orders of Fuzzy random variables
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These graphical representations serve as visual tools for comparing distributions
of random variables and for stochastic ordering. They provide a natural under-
standing of the strengths, weaknesses, and probabilities associated with the vari-
ables being evaluated. In this study, we investigate the exponential order of mean
inactive time within a fuzzy context. We then discuss the preservation charac-
teristics of the exponential order in activity time under convolution and combined
operations. Subsequently, we present various applications of shock models and high-
light a few basic instances of their use to identify situations in which the random
variables in this series are similar. Throughout the entire paper, we substituted
the terms ”increasing” and ”decreasing” for monotone non-decreasing and mono-
tone non-increasing, respectively. Furthermore, all FRVs under consideration are
assumed to be perfectly continuous, with 0 and 1 serving as the usual left points
of their supports, and all expectations are implicitly regarded as limiting whenever
they are mentioned. expectancies are implicitly assumed to be limiting whenever
they appear.

3.3. Preservation properties

Dependability theory places importance on an order’s preservation properties under
certain dependability operations. Some features of the exponential of inactivity
order of a random variable are covered in this section.

Let X and ) be two continuous nonnegative fuzzy random factors that have the
following traits distribution functions F and G, survival measures F and G, and
probability density functions f and g, respectively.

fg FX (XOZC’XE) dx
(o) = V&AL g (o tX _
U (Yo %) = 0Shar B | —F

and

t U
fO FLX(X(ia Xﬁ )dX
Ft(Xolu XE)

B, (VL 2) = Y (e (

This condition holds true by the previous definition, then
X <pmriro Y & ¥k, (XL, XY) <pmrro v3, (V5. VY).

Proposition 3.1. Imagine two continuous nonnegative fuzzy random parameters,
X and Y, with the following traits probability density functions f and g, distribution
functions F and G, and inheriting functions F' and G, respectively. Then

J Fx(&iﬂﬁ)d%)
Fy(XL, xy)

Iy Gx(X,i,Xé‘)dX>
Gi(XL, xY)

X <pmrro YV & Z‘%@Sl E(e') (

x
<pmrro 2$h<1 E(e) (

is decreasing in t € (0,tx) N (0,ty), for all t > 0.
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Proof. Let us observed that

F X¥)ydx
U, (X X2) = Eher Ble) (fo i Xu)) )

e [ Fr(XL X dx
:;/223\51 E(e tX)( Oa F Xl A
ax bl ).

given t > 0, by previous equations X <gymiTo Y &

t 1 u t 1 u

V&A —tx fo Fx (Xou Xﬁ )dX V&A —tY fo Gy (Va, yﬁ)dy
E(e ) <EMITO Ee ™) | *5——"—

a<B<1 ” a<p<1 ”

=

V&A —tX fo aXFt(y(l)wyﬁ) ay
wshz Ble )< Gy (VL. V})

Jy e (%L, xy) dx
Gy (V4. V§)

<emito 4 <h<1 E(e™™)

=

t 1 u t ~ l u
V&A fO Fx(Xa,XB )dX V&A X fO (;X(XQ,XB )dX
e E = < e E _
<A B )< Ry ) S esss BT TR G e

is decreasing in ¢t € (0,tx) N (0,ty), for all ¢ > 0. O

Theorem 3.1. Let us take X1, X and Z be three continuous nonnegative fuzzy
random variable with probability density function f, g and h, distribution function
; F, G and H, survival functions F, G and H respectively, then X1 <gmrro Ao
and Z is log-concave then X1 + Z <gpyiro Xo + Z.

Proof. The previous preposition, it is enough to show that for all 0 < ¢; <
to and X > 0.

V&A E tX / /tl Xl <u-— (Xclw X:;L)]{f(tl - U)}dUdX
aspsl PlXy <u— (XL, X)]{g(ts — u)}dudX

) ZEMITO

VE&n ¢ b Pl <u— (AL X f(t2 — u)}dudX
aé&ﬁél Ble') (/ ./ PlXy <u— (XL, X){g(t1 — u)}dudX) ’

Since Z is nonnegative then g(t —u) = 0 when ¢ < u, hence the above inequality is
equivalent to

V& 126 [Fr, <u— (XL, X9]{f(t1 — u)}dudX
asp<1 Ele (/ / e, < u— (XL X5)|{g(ts — 1) }dudaX >EMITO

V&A E(e tX </ / [Ga, <u-— (Xé,Xg)}{f(tQ — u)}dudX) 7

a<p<1 (G, <u— (XL, X){g(t2 — u)}dudX
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0 < t; <ty or equivalently,

ver S [ E (et [@1){®sdudX}] [° [T E () [@1]{®sdudX)] -
TN [ [ B () [01{DadudX )] [ [ E () [®11{®sdudX)]|

and
ven B () [@0){@sdudX}] [° [ E (eb) 2] {@3dudX}] .
CEIEL o B (e8%) (@, [{@udud Y] [ [ E (VY) [y {sdudX}]|

where ®1 = Fx,(u — (XL, XY)), ®2 = Fa,(u — (XL, X)), @3 = gtz — u),
®, = g(t1 — u), by the well known basic composition formula

VeA /°° /°° gltz —u1) glta —ua)|
a<p<1
up<ug Jug<ug g(tl — ul) g(tl — U2)

ST E () [Fa, (ur — (XL, X2))] [T E (eY) [Fa, (ur — (XL, X2))]
Jo B (etY) [Fay (uz — (X5, X)) Jo~ E (&) [Fa, (u2 — (X5, X2))]

du1 dUQ

Seeing that the first determinate is non-positive because of g’s log-concavity
and the second determinant being non-positive due to X7 <gmro X2. leads us to

the conclusion Xy = {gggél Fa, (XCQ,X;)} and Xo = {Y%_, Fa, (Xg,xg)}
is complete the proof.

Lemma 3.1. If X1 <gyrro Y1 and Xo <gpyrro Yo, where Xy is independent of
Xy and Y is independent of Yo with probability density function f and g, distri-
bution function F and Gand survival functions F and G respectively, the following
statements hold:

(i) If X1 and Yo have log-concave densities, then Xy + X2 <gyrro Y1 + Ve,
(ii) If Xy and Yy have log-concave densities, then X1 + Xo <gyrrro Y1+ Va.

Proof. (i).

t l t ~ 1
\/425/\< E(etX) fO IiX<Xa7 Xg)dx <EMITO V&<z,/\< E(etX) fO CT:X (Xa’ Xg>dX )
asp=t Ft(Xcleg) N aspst Gt(X(i7XéL)

The following chain inequality, which (i), follows by theorem 3.1:

X1+ X <gmrro A1+ Vo <gmrro Vi + Vo,

t u
X = V&A E(etX) fO FX(X&’Xﬁ)dX
s FURL %)
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and

Y = 5B (fot Gy(y”””) |

G (YL, V)
(ii).

The evidence for (ii) is analogous. The following outcome can be obtained by
repeatedly employing lemma 3.1 and the closure property of log-concaves under
convolution.

O

Theorem 3.2. Let us consider {Xy, Xo, Xs3,..., X} and {1, V2,V5,...,Vn} two
sequence sets of random variables X; is said to be smaller than Y; in the exponential
order denoted as, {X1,Xo, X3,...,Xn} < {V1,V2,Vs,...,Vn} and have log-concave
densities for all i, then Y ;| Xi <pmiro Yiq Vi, 1 =1,2,3,...,n.

Proof. We shall employ induction to demonstrate the theorem. Certainly, the
result true for n = 1.
Assume that the result is true for ¢ = n — 1, that is

n—1

n—1
Z X; <gmrro Z Vi,

i=1 i=1
t u
fO Fy (Xcleﬂ) dX

X =050 B ()
F, (X(g, Xg)

and
Jy Gy (¥4, 98) dy
G (V4. 8)

Y = adhar B ()

Note that each of the two sides of above equation has a log-concave density.
Applying previous lemma the results follows. The following concepts will be used
in the sequel. O

Definition 3.3. A function Fyy : X x Y — [0,1] is said to be totally positive set
of order 2 for all a3 < ag and 81 < B2 { (a1, a2) € X, (B1,52) € Y}

Fxy(ai, 1) Fxy(ai, B2)
Fry(a2, B1) Fxy(os, f2)

>0.

Let us take X'() a distribution function-containing random variable Fi ) and
let Y(9), another fuzzily distributed random variable with a distribution function
Fy ), for i = 1,2, and support R*t. The following is a closure of exponential
inactivity time order under mixture.

Theorem 3.3. Let us take X(8) set of random wvariable 6 € R* and independent
of @1 and @o. If @1 <prr Do and if X (61) <gmriro X (02) whenever 6; < o,
then Y(21) <gmrro Y (D2).

Proof. Let Fx be the distribution function of X (§;) with ¢ = 1,2. We know that
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t
FX((;')(XI,X“)dX
Fv — V&A E tX fO i o B
X; a<p<1 (6 ) Ft(Xé,Xg) ’

because of previous preposition, we should prove that,
* I yu VE&A Jo F. x( (t (X5,X5))dx - .
(9 (/'\-’w Xa) = agﬁ§1E( *) F,(t LAD) is totally positive order2 in

avg

(i,t). But actually
t oo u
Iy I3 sy (£ (XL, 23)) divae
F (¢ = (XL, a))
t poo u
Iy J57 F sy (£ (XL, &3)) dGy(o,ydX
F, (t— (XL, xY)

Uk, (X0, XY) = LE5< B(e'Y)

= e B()

JE ooy (Xi,Xﬂ)dG dx
— W Be) (BT e
)d

ar [f
— G Be) (B e
sPs P, (X X593, (VE,VE)
by assumption X (§1) <gmrro X (62) wheneverd; < do, we have that VX, (Xol“ X]j)
is totally positive order2 in (d,¢), while form assumption (1) <ppr (&2) follows
that ¢3, (yg, yg) is totally positive order2 in (6,¢). Thus assertion from the basic
composition formula.

Let {X1, Ao, A3, ..., A, } be of random variables with distributions fyx, x, x,,....x,1
and denote their survival functions by , f{Xl,Xg,XS,...,Xn} = (1 = fran, a0, x5, %, })
Let a = {a1,a2,a3,...,a,} and 8 = {B1,52,03,...,5n} be two sets of prob-
ability vectors. A probability vector a = {a1,as,as,...,a,} with a; > 0 for
1 =1,2,3,...,nissaid to be smaller than probability vector § = {1, 82, 83, -, Bn}
in the sense of discrete likelihood ratio order, denoted as «; <pprr 3, if

i <DFLR &foralllﬁiéjﬁn.
(073 Qi
Let us take & and Y two continuous random variable with probability density
f and g, distribution F and G, and survival functions F' and G respectively.

n t l u
_ & tx fo o By, (X, X5 )dX
F(X) - Zxﬁé\SlE(e ) ( OLZ‘Ft(Xl \ XE)

i=1

and

t
- BiGy, (YL, V§)dy
G — VEA oty fo Vi B .
D)= B ’( 5.C,0%.78)

Conditions under which X and ) are analogous with regard to the exponential
inactivity time order of random variables are established by the following. O

Theorem 3.4. Let {X, Xs, X5,..., X} be of random variables with distributions
J{x1,X0,%s,...,.x,y and denote their survival functions by , Fix, x,x5,...x,} =
(1= Fix, x5,%5,....2,1)» such that X1 <gaprrro Xo <pmiro --. <pmiro X, and
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leta. = {1, 2,03,...,an} and B = {B1,P2,B3,...,Bn} such that a; <prrr Bi.
Let random X and Y have distribution fr and gy defined by the previous equation.
Then X <gmrro Y.

Proof. Because of the previous preposition, we need to establish that
. (taen (Ezomom)
; YEho B(e) <J° 2%, (<(< §)> t)> )
<i =P (f(: ﬁ;’?Ffl((((X )) ))dX>
CiI | v Bew) (fo Gy, (XL, - )u)

aspst oG ((X6.%5) 1)

The aforementioned equation can be demonstrated to be equivalent by multi-
plying, by the denominators and eliminating equal terms.

Jy it F o, (X t) dx

15 )
Rl o {(.5) 0
)

fotaiﬁiji((yfl,yﬁ th)
aif G (Y %) t)
oyt (5.35) )
Do\ aj,BiFt((Xl X“ t)
Jy it Gy, ((V5.98) ~ 1) d)()
0;8,Ge (V. g) —t

dx

where i # j. Now for each fixed pair (i, j) with i < j we have
[Bioy (Y Be®) ) ((EharB(e™) (42)]
+[Bas (M5 BE) W) (35 BE) ()]
= [Bi0s (XhrB@®) 0) (YharBE) ()]
+ By (2 BE) () (WhaBE) @)
= (i) (18 () (2 s )
(Mpca (o) (A2apl B0 )
- (e (S5
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x [ V& B(etY) i aiBiji((y‘l*’yg)_OdX
ashst AEEHE) |
J5 @i8;G,, ((VarV5)—t)dx Jo iBiF o ((Xa,X5)—t)dx
where Y = d , by = g
G((V6:25)-1) Fo((X5.X3 ) —t)
This is nonnegative because both terms are nonnegative by assumption. The
proof is complete. The above holds maximum value of random variable. The same
preservation properties and theorems true for models like likelihood ratio order,

hazard rate order, mean residual life.

O

3.4. Practical utilization of stochastic models

Stochastic ordering provides a framework for comparing the distributional proper-
ties of fuzzy random variables. Fuzzy random variables that indicate imprecision
and uncertainty can be used in conjunction with stochastic ordering to model and
analyse a number of real-world problems. The following categories of applications
for the stochastic ordering of fuzzy random variables are possible:

Risk analysis: 1t is feasible to evaluate and rank the riskiness of various financial
assets or investment portfolios using stochastic mandating of fuzzy random vari-
ables. By considering the stochastic dominance relationships between fuzzy random
variables, investors can make more informed decisions about risk management and
asset allocation.

Quality control: When measurements are ambiguous or imprecise, we can use
stochastic orders to gauge the calibre of products or production processes. Assume
that a certain approach or product is stochastically superior to another. We can
determine this by using fuzzy random variables and stochastic ordering, which may
capture the fuzziness and variability in the quality attributes.

Reliability analysis: Stochastic ordering of fuzzy random variables enables re-
liability engineering to compare and measure the reliability of various systems or
individual components. By minding the stochastic dominance relationships, engi-
neers can evaluate the performance and robustness of different designs and make
decisions about system maintenance and improvement.

Insurance and actuarial science: Stochastic orders are useful in actuarial sci-
ence and insurance, especially when fuzzy risk models are being used. They can be
used to evaluate the insurance companies’ solvency and financial stability, as well
as to weigh the risks involved in various insurance options.

Decision-making under uncertainty: Fuzzy random variables with stochastic
ordering come in use whenever there is ambiguity and imprecision in the decision
factors and objectives. By using stochastic dominance criteria, decision-makers can
determine which options or strategies are better based on their distributional prop-
erties.

Environmental modeling: 1t is feasible to employ stochastic ordering of fuzzy
random variables in environmental modelling and analysis. They can be used, for
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example, to assess the impact of confusing and imprecise factors on environmen-
tal processes or to compare and rank pollution levels from different emission sources.

The mentioned applications demonstrate how flexible stochastic ordering is when
dealing with fuzzy random variables, making it easier to study unclear and uncertain
systems in various areas.

4. Conclusion

In actuarial science, one of the most important roles is the exponential order of a
stochastic model. In the current study, we propose different preservation features
for mixture and convolution reliability-proof fuzzy random variables with exponen-
tial stochastic order. Applications such as the hazard rate order, the mean residual
life order, and the reverse hazard rate order using stochastic models are outlined.
Examples are given to show how the results may be exploited to find the mean
inactivity time order of exponential type fuzzy random variables. Our findings also
have implications for dependability, risk theory, and statistics. Future studies can
take into account the extra features and uses of this novel ordering.
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