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Abstract In this paper, we investigate the existence and stability of steady-
state and periodic solutions for a heterogeneous diffusive model with spatial
memory and nonlinear boundary conditions, employing Lyapunov-Schmidt re-
duction and eigenvalue theory. Our findings reveal that when the interior re-
action term is weaker than the boundary reaction term, no Hopf bifurcation
occurs regardless of time delay. Conversely, when the interior reaction term is
stronger than the boundary reaction term, the presence of Hopf bifurcation is
determined by the spatial memory delay.
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1. Inroduction

Reaction-diffusion systems play a crucial role in both natural sciences and engineer-
ing, utilized in biological population dynamics, chemical reactor design, physical
studies of material defects, medical disease modeling, and environmental pollu-
tant diffusion. These models enhance our understanding of complex system be-
haviors and provide a foundation for improving technologies and devising effec-
tive strategies. In recent years, extensive research has been conducted on de-
layed reaction-diffusion equations, particularly focusing on the existence, unique-
ness, monotonicity, stability, and bifurcation of steady-state solutions (for exam-
ple, [2], [5], [8], [9], [11]). Reaction-diffusion models with spatial memory, matura-
tion time, and linear boundary conditions have been extensively explored by Ji and
Wu [20], Wang, Fan and Wang [26] and so on. However, research on models con-
taining nonlinear boundary conditions remains limited. Our research includes the
impact of external factors such as environmental conditions and resource distribu-
tion, which change the dynamical behavior of populations. These factors are crucial
in designing more realistic and applicable models, thereby reflecting the complexity
of ecological systems. The introduction of nonlinear boundary conditions reflects
the complexity of real-world boundary interactions, allowing for a more accurate
depiction of system boundary effects and revealing their impact on stability and
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bifurcation phenomena. In this study, we investigate how memory and matura-
tion delays influence the dynamical behavior of nonlinear boundary problems. For
convenience, we explore the following system with the memory delay equal to the
mature delay:

∂u

∂t
= ∆u+ d∇· (u∇uτ ) + λu (m(x)− uτ ) , x ∈ Ω,

∂u

∂n
= λh(x, u), x ∈ ∂Ω,

(1.1)

for t > 0, where τ > 0, ∆ is the Laplace operator, Ω is a connected bounded open
domain in RN (N ≥ 1) with smooth boundary ∂Ω, n is the unit outer normal to
∂Ω, u = u(x, t) ∈ R, h ∈ C1+ϵ(∂Ω × R,R) for some 0 < ϵ < 1, h(x, · ) ∈ C3(R,R)
and h(x, 0) = 0 for all x ∈ ∂Ω, uτ = u(x, t − τ), in the equation (1.1), the current
rate of change of the population ∂u

∂t depends on the population quantity at the past
time point t − τ . In system (1.1), a single bifurcation parameter, λ, controls both
the internal and boundary reactions. When λ = 0, the equation becomes a flux-free
diffusion equation with spatial memory.

In biology, the time delay τ ≥ 0 describes the averaged memory period, u(x, t)
represents the population density of a species at time t and location x, m(x) is the
intrinsic growth rate or the carrying capacity which can represent the situation of
resource at x, in d∇· (u∇uτ ) delay τ represents the averaged memory period, while
in λu (m(x)− uτ ) delay τ corresponds to the maturation time. In this paper, we
focus on the case where memory and maturation delays are identical. The boundary
conditions indicate that individuals reaching boundary ∂Ω are removed from the
habitat at a rate determined by the current population density at that location.

Some scholars have studied the dynamical behaviors near the steady-state solu-
tions of diffusion systems with Dirichlet boundary condition or Neumann boundary
condition (for example, [7], [12], [18], [22]). However, many phenomena and pro-
cesses exhibit nonlinear characteristics, such as the turbulence in fluids, nonlinear
elasticity in materials, and variable rates in chemical reactions. Therefore, we incor-
porate more general nonlinear boundaries into the typical memory-inclusive diffu-
sion systems. A lot of literature employs the center manifold method to investigate
Hopf bifurcation (for example, [23], [24], [10]). However, the reduced equations
through this method often remain high-dimensional, posing significant challenges
for studying high-dimensional or even infinite-dimensional equations. In this paper,
we utilize the Lyapunov-Schmidt procedure, aiming for a more precise and efficient
characterization of system (1.1). Although studies such as An, Wang and Wang [1],
Chen, Lou and Wei [6], and Ji and Wu [19] have investigated the impact of spatial
memory on population dynamics, and Cantrell and Cosner [3], Cantrell, Cosner and
Mart́ınez [4], and Guo [14,15] have explored the effects of nonlinear boundary con-
ditions, few studies are devoted to their combined influences. Model (1.1) enables a
thorough analysis, providing deeper insights into the dynamical behavior of models
with both nonlinear boundaries and spatial memory.

The objective of this paper is to determine the set λ for which steady-state
solutions exist, and to ascertain the uniqueness, stability, and Hopf bifurcation of
these positive steady-state solutions based on the values of τ . Ji and Wu [20] ex-
plored the stability of steady-state solutions and Hopf bifurcations in model (1.1)
with Neumann boundary condition. By incorporating nonlinear boundary condi-
tion, this paper facilitates a deeper understanding of the intrinsic mechanisms of
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complex systems, thereby offering more precise theoretical support for practical
applications. Additionally, we adopt a multifaceted theoretical frameworks and ap-
proaches to address the complexities of our research subject. Initially, we employ
eigenvalue theory and bifurcation theory to establish the existence and stability
of steady-state solutions. Following this, we use the Lyapunov-Schmidt reduction,
which enables us to investigate the balance between the influences of the interior
and boundary reaction terms on the occurrence of bifurcations, particularly the
Hopf bifurcation.

The paper is organized as follows: In Section 2, we establish the existence and
bifurcation of nontrivial steady-state solutions by treating λ as a bifurcation pa-
rameter and employing the Lyapunov-Schmidt reduction. For the linearized system
at u∗λ in Section 3, we analyze the eigenvalue distribution of its infinitesimal gener-
ator Aτ,λ. The findings show that if the internal reaction term is weaker than the
boundary reaction term, then regardless of variations in time delay τ , system (1.1)
will not experience a Hopf bifurcation. If the internal reaction term is stronger than
the boundary reaction term, the occurrence of a Hopf bifurcation in system (1.1)
is governed by the internal reaction delay τ . In Section 4, the Lyapunov-Schmidt
reduction is employed to elucidate the one-to-one correspondence between periodic
solutions near u∗λ and u∗s in system (1.1) and zeros of the simplified bifurcation map.
This method enables the establishment of criteria for the existence and direction
of periodic solution bifurcation branches, bypassing the center manifold reduction
method.

For convenience, we introduce the following notations. Denote by Lp(Ω) (p ∈ N)
the Lebesgue space of integrable functions defined on Ω, and let W k,p(Ω) (k ≥ 0)
be the Sobolev space of the Lp-functions f(x) defined on Ω whose derivatives dn

dxn f
(n = 1, . . . , k) also belong to Lp(Ω). Denote the spaces X = W 2,p(Ω) and Y =
Lp(Ω) ×W (p−1)/p,p(∂Ω). For a space Z, we also define the complexification of Z
to be ZC := Z ⊕ iZ = {x1 + ix2 : x1, x2 ∈ Z}. Denote by Ck

τ = Ck([−τ, 0],XC)
the Banach space of k-times continuously differentiable mappings from [−τ, 0] into
XC equipped with the supremum norm ∥ϕ∥ = sup{∥ϕ(j)(θ)∥XC : θ ∈ [−τ, 0], j =
0, 1, ..., k} for ϕ ∈ Ck

τ . For a linear operator L: Z1 → Z2, we denote the domain of
L by Dom(L) and the range of L by RangeL.

2. Existence of steady-state solutions

In this section, the existence of steady-state solutions is studied by the following
equation: 

0 = ∆u+ d∇· (u∇u) + λu (m(x)− u) , x ∈ Ω,

∂u

∂n
= λh(x, u), x ∈ ∂Ω.

(2.1)

Solving (2.1) can be reduced to seek nontrivial zero points of the following operator:

F (u, λ) =

F1(u, λ)

F2(u, λ)

 =

∆u+ d∇· (u∇u) + λu (m(x)− u)

∂u
∂n − λh(x, u)

 .
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2.1. Bifurcation from (0, λ) for some λ ∈ R
First of all, it is easy to see that, for every fixed parameter value λ ∈ R, F (u, λ) = 0
always has a trivial solution u = 0. Namely, F (u, λ) = 0 for all values of the param-
eter λ. If we want to prove the uniqueness of these solutions by the implicit function
theorem, we need to compute the derivative of F with respect to u evaluated at
(0, λ), which is given by

Lλu =

 ∆u+ λm(x)u

∂u
∂n − λhu(x, 0)u

 .

For the sake of completeness, we review some results for the existence of principal
eigenvalues from Umezu [25].

Lemma 2.1 (Umezu [25]). Consider the eigenvalue problem
0 = ∆u+ λm(x)u, x ∈ Ω,

∂u

∂n
= λhu(0, u)u, x ∈ ∂Ω.

(2.2)

Assume that

either m(x) ≰ 0 in Ω or hu(0, u)u ≰ 0 on ∂Ω. (2.3)

The problem (2.2) has a unique positive principal eigenvalue λ1 if and only if∫
Ω

m(x)dx+

∫
∂Ω

hu(0, u)dσ < 0 (2.4)

and it is characterized by the formula

λ1 = inf

{
Qu : u ∈W 1,2(Ω),

∫
Ω

m(x)u2(x)dx+

∫
∂Ω

hu(0, u)u
2(x)dσ > 0

}
,

where

Qu =

∫
Ω
|∇u(x)|2dx∫

Ω
m(x)u2(x)dx+

∫
∂Ω
hu(0, u)u2(x)dσ

for u ∈W 1,2(Ω).

As long as (2.3) and (2.4) hold, λ1 is a unique principal eigenvalue of eigen-
value problem (2.2), with an associated eigenfunction φ1 satisfying

∫
Ω
φ2
1(x)dx = 1.

Therefore, KerLλ1
= span {φ1}. It is easy to see that (y1, y2) ∈ RangeLλ1

if and
only if ∫

Ω

φ1(x)y1(x)dx =

∫
∂Ω

φ1(x)y2(x)dσ.

Thus, Lλ1 is a Fredholm operator of index zero. Denote the spaces X = W 2,p(Ω)
and Y = Lp(Ω)×W (p−1)/p,p(∂Ω). Then we decompose the spaces X and Y as

X = KerLλ1
⊕ X1, Y = RangeLλ1

⊕ Y1,

Next, we apply the Lyapunov-Schmidt reduction. Define projection Q: Y → Y1

and the equation F (u, λ) = 0 is equivalent to

QF (ξ + η, λ) = 0, (I −Q)F (ξ + η, λ) = 0, (2.5)
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where ξ ∈ KerLλ1
and η ∈ X1. Note that

(I −Q)F (0, λ) = 0, (I −Q)Fξ(0, λ1) = Lλ1
.

So we can apply the implicit function theorem and obtain a continuously differen-
tiable map h : U → X1 such that h(0, λ) = 0 and

(I −Q)F (ξ + h(ξ, λ), λ) = 0, (2.6)

where U is an open neighborhood of (0, λ1) in KerLλ1
×R. Thus, the first equation

in (2.5) can be written as

F(ξ, λ) ≜ QF (ξ + h(ξ, λ), λ) = 0. (2.7)

In view of F(0, λ1) = 0 and Fξ(0, λ1) = 0, each solution to F(ξ, λ) = 0 in U
one-to-one corresponds to some solution to F (u, λ) = 0.

In order to obtain the coefficients of the terms in the Taylor expansion of the
reduced equation, because of dimY1 = 1, we can find ϕ ∈ Y satisfying ∥ϕ∥Y = 1
such that Y1 = span {ϕ}. From the Hahn-Banach theorem, there exists a vector ζ
in the dual space Y∗ of Y such that ⟨ζ, ϕ⟩ = 1 and ⟨ζ, y⟩ = 0 for all y ∈ RangeLλ1 ,
where ⟨· , · ⟩ : Y∗ × Y → R denotes the duality betweenY∗ and Y and is defined as

⟨v, u⟩ =
∫
Ω

v(x)u1(x)dx−
∫
∂Ω

v(x)u2(x)dσ

for all v ∈ Y∗ and u = (u1, u2) ∈ Y. Obviously, there exists ψ ∈ Y∗ such that

⟨ψ, u⟩ =
∫
Ω

φ1u1(x)dx−
∫
∂Ω

φ1u2(x)dσ,

and hence Kerψ = RangeLλ1
. Thus, the projection Q is given by Qy = ⟨ψ, y⟩ϕ for

y ∈ Y. In view of dimKerLλ1
= 1 and equation (2.7), for all vφ1 ∈ KerLλ1

with
v ∈ R, we can define G : R2 → R and

G(v, λ) = ⟨ψ,F(vφ1, λ)⟩ = ⟨ψ,F (vφ1 + h(vφ1, λ), λ)⟩ .

It is easy to verify G(0, λ1) = 0 and

G(v, λ) = v

[
ϱ(λ− λ1) +

κ

2
v +

ϑ

6
v2 + o(v2)

]
,

where 
ϱ = ⟨ψ, Fλu [φ1]⟩ ,
κ = ⟨ψ, Fuu [φ1, φ1]⟩ ,
ϑ = ⟨ψ, Fuuu [φ1, φ1, φ1]⟩+ 3 ⟨ψ, Fuu [φ1, hξξ [φ1, φ1]]⟩ .

Here, the bilinear form Fuu [· , · ] and tri-linear form Fuuu [· , · , · ] denote the second-
and third-order Fréchet derivatives of F with respect to u, evaluated at (u, λ) =
(0, λ1), respectively. Let hξ and hξξ be the first- and second-order Fréchet deriva-
tives of h with respect to ξ, evaluated at (ξ, λ) = (0, λ1), respectively.

The following analysis will examine κ ̸= 0 and κ = 0 individually. We start
with the case where κ ̸= 0. Notice that G(0, λ1) = 0 and Gv(0, λ1) = κ ̸= 0, then
by applying the implicit function theorem we know that there exists a constant
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δ > 0 and a continuously differentiable mapping v : (λ1 − δ, λ1 + δ) → R such that
G(vλ, λ) = vλ

[
ϱ(λ− λ1) +

κ
2 v + o(v)

]
= 0 and vλ1

= v for λ ∈ (λ1− δ, λ1+ δ), that
is to say,

vλ1
=

2ϱ(λ1 − λ)

κ
+ o(|λ− λ1|).

Thus, for all λ ∈ (λ1 − δ, λ1 + δ), (2.1) has a nontrivial solution uλ = vλφ1 +
h(vλφ1, λ), and limλ→λ1

uλ = 0.

Next consider the case where κ = 0 and ϑ ̸= 0. Then we get G(vλ, λ) =
vλ

[
ϱ(λ− λ1) +

ϑ
6 v

2 + o(v2)
]
= 0, so

v2λ1
=

6ϱ(λ1 − λ)

ϑ
+ o(|λ− λ1|).

We can see that equation (2.1) has a nontrivial solution v±λ when ϱϑ(λ− λ1) > 0.

It follows from (2.6) that Lλ1hξξ [φ1, φ1] + (I − Q)Fuu [φ1, φ1] = 0 and hence
the three quantities ϱ, κ, and ϑ can be obtained as follows:

ϱ =

∫
Ω

φ2
1(x)m(x)dx−

∫
∂Ω

φ2
1(x)hu(x, 0)dσ,

κ =

∫
Ω

φ1(x)
[
2d∇· (φ1(x)∇φ1(x))− 2λ1φ

2
1(x)

]
dx+

∫
∂Ω

λ1φ
3
1(x)huu(x, 0)dσ,

ϑ =3

∫
Ω

φ1(x) [d∇· (ζ0(x)∇φ1(x)) + d∇· (φ1(x)∇ζ0(x))− 2λ1ζ0(x)φ1(x)] dx

+

∫
∂Ω

λ1ζ0(x)φ
2
1(x)huu(x, 0) +

∫
∂Ω

λ1φ
4
1(x)huuu(x, 0)dσ,

(2.8)
where ζ0(x) = hξξ [φ1, φ1]. To conclude, the following result is established.

Theorem 2.1. (i) Under the assumptions (2.3) and (2.4), if κ ̸= 0, there exists
a constant δ > 0 and a continuously differentiable mapping v : λ → vλ from
(λ1 − δ, λ1 + δ) to R such that (2.1) has a nontrivial solution uλ = vλφ1 +
h(vλφ1, λ), which satisfies lim

λ→λ1

uλ = 0.

(ii) Under the assumptions (2.3) and (2.4), if κ = 0 and ϱϑ < 0 (respectively,> 0)
then there exist a constant λ∗ > λ1 (respectively, λ∗ < λ1) and two con-
tinuously differentiable mappings λ → v±λ from (λ1, λ

∗) to R (respectively,
from (λ∗, λ1) to R) such that (2.1) has two nontrivial solutions u±λ = v±λ φ1 +
h(v±λ φ1, λ), which satisfies lim

λ→λ1

u±λ = 0.

2.2. Bifurcation from (u0, 0) for some u0 ∈ R

In this section, we consider bifurcation from (u0, 0) for some u0 ∈ R. Note that
Fu(· , 0) satisfies

Fu(· , 0) =

(1 + du0)∆

∂
∂n

 . (2.9)
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Then we have KerFu(· , 0) = span {1}. Subsequently, we consider the range space
of Fu(· , 0). Let (y1, y2) ∈ RangeFu(· , 0) and w(x) ∈ X satisfy

(1 + du0)∆w = y1, x ∈ Ω,

∂w

∂n
= y2, x ∈ ∂Ω.

It is easy to see that (y1, y2) ∈ RangeFu(· , 0) if and only if∫
Ω

y1(x)dx =

∫
∂Ω

(1 + du0)y2(x)dσ.

Therefore, we can infer that codimRangeFu(· , 0) = 1 and Fu(· , 0) is a Fredholm
operator of index zero. We decompose the spaces X and Y as

X = KerFu(· , 0)⊕ X2, Y = RangeFu(· , 0)⊕ Y2,

where X2 is the complement space of KerFu(· , 0) in X, Y2 is the complement space
of RangeFu(· , 0) in Y. Using a similar argument from the previous subsection, we
can argue that original bifurcation problem can be reduced to the problem of finding
zeros of a map G̃ : R2 → R given by

G̃(v, λ) =

∫
Ω

F1(u0 + v + h̃(v, λ))dx−
∫
∂Ω

(1 + du0)F2(u0 + v + h̃(v, λ))dσ,

where h̃ : R → X2 is a continuously differentiable map satisfying h(0, 0) = 0 and

(I − Q̃)F (u0 + v + h̃(v, λ), λ) = 0,

and Q̃ denotes the projection operator from Y onto Y2 along RangeFu(· , 0). Notice

that G̃(0, 0) = 0 , G̃v(0, 0) = 0 and

G̃λ(0, 0) =

∫
Ω

u0(m(x)− u0)dx+

∫
∂Ω

(1 + du0)h(x, u0)dσ.

Due to the implicit function theorem, if G̃λ(0, 0) ̸= 0, then (u0, 0) is not a
bifurcating point of the map F . So we arrive at the following result.

Theorem 2.2. If G̃λ(0, 0) ̸= 0, then no steady-state bifurcation occurs in the vicin-
ity of (u, λ) = (u0, 0), that is to say, the steady-state solution set of (1.1) near (u0, 0)
consists precisely of the trivial curve {(u, 0) : u ∈ R}.

In the following, we shall focus on the specific case where G̃λ(0, 0) = 0, i.e.,∫
Ω

u0(m(x)− u0)dx+

∫
∂Ω

(1 + du0)h(x, u0)dσ = 0. (2.10)

Given that ∇G̃(0, 0) = 0, we proceed to compute the Hessian matrix of G̃ evaluated
at (0, 0), which is given by

Hess(G̃) =

G̃vv(0, 0) G̃vλ(0, 0)

G̃λv(0, 0) G̃λλ(0, 0)

 .

In view of Lemma 2.5 of Liu, Shi and Wang [21], we have the following results:
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(i) If detHess(G̃) > 0, then (0, 0) is the unique zero of G̃ near (0, 0);

(ii) If detHess(G̃) < 0, for s ∈ (−σ, σ), there exist two Ck−1 curves (v1(s), λ1(s))
and (v2(s), λ2(s)) satisfying (v1(0), λ1(0)) = (0, 0) = (v2(0), λ2(0)), such that

the solution set of G̃(v, λ) = 0 consists of exactly these two curves near (0, 0).
Moreover, s can be rescaled so that (v′1(0), λ

′
1(0)) and (v′2(0), λ

′
2(0)) are the

two linear independent solutions of

G̃vv(0, 0)x
2 + 2G̃vλ(0, 0)xy + G̃λλ(0, 0)y

2 = 0.

Note that G̃vv(0, 0) = G̃λλ(0, 0) = 0 and

G̃vλ(0, 0) =

∫
Ω

(m(x)− 2u0)dx+

∫
∂Ω

(1 + du0)hu(x, u0)dσ.

Thus, if

Ξ ≜
∫
Ω

(m(x)− 2u0)dx+

∫
∂Ω

(1 + du0)hu(x, u0)dσ ̸= 0, (2.11)

then detHess(G̃) = −G̃2
vλ(0, 0) < 0 and there exist two Ck−1 curves (v1(s), λ1(s))

and (v2(s), λ2(s)) for s ∈ (−σ, σ) satisfying (v1(0), λ1(0)) = (0, 0) = (v2(0), λ2(0)),

such that the solution set of G̃(v, λ) = 0 consists of exactly these two curves near
(0, 0) and that (v′1(0), λ

′
1(0)) = (0, 1) and (v′2(0), λ

′
2(0)) = (1, 0). In particular,

the solution curve (v2(s), λ2(s)) = (1, 0)s + o(s) is identical to the trivial branch
{(u, 0) : u > 0}. Consequently, we establish the following theorem regarding the
existence of two solution curves that are tangent to each other at the bifurcation
point.

Theorem 2.3. Assume that there exists u0 ∈ R such that both (2.10) and (2.11)
hold. Then the set of solutions of (2.1) near (u, λ) = (u0, 0) consists precisely of the
trivial curve {(u, 0) : u ∈ R} and the curve {(u∗s, λ(s)) : s ∈ (−σ, σ) for some σ>0},
where u1(s) takes the form

u1(s) = u0 + v1(s) + h̃(v1(s), λ1(s))

with (v1(0), λ1(0)) = (0, 0) and (v′1(0), λ
′
1(0)) = (0, 1).

3. Stability of steady-state solutions

In this section, we investigate the eigenvalue problem of model (1.1) at the nontrivial
steady-state solution. Then we carry out a stability analysis and determine the
conditions under which a Hopf bifurcation occurs at this nontrivial steady-state
solution, guided by the distribution of eigenvalues.

3.1. Steady-state solutions established in Theorem 2.1

Theorem 2.1 guarantees the existence of an open set Λ ⊆ R containing λ1 on
its boundary, for which system (1.1) has a spatially nonhomogeneous steady-state
solution u∗λ when λ ∈ Λ. Furthermore, the form of u∗λ is given by u∗λ = vλφ1 +
h(vλφ1, λ), with vλ satisfying G(vλ, λ) = 0 as defined in Section 2.1. To explore the
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local dynamical behavior near the steady-state solution u = u∗λ of system (1.1), we
linearize system (1.1) at that point:

∂v

∂t
= ∆v + d∇· (v∇u∗λ) + d∇· (u∗λ∇vτ ) + λv(m(x)− u∗λ)− λu∗λvτ , x ∈ Ω,

∂v

∂n
= λhu(x, u

∗
λ)v, x ∈ ∂Ω.

(3.1)
The characteristic equation for this linear system is obtained by considering solu-
tions of the form v(x, t) = u(x)exp {µt} with u ∈ X. Such solutions are nontrivial
if and only if m(λ, µ, τ)u = 0 has a nontrivial solution u, where for (λ, µ, τ) ∈
Λ× C× R+, m(λ, µ, τ) : X → Y and m(λ, µ, τ)u is defined as∆u+ d∇· (u∇u∗λ) + d∇· (u∗λ∇u)e−µτ + λu(m(x)− u∗λ)− λu∗λue

−µτ − µu

∂u
∂n − λhu(x, u

∗
λ)u

 .

Denote by Aτ,λ the infinitesimal generator of the semigroup generated by the lin-
earized system (3.1). In fact, for all ψ ∈ C1

τ satisfying ∂
∂nψ(0) = λhu(x, u

∗
λ)ψ(0),

we have (Aτ,λψ)(θ) = ψ′(θ) for all θ ∈ [−τ, 0), and

Aτ,λψ(0) =∆ψ(0) + d∇· (ψ(0)∇u∗λ) + d∇· (u∗λ∇ψ(−τ))
+ λψ(0)(m(x)− u∗λ)− λu∗λψ(−τ).

Thus, the spectrum of Aτ,λ is

σ(Aτ,λ) = {µ ∈ C : m(λ, µ, τ)u = 0 for some u ∈ XC \ {0}} .

In order to define the adjoint operatorA∗
τ,λ ofAτ,λ, we need to define the bilinear

form and consider the formal adjoint equation of system (3.1):
∂u

∂t
= −∆u− du∆u∗λ − λu(m(x)− u∗λ) + λu∗λu(t+ τ), x ∈ Ω,

∂u

∂n
= −λhu(x, u∗λ)u, x ∈ ∂Ω.

(3.2)

Assuming that v and u are solutions to equations (3.1) and (3.2), respectively, we
obtain

d

dt

∫
Ω

uvdx =

∫
Ω

du∗λ(v(t−τ)∆u−v∆u(t+τ))dx+
∫
Ω

d∇u∗λ(u∇v(t−τ)−u(t+τ)∇v)dx,

which implies that∫
Ω

uvdx+

∫ t

t−τ

∫
Ω

du∗λ(v(θ)∆u(τ + θ)) + d∇u∗λ(u(τ + θ)∇v(θ))dxdθ

is a constant for all t ≥ −τ . Thus, one can set t = 0 in the above function to define
the bilinear form

⟨ψ,φ⟩1 =

∫ 0

−τ

∫
Ω

[
du∗λ(φ(x, θ)∆ψ(x, τ + θ)) + d∇u∗λ(ψ(x, τ + θ)∇φ(x, θ)

]
dxdθ

+

∫
Ω

ψ(x, 0)φ(x, 0)dx.
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Then one has ⟨A∗
τ,λψ,φ⟩1 = ⟨ψ,Aτ,λφ⟩1 for all φ ∈ C1

τ and ψ ∈ C1([0, τ ],X∗
C),

where A∗
τ,λ denotes the adjoint operator of Aτ,λ, that is, for all ψ ∈ C1([0, τ ],X∗

C)

satisfying ∂
∂nψ(0) = λhu(x, u

∗
λ)ψ(0), we have (A∗

τ,λψ)(θ) = −ψ′(θ) for θ ∈ (0, τ ],
and

(A∗
τ,λψ)(0) =∆ψ(0) + d∇· (ψ(0)∇u∗λ) + d∇· (u∗λ∇ψ(τ))

+ λψ(0)(m(x)− u∗λ)− λu∗λψ(τ).

Thus, µ ∈ σ(Aτ,λ) if and only if there exists v ∈ X∗
C\{0} such thatm∗(λ, µ, τ)v = 0,

where m∗(λ, µ, τ): X∗ → Y∗ and m∗(λ, µ, τ)u is defined as∆u+ d∇· (u∇u∗λ) + d∇· (u∗λ∇u)e−µτ + λu(m(x)− u∗λ)− λu∗λue
−µτ − µu

∂u
∂n − λhu(x, u

∗
λ)u

 .

Thus, we conclude that µ ∈ σ(Aτ,λ) if and only if there exists u ∈ XC \ {0} such
that m(λ, µ, τ)u = 0, which is also equivalent to that there exists v ∈ X∗

C \ {0} such
that m∗(λ, µ, τ)u = 0.

We now consider the existence of zero eigenvalues of Aτ,λ.

Lemma 3.1. (i) For each (τ, λ) ∈ R+ × Λ, if 0 ∈ σ(Aτ,λ), then κ = 0.

(ii) For each (τ, λ) ∈ R+ × Λ, if κ = 0 and Fuu [φ1, φ1] ̸= 0, then 0 ∈ σ(Aτ,λ).

Proof. If 0 ∈ σ(Aτ,λ), then there exists u ∈ XC \ {0} such that m(λ, 0, τ)u = 0.
Note that m(λ1, 0, τ)u = Lλ1

and KerLλ1
= {φ1}, then u takes the form

u = aλφ1 + vλbλ,

where aλ ∈ R, bλ ∈ X1 and a2λ + b2λ ̸= 0, then we have

aλm(λ, 0, τ)φ1 + vλm(λ, 0, τ)bλ = 0.

It is easy to see that

φ̃1 ≜ lim
λ→λ1

m(λ, 0, τ)φ1

vλ
= Fuu [φ1, φ1] + Fλu [φ1] lim

λ→λ1

λ− λ1
vλ

,

then

⟨ψ, φ̃1⟩ = ⟨ψ, Fuu [φ1, φ1]⟩+
〈
ψ, Fλu [φ1] (−

κ

2ϱ
)

〉
=
κ

2
.

Thus, we have aλ1
φ̃1 + Lλ1

bλ1
= 0. If κ ̸= 0, then φ̃1 /∈ RangeLλ1

, then aλ1
= 0.

This, together with the fact that bλ1 ∈ X1 and Lλ1 is invertible if it is restricted in
X1, implies that bλ1 = 0, which contradicts a2λ + b2λ ̸= 0. Therefore, κ = 0.

If κ = 0 and Fuu [φ1, φ1] ̸= 0, let u = φ1 + vλb, where b ∈ X1. Substituting u
into m(λ, 0, τ)u = 0, we have

H(b, λ) ≜
m(λ, 0, τ)φ1

vλ
+m(λ, 0, τ)b = 0

and
lim

λ→λ1

H(b, λ) = Fuu [φ1, φ1] + Lλ1b.

It follows from κ = 0 that Fuu [φ1, φ1] ∈ RangeLλ1
, and hence there exists b∗ ∈

XC \ {0} such that Fuu [φ1, φ1] + Lλ1
b∗ = 0, that is to say, H(b∗, λ1) = 0. Note
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that Fuu [φ1, φ1] ̸= 0 and Hb(b
∗, λ1) = Lλ1

. Then applying the implicit function
theorem, there exists a continuously differentiable mapping λ → bλ from Λ to X1

such that bλ1 = b∗ and H(bλ, λ) = 0, i.e., m(λ, 0, τ)u = 0 has nontrivial solution
u = φ1 + vλbλ. Therefore 0 ∈ σ(Aτ,λ). The proof is completed.

Considering Lemma 3.1 and Theorem 2.1, the following results are obtained.

Theorem 3.1. (i) Under the assumptions (2.3) and (2.4), if κ ̸= 0, then there
exists δ > 0 such that for each λ ∈ Λ = (λ1 − δ) ∪ (λ1 + δ), system (1.1) has
exactly one spatially nonhomogeneous steady state solution, whose associated
infinitesimal generator Aτ,λ has no zero eigenvalue.

(ii) Under the assumptions (2.3) and (2.4), if κ = 0 and Fuu [φ1, φ1] ̸= 0 and
ϱϑ < 0 (respectively, > 0), then there exists a constant δ > 0 such that for
each λ ∈ Λ = (λ1, λ1 + δ) (respectively, λ ∈ Λ = (λ1 − δ, λ1)), system (1.1)
has exactly two spatially nonhomogeneous steady state solutions, each of whose
associated infinitesimal generator has a zero eigenvalue.

In what follows, we investigate the existence of purely imaginary eigenvalues of
Aτ,λ. For each (τ, λ) ∈ R+×Λ, iω ∈ σ(Aτ,λ) if and only if there exists u ∈ XC \{0}
such that

m(λ, iω, τ)u = 0. (3.3)

Lemma 3.2. If (ω, τ, u) ∈ R+×R+×XC \{0} solves (3.3), then ω can be regarded

as the function of λ and ω(λ)
vλ

is bounded.

Proof. From (3.3), it is deduced that

0 = ⟨u,m(λ, iω, τ)u⟩

=

∫
∂Ω

λhu(x, u
∗
λ)|u|2dσ +

∫
Ω

u[∆u+ d∇· (u∇u∗λ) + d∇· (u∗λ∇u)e−iωτ ]dx

+

∫
Ω

λ|u|2(m(x)− u∗λ)− λu∗λ|u|2e−iωτ − iω|u|2 − |∇u|2dx.

Separating the real and imaginary parts, we deduce that

ℏ(ω, λ) ≜ ω

∫
Ω

|u|2dx+ d sin(ωτ)

∫
Ω

u· (u∗λ∇u)dx− sin(ωτ)λ

∫
Ω

u∗λ|u|2dx.

Note that ℏ(0, λ1) = 0 and ℏω(0, λ1) = |u|2|Ω| ̸= 0. Then applying the implicit
function theorem, there exists ω(λ) such that ω(λ1) = 0 and ℏ(ω(λ), λ) = 0, i.e.,

ω(λ)

∫
Ω

|u|2dx+ d sin(ω(λ)τ)

∫
Ω

u· (u∗λ∇u)dx− sin(ω(λ)τ)λ

∫
Ω

u∗λ|u|2dx.

Furthermore, the boundedness of ω(λ)
vλ

is readily apparent, thereby completing the
proof.

We can reformulate the target equationm(λ, iω, τ)u = 0 as equation m̃(λ, γ, θ)u =
0, where m̃(λ, γ, θ) : XC → YC and m̃(λ, γ, θ)u is given by∆u+ d∇· (u∇u∗λ) + d∇· (u∗λ∇u)e−iθ + λu(m(x)− u∗λ)− λu∗λue

−iθ − ivλγu

∂u
∂n − λhu(x, u

∗
λ)u

 ,
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where ω = vλγ and ωτ = θ + 2jπ (j ∈ N). Note that m̃(λ1, γ, θ) = Lλ1
and

KerLλ1
= span {φ1}. Let u = φ1+vλb, where b ∈ X1C. Consequently,H(b, γ, θ, λ) =

0 holds, with H : X1C × R× [0, 2π)× Λ → Y defined by

H(b, γ, θ, λ) =
m̃(λ, γ, θ)φ1

vλ
+ m̃(λ, γ, θ)b.

Obviously, we have H(b, γ, θ, λ1) = Φ(γ, θ) + Lλ1
b, where

Φ(γ, θ) =Fλu(φ1, φ1)
λ− λ1
vλ

+

d∇· (φ1∇φ1) + d∇· (φ1∇φ1)e
−iθ − λ1φ

2
1 − λ1φ

2
1e

−iθ − iγφ1

−λ1huu(x, 0)φ2
1

 .

For convenience, let

κ1 =

∫
Ω

φ1

[
d∇· (φ1∇φ1)− λ1φ

2
1

]
dx, κ2 =

∫
∂Ω

λ1huu(x, 0)φ
3
1dσ. (3.4)

Then we have κ = 2κ2 + κ1. Define R : R× [0, 2π) → R as R(γ, θ) = ⟨ψ,Φ(γ, θ)⟩ .
Consequently, it follows that

R(γ, θ) = κ1e
−iθ +

κ2
2

− iγ,

where

γ0 =

√
4κ21 − κ22

2
, θ0 = Arg

−k2 − 2γi

2κ1
.

Therefore

κ ̸= 0, 4κ21 ≥ κ22 (3.5)

is sufficient for R(γ, θ) = 0 to hold. It follows that Φ(γ, θ) ∈ RangeLλ1
, which

implies that there exists b∗ ∈ X1C \ {0} such that Φ(γ, θ) + Lλ1
b∗ = 0, i.e.,

H(b∗, γ, θ, λ1) = 0. This, combined with the implicit function theorem and the
isomorphic property of H(b,γ,θ)(b, γ, θ, λ1), implies there exists a continuously dif-
ferentiable mapping λ → (b(λ), γ(λ), θ(λ)) from Λ to X1C × R × [0, 2π) such that
b(λ1) = b∗, γ(λ1) = γ0, θ(λ1) = θ0 and H(b(λ), γ(λ), θ(λ), λ) = 0 for all λ ∈ Λ.
Thus, m̃(λ, γ(λ), θ(λ))u = 0 has a nontrivial solution u = uλ ∈ XC, where uλ =
φ1 + vλb(λ). This implies that the eigenfunction of iωλ ∈ σ(Aτj,λ,λ) is uλ, where

ωλ = vλγ(λ), τj,λ =
θ(λ) + 2jπ

ω(λ)
(j ∈ N). (3.6)

In conclusion, the following result is obtained.

Lemma 3.3. Under the condition (3.5), for each λ ∈ Λ, ω(λ) and τj,λ defined as in
(3.6), Aτ,λ has a pair of simple purely imaginary eigenvalues at τ = τj,λ. Moreover,

(i) These purely imaginary eigenvalues are ±iωλ.

(ii) The eigenspace associated with eigenvalue iωλ is only spanned by ζ0, where
ζ0(x, t) = uλ(x) exp {iωλt}.
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(iii) There exist δ > 0 and continuously differentiable mapping: µ : (τj,λ − δ, τj,λ +
δ) → C such that µ(τj,λ) = iωλ and µ(τ) ∈ Aτ,λ for all τ ∈ (τj,λ − δ, τj,λ + δ).
Furthermore, d

dtRe {µ(τ)} |τ=τj,λ> 0 for λ close enough to λ1.

(iv) There exists ϱλ = φ1 + vλd(λ) ∈ Y∗
C \ {0} such that m∗(λ,−iωλ, τλ)ϱλ = 0 .

Moreover,
lim

λ→λ1

Πj,λ = 1,

where Πj,λ =
〈
ϱλe

iωθ, ζ0(x, t)
〉
1
, that is,

Πj,λ =

∫
Ω

ϱλuλdx+ dτe−iωτ

∫
Ω

u∗λ(uλ∆ϱλ) +∇u∗λ(ϱλ∇uλ)dx.

Proof. From the preceding analysis, it is evident that assumptions (i), (ii) and
(iv) are satisfied. Consequently, it remains to confirm (iii) and demonstrate that
iωλ is a simple eigenvalue of Aτ,λ. Conversely, assume that iωλ is not simple. Then
there exists ψ ∈ C1([−τ, 0] ,XC) such that (Aτ,λ − iωλ)ψ = ueiωλ(·), that is to say,

ψ′(θ) =− iωλψ(θ) + ueiωλθ,

ψ′(0) =∆ψ(0) + d∇· (ψ(0)∇u∗λ) + d∇· (u∗λ∇ψ(−τ))
+ λψ(0)(m(x)− u∗λ)− λu∗λψ(−τ).

(3.7)

From the first equation of (3.7), we deduce that ψ(θ) = (θu + p)eiωλθ, with p and
u satisfying

∂u

∂n
= λhu(x, u

∗
λ)u,

∂p

∂n
= λhu(x, u

∗
λ)u on ∂Ω.

Substituting ψ(θ) = (θu+ p)eiωλθ into the second equation of (3.7) results in

u = ∆p+ d∇· (p∇u∗λ) + d∇· (u∗λ∇p)e−iωλτ + λp(m(x)− u∗λ)− λu∗λpe
−iωλτ − iωλp.

Thus, we have  u

∂p
∂n − λhu(x, u

∗
λ)p

 =

u
0

 = m(λ, iωλ, τλ)p.

Computing the inner product of the aforementioned equation with ϱλ gives −Πj,λ =
0, leading to a contradiction. Therefore, iωλ is simple.

Note that uλ /∈ Rangem(λ, iωλ, τλ) and m(λ, iωλ, τλ)uλ = 0. Then 0 is a sim-
ple eigenvalue of m(λ, iωλ, τλ). Furthermore, it is evident that m(λ, iωλ, τλ) is a
Fredholm operator with index zero. Therefore, we have the following direct sum
decomposition:

YC = Kerm(λ, iωλ, τλ)⊕ Rangem∗(λ,−iωλ, τλ),

which induces a decomposition

Kerm(λ, iωλ, τλ)⊕ X0C,

with X0C = XC ∩Rangem∗(λ,−iωλ, τλ). Define a mapping P : C×R+×X0C → YC
by

P(µ, τ, u) = m(λ, µ, τ)(uλ + u).
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Clearly, P(iωλ, τj,λ, 0) = 0 and P(u,µ)(iωλ, τj,λ, 0) is an isomorphism. By means
of the implicit function theorem, there exists a constant δ > 0 and a continuously
differentiable mapping τ → (µ, u) from (τj,λ − δ, τj,λ + δ) to C × XC such that
µ(τj,λ) = iωλ and u(τj,λ) = uλ and that

P(µ(τ), τ, u(τ)) = 0 for all τ ∈ (τj,λ − δ, τj,λ + δ).

Calculating the inner product of the above equation with ϱλ yields

µ′(τj,λ) = −ωλe
−iθ(λ)

∫
Ω

[d∇ · (u∗λ∇uλ) + u∗λuλ] ϱλdx,

then we have

lim
λ→λ1

µ′(τj,λ) = lim
λ→λ1

µ′(τj,λ)

vλ
= 0

and

lim
λ→λ1

µ′(τj,λ)

v2λ
= −iγe−iθ(λ)k1 = (γ sin θ(λ) + iγ cos θ(λ))k1.

So

sgnRe

{
lim

λ→λ1

µ′(τj,λ)

v2λ

}
=sgnRe

{
sin2 θ(λ)

[∫
Ω
φ1

[
d∇· (φ1∇φ1)− λ1φ

2
1

]
dx

]2∫
Ω
|u|2dx

}
=1

and hence Re {µ′(τj,λ)} > 0 for λ close enough to λ1.

Remark 3.1. Lemma 3.3 indicates that for the steady-state solution u∗λ specified in
Theorem 2.1, the corresponding infinitesimal generator Aτ,λ meets the transversal-
ity condition at τ = τj,λ for λ ∈ Λ when λ is sufficiently close to λ1. Consequently,
a Hopf bifurcation occurs at τ = τj,λ, resulting in the emergence of a branch of pe-
riodic orbits of (1.1) from (τ, u) = (τj,λ, u

∗
λ). Condition (3.5) means that regardless

of changes in the time delay τ , Hopf bifurcation cannot occur in system (1.1) when
the interior reaction term is weaker than the boundary reaction term.

We next consider the existence of purely imaginary eigenvalues of A0,λ.

Lemma 3.4. Assume that κ ̸= 0. Then for each λ ∈ Λ satisfying ϱ(λ − λ1) > 0,
A0,λ has only eigenvalues of negative real parts. Conversely, when ϱ(λ − λ1) < 0,
A0,λ possesses at least one eigenvalue with a positive real part.

Proof. We first demonstrate that A0,λ has no purely imaginary eigenvalue when
κ ̸= 0. Assuming thatA0,λ possesses purely imaginary eigenvalues, and applying the
reasoning from Lemma 3.3, we findR(γ, 0) = κ1+

κ2

2 −iγ, leading to a contradiction.
Thus, A0,λ indeed has no purely imaginary eigenvalue.

Let {λ∗k}
∞
k=1 ∈ Λ satisfy lim

k→∞
λ∗k = λ1 such that µk ∈ σ(A0,λ). Then there exists

{uk}∞k=1 ∈ XC satisfying lim
k→∞

uk = φ1 such that for each k ∈ N, m(λ∗k, µk, 0)uk = 0,

i.e.,∆uk + d∇· (uk∇u∗λ) + d∇· (u∗λ∇uk) + λ∗kuk(m(x)− u∗λ)− λ∗ku
∗
λuk − µkuk

∂u
∂n − λ∗khu(x, u

∗
λ)uk

 = 0.

Note that

lim
k→∞

u∗λ∗
k

λ∗k − λ1
= φ1 lim

k→∞

v∗λ∗
k

λ∗k − λ1
=

−2ϱφ1

κ
.
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It follows from ⟨ψ,m(λ∗k, µk, 0)uk⟩ = 0 that

lim
k→∞

µk = 0, lim
k→∞

µk

2(λ1 − λ∗k)
= ϱ.

This implies that for sufficiently large k, Re {µk} has the same sign as ϱ(λ1 − λ∗k).
This completes the proof.

Remark 3.2. Lemma 3.4 indicates that when ϱ(λ − λ1) > 0, all eigenvalues of
A0,λ have negative real parts, implying the stability of the steady-state solution u∗λ
of (1.1) for τ = 0. However, Lemma 3.3 suggests that large delays τ might induce
nonlinear oscillations, affecting computational performance significantly. Therefore,
the time delay τ can be viewed as a source of instability and oscillatory behavior
in system (1.1).

Considering Lemmas 3.3 and 3.4, the following conclusions about the stability
of the steady-state solution u∗λ, as established in Theorem 2.1, are derived.

Theorem 3.2. (i) Assume that κ ̸= 0. Then for each (τ, λ) ∈ R+ × Λ satisfying
ϱ(λ − λ1) < 0 and |λ − λ1| ≪ 1, Aτ,λ has at least one eigenvalue with a
positive real part. Consequently, the steady-state solution u∗λ of system (1.1),
as defined in Theorem 2.1, is unstable.

(ii) Assume that k ̸= 0 and 4κ21 < κ22. Then for each (τ, λ) ∈ R+ × Λ satisfying
ϱ(λ − λ1) > 0 and |λ − λ1| ≪ 1, all eigenvalues of Aτ,λ have negative real
parts, so the steady-state solution u∗λ of system (1.1) is locally asymptotically
stable.

(iii) Under assumption (3.5), for each λ ∈ Λ satisfying ϱ(λ−λ1) > 0 and |λ−λ1| ≪
1, if τ ∈ [0, τ0,λ), all eigenvalues of Aτ,λ have negative real parts. In contrast,
for (τn,λ, τn+1,λ] with n ∈ N, Aτ,λ has exactly 2(n+ 1) solutions with positive
real parts. Thus, the steady-state solution u∗λ of system (1.1) remains locally
asymptotically stable for τ ∈ [0, τ0,λ) and becomes unstable for τ > τ0,λ, as
established in Theorem 2.1.

3.2. Steady-state solutions established in Theorem 2.3

Theorem 2.3 means that for any u0 ∈ R satisfying (2.10) and (2.11), in the vicinity
of (u, λ) = (u0, 0), system (1.1) has two branches of steady-state solutions: one
is the trivial solution (u, 0) with u > 0, and the other is the bifurcating solution
(u∗s, λ

∗
s), s ∈ (−σ, σ), where σ > 0, and u∗s is defined as

u∗s = u0 + v(s) + h̃(v(s), λ(s))

with

(v(0), λ(0)) = (0, 0), (v′(0), λ′(0)) = (0, 1)

and v(s), λ(s) satisfying∫
Ω

F1(u0+v(s)+h̃(v(s), λ(s)), λ) dx = (1+du0)

∫
∂Ω

F2(u0+v(s)+h̃(v(s), λ(s)), λ) dσ.
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In the subsequent analysis, we consider the linearization of system (1.1) at u = u∗s
with λ = λ(s): 

∂v

∂t
=∆v + d∇· (v∇u∗s) + d∇· (u∗s∇vτ )

+ λ(s)v(m(x)− u∗s)− λ(s)u∗svτ , x ∈ Ω,

∂v

∂n
=λhu(x, u

∗
s)v, x ∈ ∂Ω.

(3.8)

Similar to Section 3, let Ãτ,s denote the infinitesimal generator of the semigroup

generated by system (3.8). Then µ ∈ C is in the spectral set of σ(Ãτ,s) of Ãτ,s if and
only if m̂(s, µ, τ)u = 0 for some u ∈ XC \ {0}, which is also equivalent to that there
exists v ∈ X∗

C \ {0} such that m̂∗(λ, µ̄, τ)v = 0. Here, m̂(s, µ, τ)u = m̂∗(s, µ, τ)u,
and m̂(s, µ, τ)u is given by∆u+ d∇· (u∇u∗s) + d∇· (u∗s∇u)e−µτ + λ(s)u(m(x)− u∗s)− λ(s)u∗sue

−µτ − µu

∂u
∂n − λ(s)hu(x, u

∗
s)u

 .

Lemma 3.5. Under the assumptions of Theorem 2.3, we obtain 0 ̸∈ σ(Ãτ,s).

Proof. Suppose that 0 ∈ σ(Ãτ,s). Consequently, there exists a u ∈ X \ {0} such
that m̂(0, u, τ) = 0. Observations from m̂(0, 0, τ) = Fu(u0, 0) and KerFu(u0, 0) =
span{1} imply that u can be expressed as u = as + sbs, with as ∈ R and bs ∈ X2

satisfying a2s + b2s ̸= 0. Hence asm̂(s, 0, τ) + sm̂(s, 0, τ)bs = 0.
It is straightforward to see that

lim
s→0

m̂(s, 0, τ) · 1
s

=

m(x)− 2u0

−hu(x, u0)

 = Fλu(u0, 0).

From condition (2.11), since Fλu(·, u0) ̸∈ RangeFu(u0, 0), we conclude that a0 = 0.
This together with the invertibility of Fu(u0, 0) restricted in X2, indicates b0 = 0, a

contradiction. Therefore, 0 ̸∈ σ(Ãτ,s). The proof is completed.

Due to Lemma 3.2, the condition iω ̸∈ σ(Ãτ,s) for ω ̸= 0 indicates that ω can
be regarded as the function of s and ω(s)/s is bounded. Consequently, by setting
ω(s) = sγ, we rewrite m̂(s, isγ, τ, ρ) as m(s, γ, θ, ρ), with m(s, γ, θ, ρ): XC → YC
and m(s, γ, θ)u is given by∆u+ d∇· (u∇u∗s) + d∇· (u∗s∇u)e−iθ + λ(s)u(m(x)− u∗s)− λ(s)u∗sue

−iθ − isγu

∂u
∂n − λhu(x, u

∗
s)u

 ,

where ω = sγ and ωτ = θ + 2jπ (j ∈ N). Deriving from m̂(0, 0, τ) = Fu(u0, 0)
and KerFu(u0, 0) = span{1}, it is established that u has the form u = 1 + sb for

some b ∈ X2C. Consequently, this results in H̃(b, γ, θ, s) = 0, with H̃ mapping from
X1C × R× [0, 2π)× (−σ, σ) to Y , defined by:

H̃(b, γ, θ, s) =
m̂(s, γ, θ) · 1

s
+ m̂(s, γ, θ)b.
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At s = 0, H̃(b, γ, θ, 0) = Φ̃(γ, θ) + Fu(u0, 0)b, where

Φ̃(γ, θ) =

m(x)− (1 + e−iθ)u0 − iγ

−hu(x, u0)

 .

Define R̃ : R× [0, 2π) → R as

R̃(γ, θ) =

∫
Ω

m(x)dx+ (1 + du0)

∫
∂Ω

hu(x, u0)dσ − (1 + e−iθ)u0|Ω| − iγ|Ω|. (3.9)

Throughout the remaining part of this section, we always assume that∣∣∣∣∣∣
∫
Ω

m(x)dx+ (1 + du0)

∫
∂Ω

hu(x, u0)dσ − u0|Ω|

∣∣∣∣∣∣ ≤ |u0|Ω||. (3.10)

Then there exists (θ∗, γ∗) ∈ [0, 2π)× R such that R̃(γ∗, θ∗) = 0, which implies that

Φ̃(γ∗, θ∗) ∈ RangeFu(u0, 0). Additionally, there exists b∗ ∈ X2C \ {0} for which

H̃(b∗, γ∗, θ∗, 0) = 0. Applying the implicit function theorem and the isomorphism

of D(b,γ,θ)H̃(b, γ, θ, 0), a continuously differentiable mapping s→ (b(s), γ(s), θ(s)) is
defined from (−σ, σ) to X2C ×R× [0, 2π) such that b(0) = b∗, γ(0) = γ∗, θ(0) = θ∗
and H̃(b(s), γ(s), θ(s), s) = 0 for all s ∈ Λ. Consequently, m̂(s, γ(s), θ(s))u = 0
admits a nontrivial solution u = ũs ∈ XC, where ũs = 1+ sb(s). This configuration

confirms iω̃s ∈ σ(Ãτj,s,s) with the associated eigenfunction ũs = 1 + sb(s), where

ω̃s = sγ(s), τ̃j,s =
θ(s) + 2jπ

ωs
. (3.11)

In summary, we have the following result.

Lemma 3.6. Under the condition (3.10) and the assumptions of Theorem 2.3, for
each s ∈ (−σ, σ), define ω̃s and τ̃j,s as in (3.11). Then for each s ∈ (−σ, σ), Aτ,s

has a pair of purely imaginary eigenvalues at τ = τ̃j,s. Moreover,

(i) These purely imaginary eigenvalues are ±iω̃s.

(ii) The eigenspace associated with eigenvalue iω̃s is only spanned by ζ0, where
ζ0(x, t) = ũs exp{iω̃st}.

(iii) There exists δ > 0 and C1-mapping µ : (τ̃j,s − δ, τ̃j,s + δ) → C such that
µ(τ̃j,s) = iω̃s and µ(τ) ∈ σ(Aτ,s) for all τ ∈ (τ̃j,ρ,s − δ, τ̃j,s + δ). Furthermore,
d
dtRe {µ(τ)} |τ=τ̃j,s > 0 for s close enough to 0.

(iv) There exists ϱ̃s = 1 + sd(s) ∈ Y∗
C \ {0} such that m̂∗(s,−iω̃s, τ̃j,s)ϱ̃s = 0.

Moreover,

lim
s→0

Π̃j,s = |Ω|,

where

Πj,s =

∫
Ω

ϱ̃sũsdx+ dτe−iωτ

∫
Ω

ũ∗s(ũs∆ϱ̃s) +∇ũ∗s(ϱ̃s∇ũs)dx.
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Omit the proof of Lemma 3.6 due to its similarity to Lemma 3.3. Lemma 3.6
implies that for the steady-state solution u∗s, the associated infinitesimal generator

Ãτ,s satisfies the transversality condition at τ = τ̃j,s for s ∈ (−σ, σ). Consequently,
a Hopf bifurcation is observed at τ = τ̃j,s, resulting in the emergence of a branch of
periodic orbits of (1.1) starting from (τ̃j,s, u

∗
s).

According to condition (3.10), no matter how the time delay τ changes, Hopf
bifurcation is precluded near the steady-state solution u∗s in system (1.1) if the
internal reaction is small enough, that is:∣∣∣∣∫

Ω

m(x) dx+ (1 + du0)

∫
∂Ω

hu(x, u0) dσ − u0|Ω|
∣∣∣∣ > |u0||Ω|.

Note that system (1.1) with τ = 0 has no Hopf bifurcation near the steady-state
solution u∗s. Therefore, it is the interior reaction delay τ that determines the ex-
istence of Hopf bifurcation in system (1.1) near the steady-state solution u∗s under
the condition (3.10).

In what follows, we consider the stability of the steady-state solution u∗s. For
this purpose, we start with the case where τ = 0.

Note that system (1.1) with τ = 0 has no Hopf bifurcation near the steady-
state solution u∗s. Consequently, it is the internal reaction delay τ that primarily
influences the occurrence of Hopf bifurcation in system (1.1) around the steady-state
solution u∗s, as specified under condition (3.10).

Lemma 3.7. Under the assumptions of Theorem 2.3, for each s ∈ (−σ, σ) satisfy-
ing Ξλ(s) < 0 (respectively, > 0), Ã0,s has only eigenvalue with negative real part
(respectively, at least one eigenvalue with a positive real part).

Proof. Let {sk}∞k=1 ⊆ (−σ, σ) be a sequence convergent to 0 as k → ∞ such that

for each k ∈ N. Ã0,s has only eigenvalue µk. There exists {uk}∞k=1 ∈ XC convergent
to 1 as k → ∞ such that for each k ∈ N, m̃(sk, µk, 0)uk = 0, and hence∫

Ω

[
d∇· (uk∇u∗sk) + d∇· (u∗sk∇uk) + λ(sk)uk(m(x)− u∗sk)− λ(sk)u

∗
sk
uk − µkuk

]
dx

+ (1 + du0)

∫
∂Ω

λ(sk)hu(x, u
∗
sk
)ukdσ = 0.

This implies that

lim
k→∞

µk = 0, |Ω| lim
k→∞

uk
λ(sk)

= Ξ.

This implies that for sufficiently large k, Re {µk} has the same sign as Ξλ(sk).
Considering Lemmas 3.6 and 3.7, we establish the stability of the steady state

solution u∗s.

Theorem 3.3. Assume that there exists u0 ∈ R such that both (2.10) and (2.11)
hold, we have

(i) For each (τ, s) ∈ R+ × (−σ, σ) satisfying Ξλ(sk) > 0, the steady-state solution
u∗s is unstable.

(ii) Assume that condition (3.10) does not hold. Then for each (τ, s) ∈ R+×(−σ, σ)
satisfying Ξλ(sk) < 0, the steady-state solution u∗s is locally asymptotically
stable.
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(iii) Assume that condition (3.10) hold. Then for each (τ, s) ∈ R+ × (−σ, σ) satis-
fying Ξλ(sk) < 0, the steady-state solution u∗s is locally asymptotically stable
when τ ∈ [0, τ̃0,s), and is unstable when τ ∈ [τ̃n,s, τ̃n+1,s) , n ∈ N0.

4. Hopf bifurcation

In this section, we study the Hopf bifurcation at the steady-state solution u∗λ and
u∗s, as established in Theorems 2.1 and 2.3, respectively. This phenomenon occurs
when τ passes through the critical thresholds τj,λ and τ̃j,s. For convenience, we call
a Hopf bifurcation forward if there exist periodic solutions when parameter value
τ > τj,λ (or τ > τ̃j,s), and backward if τ < τj,λ (or τ < τ̃j,s). We shall investigate
the bifurcation direction and monotonicity of the period of the bifurcating closed
invariant curve, and determine the conditions for the occurrence of Hopf bifurcation
and identify both supercritical and subcritical scenarios. Additionally, we shall
investigate the monotonicity of the period of the bifurcating closed invariant curve.

In the context of a Banach space W , define CT (W ) and C1
T (W ) as the sets of

continuous and differentiable T -periodic mappings from R toW , respectively, where
T is defined as 2π/ωλ. Consider the norms:

∥x∥0,W = max
t∈[0,T ]

{∥u(t)∥W }

for any u ∈ CT (W ), and

∥u∥1,W = max{∥u∥0,W , ∥u′∥0,W }

for u ∈ C1
T (W ). Equipped with these norms, CT (W ) and C1

T (W ) are Banach
spaces. Moreover, CT (W ) represents a Banach representation of the group S1 with
the operation defined by

θ · u(t) = u(t+ θ) for all θ ∈ S1.

The inner product for CT (Y∗
C) and CT (YC) is introduced as:

(v, u) =
1

T

∫ T

0

⟨v(t), u(t)⟩ dt

for u, v ∈ CT (Y∗
C)× CT (YC).

We start with Hopf bifurcation near the steady-state solutions established in
Theorem 2.1 under the condition (3.5). According to Lemma 3.3, for each fixed
λ ∈ Λ, Aτj,λ,λ has a pair of simple purely imaginary eigenvalues ±iωλ. Moreover,
there exists µλ ∈ XC \ {0} such that

m(λ, iωλ, τj,λ)uλ = 0, lim
λ→λ1

uj,λ = φ1.

It follows that there exists ϱλ ∈ X∗
C \ {0} such that

m∗(λ,−iωλ, τj,λ)ϱλ = 0, lim
λ→λ1

ϱj,λ = φ1, Πj,λ ̸= 0.

For any β ∈ (−1, 1), setting u(t) = u((1+β)t) and letting v(t, β, τ) = v(t−(1+β)τ),
then equation (1.1) can be rewritten as(1 + β) d

dt −∆

− ∂
∂n

 v(t) =

d∇· [v(t)∇v(t, β, τ)] + λv(t) [m(x)− v(t, β, τ)]

−λh(x, u)

 .
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Let vt,β(t) = v(t+(1+β)θ) for θ ∈ [−τ, 0]. The operator F : C1
T (X)×R+×(−1, 1) →

CT (Y) and F(v, τ, β) is defined as follows:−(1 + β)dv(t)dt +∆v(t) +∇· [v(t)∇vt,β(t)] + λv(t) [m(x)− vt,β(t)]

∂
∂n − λh(x, u)

 .

By adjusting the parameter β, we explore not only the solutions of (1.1) that ad-
here to the period T but also those that approximate it. Specifically, solutions to
F(v, τ, β) = 0 represent T

1+β -periodic solutions of (1.1). This characterizes F as

S1-equivariant:
θ · F(v, τ, β) = F(θ · v, τ, β)

for θ ∈ S1. Let Lτj,λ be the first derivative of F with respect to v at (v, τ, β) =
(0, τj,λ, 0). Then the elements of KerLτj,λ correspond to solutions of the linear

system Lτj,λu = 0 satisfying u(T ) = u(t+T ). This kernel is spanned by {ζ0λ, ζ0λ},
with ζ0λ in CT (XC) characterized by ζ0λ(t) = uλe

iωλt for all t ∈ R. With respect
to the inner product on CT (Y∗

C)× CT (YC), the adjoint operator L∗
τj,λ

is defined as
follows:

(L∗
τj,λ

v)(t) =


∂v

∂t
+∆v + dv∆u∗λ + λv(m(x)− u∗λ)− λu∗λv(t+ τ),

∂v

∂n
− λhu(x, u

∗
λ)v

 .

The kernel of L∗
τj,λ

, KerL∗
τj,λ

, is spanned by {ζ∗0λ, ζ
∗
0λ}, where ζ∗0λ in CT (X∗

C) is

expressed as ζ∗0λ(t) = ϱλe
iωλt. The spaces CT (YC) and C1

T (XC) are respectively
decomposed into

CT (YC) = KerL∗
τj,λ

⊕ RangeLτj,λ , C1
T (XC) = KerLτj,λ ⊕ RangeL∗

τj,λ
.

Inspired by the works of Guo and Li [16], let P denote the projection operator from
CT (YC) to RangeLτj,λ along KerL∗

τj,λ
, retaining S1-equivariance. By employing the

Lyapunov-Schmidt reduction, we simplify the Hopf bifurcation problem to finding
zeros of the following S1-equivariant map

G(z, τ, β) = (ζ∗0λ,F(zζ0λ + zζ0λ +W (zζ0λ + zζ0λ, τ, β), β)),

where W : KerLτj,λ × R+ × (−1, 1) → RangeL∗
τj,λ

is a continuously differentiable

S1-equivariant map such that W (0, τj,λ, 0) = 0 and PF(v+W (v, τ, β), τ, β) = 0 for
all (v, τ, β) ∈ KerLτj,λ × R+ × (−1, 1). It is easy to see that Gz(0, τ, 0) = 0 and
Gz(0, τ, 0) = 0. Using similar arguments as in Golubitsky and Schaeffer [13], we can
find two functions ℜ and ℑ: R2

+ × (−1, 1) → R such that

G(z, τ, β) = ℜ(|z|2, τ, β)z + ℑ(|z|2, τ, β)iz,

and hence that seeking the zeros of G is equivalent to solving either r = 0 or
ℜ(r2, τ, β) = 0 and ℑ(r2, τ, β) = 0. It is easy to obtain that

Gτ (z, τj,λ, 0) = µ′(τ)z +O(|z|2),

Gβ(z, τj,λ, 0) = −iωλz +O(|z|2).
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Then ℜτ (0, τj,λ, 0) ℜβ(0, τj,λ, 0)

ℑτ (0, τj,λ, 0) ℑβ(0, τj,λ, 0)

 = ωλRe {µ′(τj,λ)} ≠ 0.

We can apply the implicit function theorem, and obtain a unique function τ = τ(r2)
and β = β(r2) satisfying τ(0) = τj,λ and β(0) = 0 such that

ℜ(r2, τ(r2), β(r2)) = 0, ℑ(r2, τ(r2), β(r2)) = 0 (4.1)

for all sufficiently small r. That is to say, G(z, τ(r2), β(r2)) = 0 for z sufficiently
near 0. Therefore, system (1.1) has a bifurcation of periodic solutions. Namely, we
have the following result.

Theorem 4.1. Assume that (3.5) holds. Then for each λ ∈ Λ satisfying |λ −
λ1| ≪ 1, a Hopf bifurcation for (1.1) occurs at (u, τ) = (u∗λ, τj,λ). Namely, in
every neighborhood of (u, τ) = (u∗λ, τj,λ) there is a branch of periodic solutions
uj,τ (x, t) → u∗λ as τ → τj,λ. The period Tτ of uj,τ (x, t) satisfies that Tτ → 2π

ωλ
as

τ → τj,λ.

From Guo and Wu [17], Faria, Teresa and Huang [10], and Wu [27], the bifur-
cation direction is determined by sign τ ′(0), and the monotonicity of the period of
bifurcating closed invariant curve depends on sign β′(0). We know from (4.1) that

τ ′(0) =
Re {Γj,λ}

Re {µ′(τj,λ)}
, β′(0) =

Im
{
µ′(τj,λ)Γj,λ

}
ωλRe {µ′(τj,λ)}

,

where

Γj,λ

=(ζ∗0 ,F3(τj,λ, u
∗
λ)(ζ0λ, ζ0λ, ζ0λ) + F2(τj,λ, u

∗
λ)(ζ0λ,W20) + 2F2(τj,λ, u

∗
λ)(ζ0λ,W11))

and
W20 =− L−1

τj,λ
PF2(τj,λ, u

∗
λ)(ζ0λ, ζ0λ),

W11 =− L−1
τj,λ

PF2(τj,λ, u
∗
λ)(ζ0λ, ζ0λ).

(4.2)

Theorem 4.2. The Hopf bifurcation at τ = τj,λ is supercritical (respectively, sub-
critical) if Re {Γj,λ} < 0 (respectively, > 0). The period is greater than (respectively,
smaller than) 2π

ωλ
if Im

{
µ′(τj,λ)Γj,λ

}
> 0 (respectively, < 0).

The remaining part of this section is devoted to the Hopf bifurcation at the
steady-state solution u∗s established in Theorem 2.3, occurring when τ crosses the

critical value τ̃j,s. For T̃ = 2π/ωs, the inner product for CT̃ (Y
∗
C) and CT̃ (YC) is

introduced as:

(v, u) =
1

T̃

∫ T̃

0

⟨v(t), u(t)⟩ dt

for (u, v) ∈ CT̃ (Y
∗
C) × CT̃ (YC). Let vt,β(t) = v(t + (1 + β)θ) for θ ∈ [−τ, 0]. The

operator F̃ : CT̃ (X)× R+ × (−1, 1) → CT̃ (Y) and F̃(v, τ, β) is defined as follows:−(1 + β)dv(t)dt +∆v(t) +∇· [v(t)∇vt,β(t)] + λv(t) [m(x)− vt,β(t)]

∂
∂n − λh(x, u)

 .
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Let Lτ̃j,s be the first derivative of F̃ with respect to v at (v, τ, β) = (0, τ̃j,s, 0). Then
the elements of KerLτ̃j,s correspond to solutions of the linear system Lτ̃j,su = 0
satisfying u(T ) = u(t+ T ). It follows that

KerLτ̃j,s = span {η0s, η0s} , KerL∗
τ̃j,s

= span {η∗0s, η∗0s} ,

where
η0s = ũse

iω̃st, η∗0s = ϱ̃se
iω̃st (η0s ∈ CT̃ (X), η

∗
0s ∈ CT̃ (X

∗)).

Using a similar argument to the previous, let Q denote the projection operator
from CT̃ (YC) to RangeLτ̃j,s along KerL∗

τ̃j,s
. It follows that

τ ′(0) =
Re

{
Γ̃j,s

}
|Ω|Re {µ′(τ̃j,s)}

, β′(0) =
Im

{
µ′(τ̃j,s)Γ̃j,s

}
|Ω|ω̃sRe {µ′(τ̃j,s)}

,

where

Γ̃j,s = (η∗0s, F̃3(τ̃j,s, u
∗
s)(η0s, η0s, η0s)+F̃2(τ̃j,s, u

∗
s)(η0s,W20)+2F̃2(τ̃j,s, u

∗
s)(η0s,W11))

and

W20 = −L−1
τ̃j,s

QF̃2(τ̃j,s, u
∗
s)(η0s, η0s), W11 = −L−1

τ̃j,s
QF̃2(τ̃j,s, u

∗
s)(η0s, η0s). (4.3)

We can obtain the following result.

Theorem 4.3. Assume that there exists uo ∈ R such that (2.10), (2.11) and (3.10)
hold. Then for each s ∈ (σ, σ), a Hopf bifurcation for equation(1.1) occurs at
(u, τ) = (u∗s, τ̃j,s). Namely, in every neighborhood of (u, τ) = (u∗s, τ̃j,s) there is a
branch of periodic solutions uj,τ (x, t) satisfying uj,τ (x, t) → u∗s as τ → τ̃j,s. The
period Tτ of uj,τ (x, t) satisfies that Tτ → 2π

ω̃s
as τ → τ̃j,s. Moreover, the Hopf

bifurcation at τ = τ̃j,s is supercritical (respectively, subcritical) if Re
{
Γ̃j,s

}
< 0

(respectively, > 0). The period is greater than (respectively, smaller than) 2π
ω̃s

if

Im
{
µ′(τ̃j,s)Γ̃j,s

}
> 0 (respectively, < 0).

5. Conclusions

In this paper, we investigate the dynamics of a heterogeneous diffusive model with
spatial memory and nonlinear boundary conditions. Firstly, the existence of steady-
state solutions is investigated by using the Lyapunov-Schmidt reduction and regard-
ing λ as a bifurcation parameter. Next, we discuss the eigenvalues of infinitesimal
generators of a linearized system semigroup at the steady-state solutions of equation
(1.1) by employing eigenvalue theory. Moreover, we determine the bifurcation direc-
tion for each branch of steady-state and periodic solutions using Lyapunov-Schmidt
reduction.

This study contributes to the theoretical understanding of reaction-diffusion
models with spatial memory and nonlinear boundary conditions by providing a
detailed analysis of the existence and stability of both steady-state and periodic
solutions. Using the Lyapunov-Schmidt reduction and eigenvalue theory, our results
offer new insights into how the balance between the interior and boundary reaction
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terms influences the occurrence of bifurcations, particularly the Hopf bifurcation.
These findings deepen our understanding of the interplay between internal dynamics
and boundary effects, enriching the theory of bifurcations in spatially heterogeneous
systems. Moreover, our results suggest potential avenues for further exploration
of memory-dependent phenomena in reaction-diffusion systems, which could have
broader applications to the study of biological, ecological, and physical systems
where spatial and temporal delays play a critical role.

Future investigations could significantly benefit from exploring several aspects
of reaction-diffusion systems. One promising area involves examining the effects of
more complex boundary conditions, such as those incorporating time delays, which
could profoundly affect dynamics. Another prospective could include distinguishing
between memory delay and maturation delay, to better understand their roles and
interactions in influencing system behavior.
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