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Improved Contact Tracing SIR Model for
Randomly Mixed Populations∗

Meili Li1, Boxiang Yu1, Junling Ma2 and Manting Wang2,†

Abstract Contact tracing allows for more efficient quarantine and isolation,
and is thus a key control measure in combating infectious diseases. Mathemat-
ical models that accurately describe the contact tracing process are important
tools for studying the effectiveness of contact tracing. Recently, we developed
a novel contact tracing SIR model based on pair dynamics, which uses pairs
(two-individual) interactions to approximate triple (three-individual) interac-
tions to close the model. However, the pair approximation used in the model
is only a crude estimate. We extend this model to improve the approximation.
Specifically, the new model tracks infectious individuals who have or have not
infected others, as they play different roles in triples. We conduct a theoretical
analysis to calculate the control reproduction number. The results of the new
model are compared with those of the original model by numerical analysis.
We find that the two models yield a similar epidemic final size. However, the
original model yields a larger control reproduction number and thus under-
estimates the effect of contact tracing. This discrepancy increases as contact
tracing is strengthened.

Keywords Compartmental disease model, control reproduction number, pair
dynamics
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1. Introduction

Since the beginning of the COVID-19 pandemic, governments worldwide have widely
adopted physical containment measures in an effort to control the spread [6]. These
policies have significantly reduced disease transmission [12]. Contact tracing is an
important epidemic prevention measure to reduce the spread of infectious diseases
by blocking the chain of infection. Traditional contact tracing involves identify-
ing the close contacts of an infected individual. These contacts are considered
at risk of infection and are advised to take actions to reduce transmission, such
as self-isolation [1]. Its effectiveness depends on several factors: timely detection
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and isolation of indicator cases [9], timely and comprehensive identification of con-
tacts [5], and quarantine compliance [7, 11]. Technology can address some of these
limitations by automating the processing of test results or symptom reports and
utilizing mobile phones to identify and notify contacts at risk of infection [4].

Due to its importance, the mathematical modelling of contact tracing has been
studied using multiple approaches. A contact network model for contact tracing
was developed by [8,16], as close contacts can be naturally modeled by contact net-
works. However, network models require information about the contact network,
which is often difficult to obtain. During the COVID-19 pandemic, much effort has
been dedicated to collecting this information [15]. However, human contacts may
be spatially, culturally, and economically specific, limiting the generalizability of
these contact network studies to other regions. A traditional compartmental model
that incorporates quarantine and isolation was first proposed by [3] to study the
2003 SARS pandemic. This model assumes that a fraction of the cases are contact
traced. It has been adapted to study the COVID-19 pandemic [13]. However, it is
difficult for these models to precisely describe contact tracing because traditional
compartmental models assume that the population is randomly mixed and do not
trace individual contacts. Branching process models for contact tracing have re-
cently been developed [14] to study the COVID-19 pandemic. These models can
precisely describe the contact tracing process for a single patient, thus yielding a
precise control reproduction number. However, it is difficult to use these models to
study disease dynamics without involving large-scale agent-based simulations.

Bednarski et al. [2] established a novel compartmental SIR contact tracing model
for a randomly mixed population, thus avoiding the need for contact network in-
formation. This model tracks contacts using pairs, which are formed by disease
transmission. The authors recognized that disease transmissions form a tree of
transmissions. They borrowed the edge dynamics idea from network models to
study contact tracing as a dynamic process on this tree.

Like the network models in [10,18], the dynamics of pairs depend on interactions
between the individuals in the pair and other individuals, i.e., triple interactions,
which in turn depend on four-individual interactions and so on. To truncate this
infinite chain of dependences and simplify the model, triple interactions are approx-
imated by pairs, using the triple closure method introduced in [10]. However, this
is only a crude approximation, as it ignores the fact that not all infectious individ-
uals play the same role in triple interactions. The specific approximation and its
problems are explained in more detail in Subsection 2.1.

The goal of this paper is to improve this model by more accurately approximating
triples. To do this, in Section 2, we extend the Bednarski et al. model to track
infectious individuals who have or have not infected others. We calculate the control
reproduction number and compare the simulation results of our new SIR model with
the previous contact tracing SIR model [2] in Section 3.

2. Modelling contact tracing

2.1. The simple SIR contact tracing model

The SIR contact tracing model [2] divides the population into susceptible (S), in-
fectious (I), diagnosed (T ), contact tracing initiated (X), and recovered without
being diagnosed (R) compartments. The infection process dynamically generates a
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tree of transmission, where the nodes are infected individuals (including infectious,
recovered, and diagnosed individuals who may or may not have triggered contact
tracing). The edges represent transmissions, and the direction denotes who-infected-
who, namely, from the infector to the infectee. An edge is labeled as [U V ], where
U and V are the infection states of the infectee and the infector, respectively. Each
new infection forms a [I I] pair. The pair changes its state as the state of either
the infector or the infectee changes due to disease progression or contact tracing.
For example, the [I I] pair becomes [I T ] when the infector is diagnosed.

The contact tracing process is initiated at a diagnosed (T ) node on the tree,
changing the state of the node to X (so that contact tracing will not be re-initiated
for the same node), and it follows the [I T ] and [T I] pairs to the I neighbors on
the tree in both directions.

Note that the state of a node in a pair may be affected by other nodes outside
the pair. For example, the infector (I) of the [T I] pair may be contact traced and
become T if its infector is I. That is, the dynamics of such pairs depend on the
triple-node interactions [T I T ] (the underline represents the original [T I] pair).
The dynamics of such triples depend on four-node interactions, etc. To reduce the
complexity of the model, the number of triples is approximated by the pairs. Using
network modeling terminology [10], this approximation is called triple closure. For
example, the number of [T I T ] triples is approximated by multiplying the number
of [T I] pairs by the fraction of T infectors of the I node, namely,

[T I T ] ≈ [T I]
[I T ]

I
. (2.1)

The model parameters include θ (the rate of contact tracing of diagnosed in-
dividuals), p (the probability of an infectious contact being traced, also called the
coverage probability), β (the transmission rate), γ (the recovery rate) and τ (the
voluntary testing rate after showing symptoms).

Note that the I node in the [T I T ] triple has already infected another node (the
leftmost infectee T ). However, not all I nodes have infected others, such as newly
infected nodes that have not yet contacted others. These I nodes cannot be part
of such a triple. In the triple closure approximation (2.1), the fraction is calculated
using all I nodes, including those who cannot appear in such a triple. This causes
the triple closure (2.1) to be inaccurate. This problem affects the approximation
of other triples, such as [I I T ]. In this section, we develop an improved contact
tracing SIR model that makes the triple closure more accurate.

2.2. The formulation of the improved model

To improve the accuracy of the triple closure (2.1), we divide the infectious com-
partment (I) into two compartments: those who have not infected other individuals
(I0) and those who have caused further spread (I+). The population dynamics of
the contact tracing SIR model in [2] becomes

S′ = −βS
I0 + I+

N
, (2.2a)

I0
′ = βS

I+
N

− (γ + τ)I0 − θp([I0 T ]) , (2.2b)

I+
′ = βS

I0
N

− (γ + τ)I+ − θp([I+ T ] + [T I+]) , (2.2c)
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T ′ = τ(I0 + I+) + θp([I0 T ] + [I+ T ] + [T I+])− θT , (2.2d)

X ′ = θT , (2.2e)

R′ = γ(I0 + I+) . (2.2f)

Note that the contact tracing process follows the pairs in these equations, and pairs
such as [T I0] do not exist because the I0 node has not yet infected others and thus
cannot be an infector.

To complete the model, we need to derive the dynamics of the pairs [I0 T ],
[I+ T ], and [T I+]. Figure 1 shows the flowchart of pair dynamics.

[I0 I+]

[I0 T ]

[T I+]

[I+ I+]

[I+ T ]

βS
N

(I0 + I+)
2γ[I0 I+]

βS[I0 I+]

N

τ [I0 I+]

θp([I0 I+ T ] + [I0 I+ T ])

τ [I0 I+]

βS
N

[I0 T ]

(τ + θ + γ)[I0 T ]

(τ + θ + γ)[T I+]

θp([T I+ T ] + [T I+ T ])

τ [I+ I+]

θp([T I+ I+])

2γ[I+ I+]

τ [I+ I+]

θp([I+ I+ T ] + [I+ I+ T ])

(τ + θ + γ)[I+ T ]

θp[T I+ T ]

βS
N

[I0 T ]

Figure 1. Flowchart of Pair Dynamics for SIR model. The underlines in triples represent the original
pairs.

A pair forms when a susceptible is infected by an infectious node, becoming an
AII pair. These pairs form at a rate βS(I0 + I+)/N . They leave the state when
either node recovers (at a total rate 2γ[I0 I+]), or when either node is voluntarily
tested (at a total rate 2τ [I0 I+]). The infector I+ may be contact traced from
its infector in a triple [I0 I+ T ], or from another diagnosed intectee in the triple
[I0 I+ T ]. Contact tracing occurs on each triple at a rate θp (because the patient is
captured by contact tracing with a probability p). In addition, such a pair becomes
[I+ I+] when the infectee I0 infects another node and becomes I+, which happens
at a rate βS[I0 I+]/N . Thus, the dynamics of the [I0 I+] pairs can be written as

[I0 I+]
′ = β

S

N
(I0 + I+)− β

S[I0 I+]

N
− 2(γ + τ)[I0 I+]

−θp([I0 I+ T ] + [I0 I+ T ])

= β
S

N
(I0 + I+)− β

S[I0 I+]

N
− 2(γ + τ)[I0 I+]
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−θp[I0 I+]

(
[T I+]

I+
+

[I+ T ]

I+

)
.

For an [I+ I+] pair, either node may recover or be diagnosed. The infectee may
be contact traced from one of their secondary infections, which happens in a triple
interaction [T I+ I+]. Similarly, the infector may be traced from their infector in
triples [I+ I+ T ], or from another of their secondary infections in [I+ I+ T ]. Thus,

[I+ I+]
′ = β

S[I0 I+]

N
− 2(γ + τ)[I+ I+]− θp([T I+ I+] + [I+ I+ T ]

+[I+ I+ T ])

= β
S[I0 I+]

N
− 2(γ + τ)[I+ I+]− θp[I+ I+]

(
2
[T I+]

I+
+

[I+ T ]

I+

)
.

The [I+ T ] pairs come from [I+ I+] pairs when the infector is diagnosed, or from
[I0 T ] pairs when the infectee I0 infects others. The pair leaves the state when the
infectee I+ recovers (at a total rate γ[I+ I+]), or when the infectee is diagnosed
due to voluntary testing or contact tracing. Thus,

[I+ T ]′ = τ [I+ I+] + β
S[I0 T ]

N
+ θp([I+ I+ T ] + [I+ I+ T ])

−(γ + τ + θ)[I+ T ]− θp[T I+ T ]

= τ [I+ I+] + β
S[I0 T ]

N
+ θp[I+ I+]

(
[T I+]

I+
+

[I+ T ]

I+

)
−(γ + τ + θ)[I+ T ]− θp[I+ T ]

[T I+]

I+
.

Similarly, the [I0 T ] pairs come from [I0 I+] when the infector I+ is diagnosed
either by voluntary testing or contact tracing. The pairs leave the state when the
infectee I0 recovers, is diagnosed, or infects others. Thus,

[I0 T ]′ = τ [I0 I+] + θp([I0 I+ T ] + [I0 I+ T ])− (γ + τ + θ)[I0 T ]− β
S[I0 T ]

N

= τ [I0 I+] + θp[I0 I+]

(
[T I+]

I+
+

[I+ T ]

I+

)
− (γ + τ + θ)[I0 T ]− β

S[I0 T ]

N
.

Finally, a [T I+] pair comes from an [I+ I+] pair or an [I0 I+] pair when the
infectee is diagnosed either by voluntary testing or contact tracing. The pair leaves
the state when the infector I+ recovers or is diagnosed. Thus,

[T I+]
′ =τ [I0 I+] + τ [I+ I+] + θp[T I+ I+]− (γ + τ + θ)[T I+]

− θp([T I+ T ] + [T I+ T ])

=τ([I0 I+] + [I+ I+]) + θp[I+ I+]
[T I+]

I+
− (γ + τ + θ)[T I+]

− θp[T I+]

(
[I+ T ]

I+
+

[T I+]

I+

)
.

Therefore, the improved model can be written as:

S′ = −βS
I0 + I+

N
, (2.3a)
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I0
′ = βS

I+
N

− (γ + τ)I0 − θp([I0 T ]), (2.3b)

[I0 I+]
′ = β

S

N
(I0 + I+)− β

S[I0 I+]

N
− 2(γ + τ)[I0 I+]

− θp[I0 I+]
[T I+] + [I+ T ]

I+
, (2.3c)

[I0 T ]
′
= τ [I0 I+] + θp[I0 I+]

[T I+] + [I+ T ]

I+

− (γ + τ + θ)[I0 T ]− β
S[I0 T ]

N
, (2.3d)

I+
′ = βS

I0
N

− (γ + τ)I+ − θp([I+ T ] + [T I+]), (2.3e)

[I+ I+]
′ = β

S[I0 I+]

N
− 2(γ + τ)[I+ I+]− θp[I+ I+]

2[T I+] + [I+ T ]

I+
, (2.3f)

[I+ T ]
′
= τ [I+ I+] + β

S[I0 T ]

N
+ θp[I+ I+]

[I+ T ] + [T I+]

I+

− (γ + τ + θ)[I+ T ]− θp[T I+]
[I+ T ]

I+
, (2.3g)

[T I+]
′
= τ([I0 I+] + [I+ I+]) + θp[I+ I+]

[T I+]

I+

− (γ + τ + θ)[T I+]− θp[T I+]
[I+ T ] + [T I+]

I+
, (2.3h)

T ′ = τ(I0 + I+) + θp([I0 T ] + [I+ T ] + [T I+])− θT, (2.3i)

X ′ = θT, (2.3j)

R′ = γ(I0 + I+). (2.3k)

Note that, when no infection has occurred (i.e. I+ = 0, e.g., when the disease
is not present), the model is not well-posed because the fractions in this model are
not defined. In this case, the triples that give rise to these fractions do not exist,
and so these fractions can be set to 0 to eliminate the triples. Thus, if I+ = 0, the
system becomes

S′ = −βS
I0 + I+

N
, (2.4a)

I0
′ = βS

I+
N

− (γ + τ)I0 − θp([I0 T ]) , (2.4b)

[I0 I+]
′ = β

S

N
(I0 + I+)− β

S[I0 I+]

N
− 2(γ + τ)[I0 I+], (2.4c)

[I0 T ]
′
= τ [I0 I+]− (γ + τ + θ)[I0 T ]− β

S[I0 T ]

N
, (2.4d)

I+
′ = βS

I0
N

− (γ + τ)I+ − θp([I+ T ] + [T I+]), (2.4e)

[I+ I+]
′ = β

S[I0 I+]

N
− 2(γ + τ)[I+ I+], (2.4f)

[I+ T ]
′
= τ [I+ I+] + β

S[I0 T ]

N
− (γ + τ + θ)[I+ T ], (2.4g)

[T I+]
′
= τ([I0 I+] + [I+ I+])− (γ + τ + θ)[T I+], (2.4h)
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T ′ = τ(I0 + I+) + θp([I0 T ] + [I+ T ] + [T I+])− θT, (2.4i)

X ′ = θT , (2.4j)

R′ = γ(I0 + I+) . (2.4k)
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Figure 2. The comparison of I(t) numerically solved from our contact tracing model with the previous
SIR model. The parameter values are β = 0.4, θ = 1, γ = 0.1, τ = 0.15, N = 300000, and the coverage
probability p = 0.1, 0.2, ..., 0.9. The initial conditions are S(0) = N , I0(0) = 20 and I+(0) = 0 for the
improved model while I(0) = 20 for the original model, and 0 for all other variables.

The comparison of I(t) numerically solved from our improved SIR contact trac-
ing model and the original SIR model in [2] is shown in Figure 2, for several values
of the coverage probability p. This figure shows that, when the value of p is small,
the difference between the two models is very small, as contact tracing is rare in this
case. As p gradually increases and the impact of contact tracing becomes larger,
the difference between the two models gradually becomes apparent. However, when
p is large, contact tracing becomes very effective, and thus the final size is small.
This means that the number of contact traced individuals is also small, resulting in
a small difference between the two models.

3. Model analysis

In this section, we calculate the control reproduction number RC of our new SIR
model and analyze the dependence of RC and the final epidemic size on the model
parameters through numerical simulation.
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At the disease-free equilibrium where S = N and all other variables are 0,
the model (2.3) becomes (2.4). However, we cannot study the stability of (2.4)
to determine the disease threshold. This is because the threshold determines the
behavior when the system is close to, but not at, the disease-free equilibrium. In
this situation, (2.3) cannot be reduced to (2.4). We introduce the following variable
change to avoid this problem. Let

x =
[I0 I+]

I+
, y =

[I0 T ]

I+
, z =

I0
I+

, u =
[I+ I+]

I+
, v =

[I+ T ]

I+
, w =

[T I+]

I+
.

Then system (2.3) can be rewritten as

S′ = −βS
I0 + I+

N
, (3.1a)

I0
′ = βS

I+
N

− (γ + τ)I0 − θp
y

z
I0, (3.1b)

I+
′ = βS

I0
N

− (γ + τ)I+ − θp(v + w)I+, (3.1c)

x′ =
βS

N
(1 + z − x− xz)− (γ + τ)x, (3.1d)

y′ = −β
S

N
(y + yz)− θy + τx+ θp(v + w)(x+ y), (3.1e)

z′ = β
S

N
(1− z2) + θpz(v + w)− θpy, (3.1f)

u′ = β
S

N
(x− uz)− (γ + τ)u− θpwu, (3.1g)

v′ = β
S

N
(y − vz) + θp(uv + uw + v2)− θv + τu, (3.1h)

w′ = −β
S

N
wz + τ(x+ u) + θpwu− θw. (3.1i)

3.1. Well-posedness

We begin by establishing a subset of the state space in the first quadrant, denoted as
Ω, which is biologically meaningful. First, all variable values must be nonnegative
since they represent counts. Secondly, [I0 I+] + [I0 T ] ≤ I0 and [I+ I+] + [I+ T ] ≤
I+. Intuitively, the first inequality holds because each patient has only one infector.
Therefore, each I0 corresponds to a unique pair where I0 is the infectee, and the
infector could be I+, T , X, or R. In other words, the pairs [I0 I+] + [I0 T ] account
for only a fraction of I0. Similarly, the second inequality must also be satisfied.
Thus, the biologically meaningful states must satisfy

0 ≤ S, I0, I+, T,X,R, [I0 I+], [I0 T ], [I+ I+], [I+ T ], [T I+], (3.2a)

I0 ≥ [I0 I+] + [I0 T ], (3.2b)

I+ ≥ [I+ I+] + [I+ T ]. (3.2c)

Under the new variables, the inequalities (3.2) that define the set of biologically
meaningful states Ω become

0 ≤ S, I0, I+, x, y, z, u, v, w, (3.3a)
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z ≥ x+ y, (3.3b)

1 ≥ u+ v. (3.3c)

This set is denoted as Ω̃. The following theorem guarantees that the system (3.1)
is well-posed.

Theorem 3.1. The set of biologically meaningful states Ω̃ is a positive invariant
set of the system (3.1).

Proof. We will show that Ω̃ is positively invariant. To see this, first note that
S′|S=0 = 0, that is, the hyperplane {S = 0} is invariant. In addition, for any
solution starting in Ω̃, I0

′|I0=0 ≥ 0, which also holds for all other variables except
for z, as shown at the end of the proof. First, we define

ξ = z − x− y.

Hence, from (3.1d-f)

ξ′ = −β
S

N
(1 + z)ξ + θp(v + w)ξ + θy(1− p) + γx.

Therefore, for a solution starting in Ω̃,

ξ′|ξ=0 = θy(1− p) + γx ≥ 0,

which means the solutions enter Ω̃ on the boundary {ξ = 0}.
Similarly, we can show that u+ v ≤ 1. Let

η = 1− u− v.

From (3.1g-h)

η′ = 1− β
S

N
(x+ y − uz − vz) + γu− θp(uv + v2) + θv

≥ 1− β
S

N
z(1− u− v) + γu+ θpv(1− u− v).

Hence,
η′|η=0 = 1 + γu ≥ 0.

This implies that solutions enter Ω̃ on the boundary η = 0.
Finally, note that

z′ = β
S

N
(1− z2) + θpz(v + w)− θpy

≥ β
S

N
(1− z2) + θpz(v + w)− θpz.

For a solution starting in Ω̃,

z′|z=0 = β
S

N
≥ 0,

which means that the solutions enter Ω̃ on the boundary {z = 0}.
Since system (3.1) is equivalent to system (2.3), and the set Ω̃ is equivalent to

Ω, we can establish the following parallel result for (2.3):

Corollary 3.1. The set Ω is the positive invariant set of the system (2.3).
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3.2. Disease-free equilibrium and control reproduction num-
ber

At the disease-free equilibrium point, (x, y, z, u, v, w) in system (3.1) is independent
of S and I, and their dynamics are governed by

x′ = β(1 + z − x− xz)− (γ + τ)x, (3.4a)

y′ = −β(y + yz)− θy + τx+ θp(v + w)(x+ y), (3.4b)

z′ = β(1− z2) + θpz(v + w)− θpy, (3.4c)

u′ = β(x− uz)− (γ + τ)u− θpwu, (3.4d)

v′ = β(y − vz) + θp(uv + uw + v2)− θv + τu, (3.4e)

w′ = −βwz + τ(x+ u) + θpwu− θw. (3.4f)

Conjecture 3.1. System (3.4) has only one biologically relevant positive equilib-
rium point, satisfying (3.3b) and (3.3c).

Despite the difficulty in analytically solving the equilibrium of (3.4), we use
numerical analysis to find the positive equilibria via Newton’s method. We ran-
domly generate 100 sets of positive initial guesses for Newton’s method. These
initial guesses yield two positive equilibria, but only one equilibrium point lies in
the biologically meaningful set Ω̃ given in (3.3). This strongly suggests that there is
a unique biologically relevant positive equilibrium. This corresponds to the disease-
free equilibrium of (3.4), denoted as E0 = (N, 0, 0, x∗, y∗, z∗, u∗, v∗, w∗).

Theorem 3.2. If the conjecture 3.1 holds, then the control reproduction number of
system (3.1) is given by

RC =
β√

(γ + τ + θpy∗/z∗)[γ + τ + θp(v∗ + w∗)]
. (3.5)

Proof. After decoupling the equations for I0 and I+ from the linearization of
(3.4) about the disease-free equilibrium E0, we use the next generation matrix
method [17] to calculate the control reproduction number. The Jacobian matrix of
the linearized system for I0 and I+ is

J =

−(γ + τ)− θpy∗/z∗ β

β −(γ + τ)− θp(v∗ + w∗)

 .

Rewrite the system as

d

dt

 I0

I+

 = (F − V )

 I0

I+

 ,

where the new infection matrix F and the transition matrix V are

F =

 0 β

β 0

 , V =

 (γ + τ) + θpy∗/z∗ 0

0 (γ + τ) + θp(v∗ + w∗)

 .
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The next generation matrix is obtained as

FV −1 =

 0 β
(γ+τ)+θp(v∗+w∗)

β
(γ+τ)+θpy∗/z∗ 0

 .

The characteristic polynomial of the next generation matrix is

|λE − FV −1| = λ2 − β2

(γ + τ + θpy∗/z∗)[γ + τ + θp(v∗ + w∗)]
.

This gives the control reproduction number as the largest eigenvalue

RC =
β√

(γ + τ + θpy∗/z∗)[γ + τ + θp(v∗ + w∗)]
.
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Figure 3. The dependence of the control reproduction number RC on parameters θ, p, β and τ . We
set β = 0.4, θ = 1, p = 0.4, γ = 0.1 and τ = 0.15. Here, we vary the corresponding parameter values
and fix the others.

3.3. Dependency of RC on model parameters

In this subsection, we study the dependence of RC and the final epidemic size on
model parameters through numerical simulations.

Figure 3 shows that for both models, RC is an increasing function of β and a
decreasing function of θ, p, τ . The figure shows that there is no significant difference
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in RC between the two models by changing the values of β and τ . However, the
original model (2.3) significantly underestimates the effect of contact tracing on RC

for large coverage probability p or large contact tracing rate θ.
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Figure 4. The dependence of the final epidemic size on parameters. We use the same parameter values
as Figure 3.

Figure 4 shows the dependence of the final epidemic size (S(∞)−S(0)) on model
parameters. As contact tracing is strengthened (with a larger contact tracing rate
θ or coverage probability p), the final size decreases. In addition, the final size is
an increasing function of the transmission rate β and a decreasing function of the
voluntary testing rate τ . The difference in the final size between the two models
with the same parameter values is negligible, even for large values of θ and p.

4. Conclusion

We establish a more accurate contact tracing model to study the transmission dy-
namics of the disease based on [2] by considering a more realistic triple closure
approximation. We extend this model to include two infectious compartments: I0
(have not infected others) and I+ (have infected other individuals). This prevents
us from counting I0 in some related triples and also makes our model more accu-
rate after the triple approximation. By comparing the solutions of the two models
numerically, we find the difference between the solutions of the two models is small
when the tracing coverage probability p is small. This is because, for a small p,
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the difference between these two models is based on a small number contact traced
individuals. As p increases, the difference increases to maximum, then starts to de-
crease as p becomes even larger. This is because, for a large p, contact tracing may
become very effective in controlling the epidemic, so the total number of contact
traces becomes small again.

By analyzing the dependence of the control reproduction number RC on model
parameters, we found that the control reproduction number RC of both models
increases with the transmission rate β and decreases with the voluntary testing rate
τ similarly. Additionally, RC is a decreasing function of θ (contact tracing rate) and
p (tracing coverage) as they increase. That is, increasing the strength of contact
tracing reduces disease transmission, which is an intuitive result. However, RC of
the improved model decreases faster with the parameters than the original model,
i.e., the Bednarski et al. model significantly underestimates the effect of contact
tracing on disease transmission.

The final epidemic size for both models is similar and shows a similar dependence
on model parameters. Therefore, when contact tracing measures are not strict or
when the epidemic size is the quantity of interest, the Bednarski et al. model can
still be used. On the other hand, the improved model should be used to study the
effect of contact tracing, as it is more precise and provides a more accurate value
of the controlled reproduction number.

The improve model ignores the latent period and asymptomatic infection. How-
ever, it can be extended to incorporate exposed and asymptomatic compartments,
establishing a more realistic contact tracing model. To further improve this model,
we need to accurately model the tree of transmission formed by the disease dynam-
ics, and incorporate its degree distribution using a similar triple closure method as
in [18]. However, it will be mathematically challenging because the resulting model
may be infinite dimensional.
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