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Vector Fixed Point Theorem with Application to
Systems of Nonlinear Elastic Beams Equations
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Abstract In this work, we establish a new existence and uniqueness of vector
fixed point for a class of sum-type vector operators with some mixed monotone
property in partially ordered product Banach spaces. The technique used is
Thompson’s part metric, and our goal is to extend and improve existing works
in the scalar case vector case. As an application, we study the existence and
uniqueness of solutions for systems of nonlinear singular fourth-order elastic
beam equations with nonlinear boundary conditions.
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1. Introduction

The theory of fixed points represents a growing field of research and development,
intelligently combining different disciplines of knowledge such as geometry, topology
and analysis. It is among the most powerful and fruitful tools of modern mathe-
matics and can be considered a central subject of nonlinear analysis. In particular,
when it comes to the solvability of a functional equation (whether it is a differential
equation, a fractional differential equation, or an integral equation...), the problem
is formulated in terms of finding a fixed point of a certain mapping. This theory
has numerous applications, notably in biology, chemistry, economics and physics.
For example, in [20], the authors demonstrated some fixed point theorems and used
them to prove the solvability of certain fractional differential equations. It is note-
worthy that these types of differential equations are frequently used in engineering
sciences. See also [21], where the authors confirmed the effectiveness of fixed points
theory in physics by applying it to the equation of motion.

Recently, in the context of the development of fixed point theory, the mixed
monotone operators, which were first introduced in 1987 by Guo and Lakshmikan-
tham [9], have provided some existence theorems for coupled fixed points for both
continuous and discontinuous operators with coupled upper-lower solutions. They
then proposed some applications to initial value problems of ordinary differential
equations with discontinuous right-hand sides. As an extension of [9], an existence
and uniqueness theorem was established in 1988 by Dajun Guo [8] for an operator
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A :
◦
P ×

◦
P →

◦
P under the following condition: there exists 0 ≤ α < 1 such that

A(tx, t−1y) ⪰ tαA(x, y) for each x, y ∈
◦
P and 0 < t < 1. These results have been

developed and generalized in [22], where the authors prove new fixed point theorems
for mixed monotone operators A : P × P → P under the following conditions:

i) There exists h ∈ P with h ̸= θ such that A(h, h) ∈ Ph;

ii) For any x, y ∈ P and t ∈ (0, 1), there exists φ(t) ∈ (t, 1] such that

A(tx, t−1y) ⪰ φ(t)A(x, y).

Using the main results obtained, they give the local existence and uniqueness of
positive solutions for the following nonlinear boundary value problems:−u′′(t) +m2u(t) = λf (t, u(t), u(t)) , 0 < t < 1,

u′(0) = u′(1) = 0.

The powerful role of the theory of fixed points has driven its extension in various di-
rections. For example, one new direction involves extending the Banach contraction
principle to metric spaces endowed with a partial order. See [5], where the authors
established a fixed point theorem for a new class of mixed monotone operators,
which are nearly asymptotically nonexpansive.

In this context, H. Wang et al. [18] obtained the existence and uniqueness of
fixed point of the nonlinear sum operators Ax + Bx + C(x, x), where A is an in-
creasing α-concave (or sub-homogeneous) operator, B is a decreasing operator and
C is a mixed monotone operator and they applied their results to a fractional dif-
ferential equation. Thereafter, the authors [19] studied another abstract related
to sum-type operator equation A(x, x) + B(x, x) + Cx = x, where A and B are
two mixed monotone operators and C is an increasing operator, then the authors
applied the result to a nonlinear fractional differential equation with multi-point
fractional boundary conditions. In [14], Y. Sang et al. established the existence
and uniqueness of solution for the operator equation A(x, x)+B(x, x)+Cx+e = x.
The authors generalized the results obtained in [24] on the cone mappings to non-
cone case. However, as far as we know, the fixed point results concerning vec-
tor operators with mixed monotone properties are still very limited. In [11], the
authors established the existence and uniqueness a fixed point for the abstract
vector operator equation Φ(x, y, x, y) = (A1(x, x, y), A2(x, y, y)) = (x, y), where
Φ : Ph×Pk×Ph×Pk → Ph×Pk has some mixed monotone properties with respect
to the operators A1 : Ph × Ph × Pk → Ph and A2 : Ph × Pk × Pk → Pk. Then
they applied their results to obtain the positive solution for a system of nonlinear
Neumman boundary value problems.

Being motivated by [11,15,23] and other works, we intend to study the existence
and uniqueness of fixed point for the following system of operators, which we are
going to consider it as an adequate vector operator with certain mixed monotone
properties

A1(x, x, y) +B1(x, x, y) + e1 = x,

A2(x, y, y) +B2(x, y, y) + e2 = y.
(1.1)

Then, we apply our result to show the existence and uniqueness of solutions to the
system (4.2). The main result can be considered, to some extent, as a generaliza-
tion of most of the results obtained in the cited references, in addition to being a
transition from the scalar case to the vector case.
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This article is organized as follows. In the first section, we recall some basic
facts to be used throughout this work. In the second section, we will prove our
results concerning the existence and uniqueness of fixed point for sum of two mixed
monotone vector operators of Meir-Keeler type. In the third section, we demonstrate
the applicability of our abstract theorem by giving an application to systems of
nonlinear elastic beams equations.

2. Preliminaries and some results

Let (E, ∥.∥) be a real Banach space and P be a cone in E. Recall that a non-empty
closed and convex set P ⊂ E is a cone if it satisfies (i) x ∈ P, λ ≥ 0 ⇒ λx ∈ P ,
(ii) x ∈ P,−x ∈ P ⇒ x = θ, where θ is the zero element in E. A cone P induces
a partial ordering ⪯ in E by x ⪯ y if and only if y − x ∈ P . A cone P is called
normal if there exists a constant N > 0 such that θ ⪯ x ⪯ y implies ∥x∥ ≤ N∥y∥;
in this case N is called the normality constant of P . A cone P is said to be solid if

it’s interior
◦
P is non-empty.

Letting h ≻ θ (i.e. h ⪰ θ and h ̸= θ), we denote Ph by

Ph = {x ∈ E : there exist λ > 0, µ > 0 such that λh ⪯ x ⪯ µh}.

It is easy to see that Ph ⊂ P is convex and λPh = Ph for all λ > 0. If
◦
P ̸= ∅ and

h ∈
◦
P , then Ph =

◦
P .

For an element h ∈ P with h ̸= θ and e ∈ P with θ ⪯ e ⪯ h, we denote

Ph,e = {x ∈ E : x+ e ∈ Ph}.

For every x, y ∈ Ph,e, let

Me

(x
y

)
= inf {λ > 0, x+ e ⪯ λ(y + e)} ,

and define e-Thompson’s metric de by

de(x, y) = ln
(
max

{
Me

(x
y

)
,Me

(y
x

)})
.

Let us give some remarks.

Remark 2.1. (i) It is clear that Ph,θ = Ph for each h ≻ θ.

(ii) Ph and Ph,e are of different nature. In fact, one can observe that Ph ⊂ P \{θ}
for any h ≻ θ, while Ph,e need not be even a subset of the cone P for some
h ≻ θ, e ⪰ θ with h ⪰ e.

iii) If x ∈ Ph,e, then x+ e ∈ Ph.

iv) For any x, y ∈ Ph,e, we have de(x, y) = dθ(x+ e, y + e).

Definition 2.1. [4] Let (X, d) be a metric space and ε > 0 be fixed. We say that
(X, d) is ε-chainable if for any x, y ∈ X, there exist x0 = x, x1, ..., xn−1, xn = y
( n may depend on both x and y) such that d(xi, xi+1) < ε for all i ∈ {0, 1, ..., n−1}.

Lemma 2.1. [16] Let P be a normal cone in E. Let h ∈ P , with h ≻ θ. Then,
Ph is complete with θ-Thompson’s metric.
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Lemma 2.2. [3] Let P be a normal cone in E. Let h ∈ P , with h ≻ θ. Let ε > 0.
Then (Ph, dθ) is ε-chainable.

Lemma 2.3. Let P be a normal cone in E. Let h, e ∈ P , with h ≻ θ, h ⪰ e. Let
ε > 0. Then (Ph,e, de) is ε-chainable.

Proof. Let x, y ∈ Ph,e. Then x+e, y+e ∈ Ph. From Lemma 2.4, there exist x0 =
x+ e, x1, x2, ..., xn = y+ e ∈ Ph such that dθ(xi, xi+1) ≤ ε for any i = 1, 2, ..., n− 1.
Therefore, x0 − e = x, x1 − e, x2 − e, ..., xn − e = y ∈ Ph,e and by Remark 2.1, we
have

de(xi − e, xi+1 − e) ≤ ε,

which gives the result.

Lemma 2.4. Let P be a normal cone in E. Let h, e ∈ P , with h ≻ θ, h ⪰ e. Let
ε > 0. Then (Ph,e, de) is a complete metric space.

Proof. Let {xn} be a Cauchy sequence in (Ph,e, de). Then {xn + e} is a Cauchy
sequence in (Ph, dθ). It follows from Lemma 2.3 that there exists x ∈ Ph satisfying
lim
n→∞

dθ(xn + e, x) = 0 and from Remark 2.1, lim
n→∞

de(xn, x − e) = 0. Thus, (xn)

converges to (x− e) in (Ph,e, de).

Lemma 2.5. [15] If x ∈ Ph,e, then λx+ (λ− 1)e ∈ Ph,e for all λ > 0.
If x, y ∈ Ph,e, then there exists r ∈ (0, 1), such that ry+(r−1)e ⪯ x ⪯ 1

ry+( 1r −1)e.

To prove our result, we apply the following fixed point theorem.

Theorem 2.1. [23] Let (E, d) be a complete ε-chainable metric space and let T :
E −→ E be an operator. Suppose that for every a ∈ (0, ε) , there exists b ∈ (a, ε)
such that

x, y ∈ E, a < d(x, y) < b⇒ d(T (x), T (y)) < a.

Then T has a unique fixed point x∗ ∈ E with {Tnx} converges to x∗ for any x ∈ E.

3. Fixed point theorem

In this section, we present the main fixed point result of this paper. If (E,⪯) is
an ordered Banach space, we define a partial order in E2 = E × E, denoted ≾, as
follows

(x, y), (u, v) ∈ E × E, (x, y) ≾ (u, v) ⇔ x ⪯ u and y ⪯ v.

Definition 3.1. [1] Let (X,⪯) be a partially ordered set and T : X×X −→ X be
an operator. We say that T has the mixed monotone property if T (x, y) is monotone
non-decreasing in x and is monotone non-increasing in y, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ⪯ x2 ⇒ T (x1, y) ⪯ T (x2, y),

y1, y2 ∈ X, y1 ⪯ y2 ⇒ T (x, y2) ⪯ T (x, y1).

Theorem 3.1. Let P be a normal cone in a Banach space E. Let e1, e2 ∈ P
and h, k ∈ P , with h ≻ 0, k ≻ 0, h ⪰ e1, k ⪰ e2. Assume that A1,B1 : Ph,e1 ×
Ph,e1 ×Pk,e2 −→ E and A2,B2 : Ph,e1 ×Pk,e2 ×Pk,e2 −→ E are operators such that
A1(h, h, k), B1(h, h, k) ∈ Ph,e1 and A2(h, k, k), B2(h, k, k) ∈ Pk,e2 . Suppose that the
following assumptions are verified.
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(H1) A1(., u, y), B1(., u, y) are non-decreasing and A1(x, ., y), A1(x, u, .), B1(x, ., y),
B1(x, u, .) are non-increasing;
A2(., u, y), A2(x, ., y), B2(., u, y), B2(x, ., y) are non-increasing and A2(x, u, .),
B2(x, u, .) are non-decreasing.

(H2) There exist constants n ≥ 1, η > 0, λ > 1 and functions φi : (η, 1) −→ (0, 1)
satisfying φi(t) ≥ t+ t−tn

λ (i = 1, 2) such that

A1

(
tx+ (t− 1)e1,

1

t
x+ (

1

t
− 1)e1,

1

t
y + (

1

t
− 1)e2

)
⪰ φ1(t)A1(x, x, y) + (φ1(t)− 1)e1,

A2

(1
t
x+ (

1

t
− 1)e1,

1

t
y + (

1

t
− 1)e2, ty + (t− 1)e2

)
⪰ φ2(t)A2(x, y, y) + (φ2(t)− 1)e2,

for every (x, y) ∈ Ph,e1 × Pk,e2 .

(H3) For any t ∈ (η, 1) and for every (x, y) ∈ Ph,e1 × Pk,e2

B1

(
tx+ (t− 1)e1,

1

t
x+ (

1

t
− 1)e1,

1

t
y + (

1

t
− 1)e2

)
⪰ tnB1(x, x, y) + (tn − 1)e1,

B2

(1
t
x+ (

1

t
− 1)e1,

1

t
y + (

1

t
− 1)e2, ty + (t− 1)e2

)
⪰ tnB2(x, y, y) + (tn − 1)e2.

(H4) There exists a constant δ > λ such that

A1(x, x, y) ⪰ δB1(x, x, y) + (δ − 1)e1,

A2(x, y, y) ⪰ δB2(x, y, y) + (δ − 1)e2,

for all (x, y) ∈ Ph,e1 × Pk,e2 .

Then, there exists a unique couple (x∗, y∗) ∈ Ph,e1 × Pk,e2 such that

A1(x
∗, x∗, y∗) +B1(x

∗, x∗, y∗) + e1 = x∗,

A2(x
∗, y∗, y∗) +B2(x

∗, y∗, y∗) + e2 = y∗.

Proof. Define the operator T : (Ph,e1 × Pk,e2)
2 −→ Ph,e1 × Pk,e2 by

T ((x, y), (u, v)) =
(
T1((x, y), (u, v)), T2((x, y), (u, v))

)
, (3.1)

where
T1((x, y), (u, v)) = A1(x, u, v) +B1(x, u, v) + e1,

T2((x, y), (u, v)) = A2(u, v, y) +B2(u, v, y) + e2,

for every x, u ∈ Ph,e1 and v, y ∈ Pk,e2 .
Let (x0, y0), (x1, y1), (u, v) ∈ Ph,e1 ×Pk,e2 such that (x0, y0) ≾ (x1, y1) i.e., x0 ⪯

x1 and y0 ⪯ y1. Then by (H1), we have

A1(x0, u, v) ⪯ A1(x1, u, v) , B1(x0, u, v) ⪯ B1(x1, u, v),

A2(u, v, y0) ⪯ A2(u, v, y1) , B2(u, v, y0) ⪯ B2(u, v, y1),
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which implies that T ((x0, y0), (u, v)) ≾ T ((x1, y1), (u, v)).
Similarly, we get T ((u, v), (x1, y1)) ≾ T ((u, v), (x0, y0)). Hence, T is a mixed

monotone vector operator.
Now, we prove that T

(
(x, y), (x, y)

)
∈ Ph,e1 ×Pk,e2 , for all (x, y) ∈ Ph,e1 ×Pk,e2 .

Using Lemma 2.5 and (H2), we have

φ1(t)A1

(
1

t
x+ (

1

t
− 1)e1, tx+ (t− 1)e1, ty + (t− 1)e2

)
+ (φ1(t)− 1)e1

⪯ A1

(
t(
1

t
x+ (

1

t
− 1)e1) + (t− 1)e1,

1

t
(tx+ (t− 1)e1) + (

1

t
− 1)e1,

1

t
(ty + (t− 1)e2) + (

1

t
− 1)e2

)
.

Thus,

A1

(
1

t
x+ (

1

t
− 1)e1, tx+ (t− 1)e1, ty + (t− 1)e2

)
⪯ 1

φ1(t)
A1

(
x, x, y

)
− 1

φ1(t)
(φ1(t)− 1)e1

⪯ 1

φ1(t)
A1

(
x, x, y

)
+ (

1

φ1(t)
− 1)e1.

By the same reasoning we get,

B1

(1
t
x+ (

1

t
− 1)e1, tx+ (t− 1)e1, ty + (t− 1)e2

)
⪯ 1

tn
B1(x, x, y) + (

1

tn
− 1)e1.

On the other hand, since A1(h, h, k), B1(h, h, k) ∈ Ph,e1 , there exist constants a, b
in (0, 1) such that

ah+ (a− 1)e1 ⪯ A1(h, h, k) ⪯
1

a
h+ (

1

a
− 1)e1,

bh+ (b− 1)e1 ⪯ B1(h, h, k) ⪯
1

b
h+ (

1

b
− 1)e1.

Let x, u ∈ Ph,e1 and v ∈ Pk,e2 . Then there exist constants c, d, f in (0, 1), such that

ch+ (c− 1)e1 ⪯ x ⪯ 1

c
h+ (

1

c
− 1)e1,

dh+ (d− 1)e1 ⪯ u ⪯ 1

d
h+ (

1

d
− 1)e1,

fk + (f − 1)e2 ⪯ v ⪯ 1

f
k + (

1

f
− 1)e2.

We choose ℓ = min{c, d, f}, then

A1(x, u, v) ⪰ A1

(
ℓh+ (ℓ− 1)e1,

1

ℓ
h+ (

1

ℓ
− 1)e1,

1

ℓ
k + (

1

ℓ
− 1)e2

)
⪰ φ1(l)A1(h, h, k) + (φ1(l)− 1)e1

⪰ φ1(l)
(
ah+ (a− 1)e1

)
+ (φ1(l)− 1)e1

⪰ φ1(l)ah+ (φ1(l)a− 1)e1
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and

A1(x, u, v) ⪯ A1

(1
ℓ
h+ (

1

ℓ
− 1)e1, lh+ (l − 1)e1, lk + (l − 1)e2

)
⪯ 1

φ1(ℓ)
A1(h, k, k) + (

1

φ1(ℓ)
− 1)e1

⪯ 1

φ1(ℓ)

(1
a
h+ (

1

a
− 1)e1

)
+ (

1

φ1(ℓ)
− 1)e1

⪯ 1

φ1(ℓ)

1

a
h+ (

1

φ1(ℓ)

1

a
− 1)e1,

which implies that A1(x, u, v) ∈ Ph,e1 and similarly we obtain B1(x, u, v) ∈ Ph,e1 .
Analogously, we prove that A2(u, v, y) ∈ Pk,e2 and B2(u, v, y) ∈ Pk,e2 for every
x ∈ Ph,e1 and v, y ∈ Pk,e2 . Hence, T

(
(x, y), (u, v)

)
∈ Ph,e1 × Pk,e2 , ∀(x, y), (u, v) ∈

Ph,e1 × Pk,e2 .

Next, we set ψ(t) = min
{( δφ1(t)+tn

δ+1

)
,
( δφ2(t)+tn

δ+1

)}
and we prove that for any

t ∈ (η, 1) and for all (x, y) ∈ Ph,e1 × Pk,e2

T
(
t(x, y) + (t− 1)(e1, e2),

1

t
(x, y) + (

1

t
− 1)(e1, e2)

)
≿ ψ(t)T

(
(x, y), (x, y)

)
+

(
ψ(t)− 1

)
(e1, e2).

Let (x, y) ∈ Ph,e1 × Pk,e2 . By (H4), we have

A1(x, x, y) + δA1(x, x, y) ⪰ δB1(x, x, y) + (δ − 1)e1 + δA1(x, x, y)

⪰ δT1
(
(x, y), (x, y)

)
− e1,

which implies that

A1(x, x, y) ⪰
δ

δ + 1
T1

(
(x, y), (x, y)

)
− e1
δ + 1

. (3.2)

It follows from (H2), (H3) and (3.2) that

T1
(
t(x, y) + (t− 1)(e1, e2),

1

t
(x, y) + (

1

t
− 1)(e1, e2)

)
− tnT1

(
(x, y), (x, y)

)
= A1

(
tx+ (t− 1)e1,

1

t
x+ (

1

t
− 1)e1,

1

t
y + (

1

t
− 1)e2

)
+B1

(
tx+ (t− 1)e1,

1

t
x+ (

1

t
− 1)e1,

1

t
y + (

1

t
− 1)e2

)
+ e1 − tn

(
A1(x, x, y) +B1(x, x, y) + e1

)
⪰ φ1(t)A1(x, x, y) + (φ1(t)− 1)e1 + tnB1(x, x, y) + (tn − 1)e1

+ e1 − tnA1(x, x, y)− tnB1(x, x, y)− tne1

⪰
(
φ1(t)− tn

)
A1(x, x, y) + (φ1(t)− 1)e1

⪰
(
φ1(t)− tn

)( δ

δ + 1
T1

(
(x, y), (x, y)

)
− e1
δ + 1

)
+ (φ1(t)− 1)e1

⪰
(
φ1(t)− tn

) δ

δ + 1
T1

(
(x, y), (x, y)

)
+

(
δφ1(t) + tn

δ + 1
− 1

)
e1.
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Then,

T1
(
t(x, y) + (t− 1)(e1, e2),

1

t
(x, y) + (

1

t
− 1)(e1, e2)

)
⪰

(
φ1(t)− tn

) δ

δ + 1
T1

(
(x, y), (x, y)

)
+

(
δφ1(t) + tn

δ + 1
− 1

)
e1 + tnT1

(
(x, y), (x, y)

)
⪰

(
δφ1(t) + tn

δ + 1

)
T1

(
(x, y), (x, y)

)
+

(
δφ1(t) + tn

δ + 1
− 1

)
e1.

Analogously, we show that

T2
(
t(x, y) + (t− 1)(e1, e2),

1

t
(x, y) + (

1

t
− 1)(e1, e2)

)
⪰

(
δφ2(t) + tn

δ + 1

)
T2

(
(x, y), (x, y)

)
+

(
δφ2(t) + tn

δ + 1
− 1

)
e2.

Hence the result.
Let ε = − ln η. Then, by Lemma 2.3,

(
Ph,e1 ×Pk,e2 , d(e1,e2)

)
is ε-chainable (with

d(e1,e2) is the (e1, e2)-Thompson’s metric). Choose a ∈ (0, ε) and α = exp(−a).
Then α ∈ (η, 1) and for every γ ∈ (0, α), we have

ψ(α− γ) ≥
δ
(
(α− γ) + (α−γ)−(α−γ)n

λ

)
+ (α− γ)n

1 + δ
.

Now, for all α ∈ (η, 1), define the real valued function fα on (0, α) by

fα(γ) =
δ
(
(α− γ) + (α−γ)−(α−γ)n

λ

)
+ (α− γ)n

1 + δ
− α, ∀γ ∈ (0, α). (3.3)

Then,

fα(0) =
δ
(
(α− 0) + (α−0)−(α−0)n

λ

)
+ (α− 0)n

1 + δ
− α

=
δ
(

λα+α−αn

λ

)
+ αn − (1 + δ)α

1 + δ

=
δ(λα+ α− αn) + λαn − λ(1 + δ)α

λ(1 + δ)

=
δλα+ δα− δαn + λαn − λα− λδα

λ(1 + δ)

=
(δ − λ)(α− αn)

λ(1 + δ)
> 0.

It’s clear that fα is a continuous function. Thus, there exists a constant ξ > 0 such
that fα(γ) > 0, for all γ ∈ (0, ξ). Since ψ(α−γ)−α ≥ fα(γ), then ψ(α−γ)−α > 0,
for every γ ∈ (0, ξ), that is, ψ(α− γ) > α.
For 0 < γ < α− η and b = − ln(α− γ), we have a < b < ε. Let x, y ∈ Ph,e1 ×Pk,e2

with
a = − lnα < d(e1,e2)

(
(x, y), (u, v)

)
< b = − ln(α− γ). (3.4)
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IfM(e1,e2)

( (x,y)
(u,v)

)
≥M(e1,e2)

( (u,v)
(x,y)

)
, then d(e1,e2)

(
(x, y), (u, v)

)
= ln

[
M(e1,e2)

( (x,y)
(u,v)

)]
.

Therefore, by (3.4) we get

1

α
< M(e1,e2)

(
(x, y)

(u, v)

)
<

1

α− γ
.

Let M1 =M(e1,e2)

( (x,y)
(u,v)

)
and M2 =M(e1,e2)

( (u,v)
(x,y)

)
. Then

T
(
(x, y), (x, y)

)
≿ T

(
M−1

2 (u, v) +
(
M−1

2 − 1
)
(e1, e2),M1 (u, v) +

(
M1 − 1

)
(e1, e2)

)
≿ T

(
M−1

1 (u, v) +
(
M−1

1 − 1
)
(e1, e2),M1 (u, v) +

(
M1 − 1

)
(e1, e2)

)
≿ T

(
(α− γ)(u, v) +

(
(α− γ)− 1

)
(e1, e2),

1

(α− γ)
(u, v) +

( 1

(α− γ)
− 1

)
(e1, e2)

)
≿ ψ(α− γ)T

(
(u, v), (u, v)

)
+
(
ψ(α− γ)− 1

)
(e1, e2),

which implies that

T
(
(x, y), (x, y)

)
+ (e1, e2) ≿ ψ(α− γ)

(
T
(
(u, v), (u, v)

)
+ (e1, e2)

)
.

Consequently,

M(e1,e2)

(
T
(
(u, v), (u, v)

)
T
(
(x, y), (x, y)

)) ≤ ψ(α− γ)−1 <
1

α
. (3.5)

Similarly, we have

T
(
(u, v), (u, v)

)
≿ T

(
M−1

1 (x, y) +
(
M−1

1 − 1
)
(e1, e2),M2 (x, y) +

(
M2 − 1

)
(e1, e2)

)
≿ T

(
M−1

1 (x, y) +
(
M−1

1 − 1
)
(e1, e2),M1 (x, y) +

(
M1 − 1

)
(e1, e2)

)
≿ T

(
(α− γ)(x, y) +

(
(α− γ)− 1

)
(e1, e2),

1

(α− γ)
(x, y) +

( 1

(α− γ)
− 1

)
(e1, e2)

)
≿ ψ(α− γ)T

(
(x, y), (x, y)

)
+
(
ψ(α− γ)− 1

)
(e1, e2).

Consequently,

M(e1,e2)

(
T
(
(x, y), (x, y)

)
T
(
(u, v), (u, v)

)) ≤ ψ(α− γ)−1 <
1

α
. (3.6)

Next, from (3.5) and (3.6), we have

d(e1,e2)

(
T
(
(x, y), (x, y)

)
, T

(
(u, v), (u, v)

))
= ln

(
max

{
M(e1,e2)

(
T
(
(x, y), (x, y)

)
T
(
(u, v), (u, v)

)),M(e1,e2)

(
T
(
(u, v), (u, v)

)
T
(
(x, y), (x, y)

))})
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< − ln(α) = a.

In the same manner, if M(e1,e2)

( (x,y)
(u,v)

)
≤M(e1,e2)

( (u,v)
(x,y)

)
, we show that

d(e1,e2)

(
T
(
(x, y), (x, y)

)
, T

(
(u, v), (u, v)

))
< a.

Finally, by applying Theorem 2.1, T has a unique fixed point (x∗, y∗) in Ph,e1×Pk,e2 ,
that is, T

(
(x∗, y∗), (x∗, y∗)

)
= (x∗, y∗).

Example 3.1. Take the ordered Banach space R with the normal cone P = R+.
Define the operators A1, A2, B1 and B2 for every x, y, z ∈ R∗

+ = (0,∞) by

A1(x, y, z) = 6, A2(x, y, z) = 4, B1(x, y, z) = 2, and B2(x, y, z) = 1.

It’s clear that all the hypotheses of Theorem 3.1 are verified with, h = k = 1, e1 =
e2 = 0, n = 1, η = 1

2 , λ = 2, δ = 3 and φ(t) = t. Moreover,

A1(8, 8, 5) +B1(8, 8, 5) = 8,

A2(8, 5, 5) +B2(8, 5, 5) = 5.

4. Applications

In the past few years, there has been significant focus on elastic beam equations.
A variety of tools and methods have been utilized to investigate the existence,
uniqueness and multiplicity of solutions for this type of equation. In [15] by applying
the main result regarding fixed point theorem, the authors studied the existence and
uniqueness of solutions to the following boundary value problem:


x(4)(t) = f(t, x(t), (Hx)(t))− b, t ∈ (0, 1),

x(0) = x′(0) = x′′(1) = 0,

x′′′(1) = g(x(1)).

(4.1)

In this section, we extend and generalize the results obtained in [15], demonstrat-
ing the existence and uniqueness of solutions for the following system of fourth-order
nonlinear boundary value problems:

x(4)(t) = f1(t, x(t), x(t), y(t)) + α1(t, x(t))− b1, 0 < t < 1,

y(4)(t) = f2(t, x(t), y(t), y(t)) + α2(t, y(t))− b2, 0 < t < 1,

x(0) = y(0) = x′(0) = y′(0) = x′′(1) = y′′(1) = 0,

x′′′(1) = g1
(
x(1), y(1)

)
, y′′′(1) = g2

(
x(1), y(1)

)
,

(4.2)

where b1, b2 are positive constants and f1, f2, g1, g2, α1, α2 are appropriate functions
specified later.

Consider the Banach space C
(
[0, 1]

)
of all continuous functions from [0, 1] to R

equipped with the sup norm and set

P =
{
x ∈ C

(
[0, 1]), x(t) ≥ 0, t ∈ [0, 1]

}
.

Recall that P is a normal cone in C
(
[0, 1]) of which the normality constant is 1.
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Lemma 4.1. [2] Suppose that h ∈ C([0, 1]). Then the boundary value problem x(4)(t) = h(t), 0 < t < 1,

x(0) = x′(0) = x′′(1) = x′′′(1) = 0,

has a unique solution x(t) =
∫ 1

0
G(t, s)h(s)ds, where G is the Green function given

by

G(t, s) =
1

6

 s2(3t− s), 0 ≤ s ≤ t ≤ 1,

t2(3s− t), 0 ≤ t ≤ s ≤ 1.

Remark 4.1. It’s easy to show that

1

3
t2s2 ≤ G(t, s) ≤ 1

2
t2s, ∀t, s ∈ [0, 1].

Now, we are ready to present and prove the main result of this section.

Theorem 4.1. Suppose that

(C1) (1) f1 : [0, 1]×
[
− b1

8 ,+∞
)
×

[
− b1

8 ,+∞
)
×

[
− b2

8 ,+∞
)
−→ R,

f2 : [0, 1]×
[
− b1

8 ,+∞
)
×

[
− b2

8 ,+∞
)
×

[
− b2

8 ,+∞
)
−→ R,

(2) g1, g2 :
[
− b1

8 ,+∞
)
×
[
− b2

8 ,+∞
)
−→ (−∞, 0] ,

(3) α1 : [0, 1]×
[
− b1

8 ,+∞
)
−→ [0,+∞) ,

α2 : [0, 1]×
[
− b2

8 ,+∞
)
−→ [0,+∞)

are continuous functions.

(C2) (1) f1(s, ., u, y) is non-decreasing and f1(s, x, ., y), f1(s, x, u, .) are non-incre-
asing for all s ∈ [0, 1], x, u ∈

[
− b1

8 ,+∞
)
and y ∈

[
− b2

8 ,+∞
)
;

(2) f2(s, ., v, y), f2(s, x, ., y) are non-increasing and f2(s, x, v, .) is non-decre-
asing for all s ∈ [0, 1], x ∈

[
− b1

8 ,+∞
)
and v, y ∈

[
− b2

8 ,+∞
)
;

(3) g1(., y) , g1(x, .) are non-decreasing, g2(., y) is non-decreasing and g2(x, .)
is non-increasing for every x ∈

[
− b1

8 ,+∞
)
and y ∈

[
− b2

8 ,+∞
)
;

(4) α1(s, .) is non-decreasing and α2(s, .) is non-increasing for all s ∈ [0, 1].

(C3) There exist constants n ≥ 1, λ > 1, η ∈ (0, 1) and functions φ1, φ2 : (η, 1) →
(0, 1) satisfying

φi(t) ≥ t+
t− tn

λ
, ∀t ∈ (η, 1) and (i = 1, 2),

such that for all (x, y) ∈
[
− b1

8 ,+∞
)
×
[
− b2

8 ,+∞
)
,

f1
(
s, tx+ (t− 1)

b1
8
,
1

t
x+ (

1

t
− 1)

b1
8
,
1

t
y + (

1

t
− 1)

b2
8

)
≥ φ1(t)f1(s, x, x, y),

f2
(
s,

1

t
x+ (

1

t
− 1)

b1
8
,
1

t
y + (

1

t
− 1)

b2
8
, ty + (t− 1)

b2
8

)
≥ φ2(t)f2(s, x, y, y),

g1

(
1

t
x+ (

1

t
− 1)

b1
8
,
1

t
y + (

1

t
− 1)

b2
8

)
≤ tng1(x, y),

g2

(
1

t
x+ (

1

t
− 1)

b1
8
, ty + (t− 1)

b2
8

)
≤ tng2(x, y),

α1(s, tx+ (t− 1)
b1
8

)
≥ tnα1(s, x) and α2(s,

1

t
y + (

1

t
− 1)

b2
8

)
≥ tnα2(s, y).
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(C4) (1)
∫ 1

0
s2f1

(
s, 0, b12 ,

b2
2

)
ds > 0 and

∫ 1

0
s2f2

(
s, b12 ,

b2
2 , 0

)
ds > 0;

(2) g1
(

b1
2 ,

b2
2

)
< 0 and g2

(
b1
2 ,

b2
2

)
< 0;

(3) There exists a constant δ > λ, such that, for all x, x1 ∈ [− b1
8 ,+∞) and

for each y, y1 ∈ [− b2
8 ,+∞),

2
3

∫ 1

0
s2f1(s,− b1

8 , x, y)ds ≥ δ
∫ 1

0
sα1(s, x)ds− δg1

(
x1, y1

)
,

2
3

∫ 1

0
s2f2(s, x, y,− b2

8 )ds ≥ δ
∫ 1

0
sα2(s, y)ds− δg2

(
x1, y1

)
.

Then system (4.2) has a unique solution in Ph,e1 × Pk,e2 .
h, k, e1 and e2 will be determined later.

Proof. Firstly, from Lemma 4.1, the integral formulation of the system (4.2) is
given by



x(t) =
∫ 1

0
G(t, s)

(
f1(s, x(s), x(s), y(s)) + α1(s, x(s))− b1

)
ds

−g1
(
x(1), y(1)

)(
t2

2 − t3

6

)
,

y(t) =
∫ 1

0
G(t, s)

(
f2(s, x(s), y(s), y(s)) + α2(s, y(s))− b2

)
ds

−g2
(
x(1), y(1)

)(
t2

2 − t3

6

)
.

(4.3)

Then, by a simple calculation we show that system (4.2) is equivalent to the follow-
ing 

x(t) =
∫ 1

0
G(t, s)f1

(
s, x(s), x(s), y(s)

)
ds+

∫ 1

0
G(t, s)α1(s, x(s))ds− e1(t)

−g1
(
x(1), y(1)

)(
t2

2 − t3

6

)
,

y(t) =
∫ 1

0
G(t, s)f2

(
s, x(s), y(s), y(s)

)
ds+

∫ 1

0
G(t, s)α2(s, y(s))ds− e2(t)

−g2
(
x(1), y(1)

)(
t2

2 − t3

6

)
,

with ei(t) =
bi
24 t

4 − bi
6 t

3 + bi
4 t

2, i ∈ {1, 2} and we have for each t ∈ [0, 1],

ei(t) =
bi
24
t4 − bi

6
t3 +

bi
4
t2 ≥ bit

2
( t2
36

− t

6
+

1

4

)
= bit

2
( t
6
− 1

2

)2

≥ 0,

which implies that e1, e2 ∈ P . Moreover, for each t ∈ [0, 1] and i = 1, 2,

ei(t) =
bi
24
t4 − bi

6
t3 +

bi
4
t2 ≤ bi

24
t4 +

bi
4
t2 ≤ bi

24
t2 +

bi
4
t2 ≤ bi

2
t2, (4.4)

that is, e1 ⪯ h and e2 ⪯ k, with h(t) = b1
2 t

2 and k(t) = b2
2 t

2, t ∈ [0, 1].
Define the operators A1, B1 : Ph,e1 × Ph,e1 × Pk,e2 −→ E and A2, B2 : Ph,e1 ×

Pk,e2 × Pk,e2 −→ E by

A1(x, u, y)(t) =

∫ 1

0

G(t, s)f1
(
s, x(s), u(s), y(s)

)
ds− e1(t),

B1(x, u, y)(t) =

∫ 1

0

G(t, s)α1(s, x(s))ds− g1
(
u(1), y(1)

)( t2
2
− t3

6

)
− e1(t),
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A2(x, y, v)(t) =

∫ 1

0

G(t, s)f2
(
s, x(s), y(s), v(s)

)
ds− e2(t),

B2(x, y, v)(t) =

∫ 1

0

G(t, s)α2(s, y(s))ds− g2
(
x(1), v(1)

)( t2
2
− t3

6

)
− e2(t).

From (C1) and the definition of G one can show that the operators A1, A2, B1 and
B2 are well defined.

It is a standard result that (x, y) is a solution of system (4.2) if and only if

A1(x, x, y) +B1(x, x, y) + e1 = x,

A2(x, y, y) +B2(x, y, y) + e2 = y.

To prove the existence and uniqueness of solution of system (4.2), we will apply
Theorem 3.1 to the operators A1, A2, B1 and B2.

1) By Remark 4.1 and from (C3), we have for every t ∈ [0, 1],

A1(h, h, k)(t) + e1(t) =

∫ 1

0

G(t, s)f1
(
s, h(s), h(s), k(s)

)
ds

≤
∫ 1

0

G(t, s)f1
(
s,
b1
2
, 0, 0

)
ds

≤
∫ 1

0

1

2
t2sf1

(
s,
b1
2
, 0, 0

)
ds

=

(
1

b1

∫ 1

0

sf1
(
s,
b1
2
, 0, 0

)
ds

)
h(t)

and

A1(h, h, k)(t) + e1(t) =

∫ 1

0

G(t, s)f1
(
s, h(s), h(s), k(s)

)
ds

≥
∫ 1

0

G(t, s)f1
(
s, 0,

b1
2
,
b2
2

)
ds

≥
∫ 1

0

1

3
t2s2f1

(
s, 0,

b1
2
,
b2
2

)
ds

=

(
2

3b1

∫ 1

0

s2f1
(
s, 0,

b1
2
,
b2
2

)
ds

)
h(t).

Using (C4), we get

1

b1

∫ 1

0

sf1
(
s,
b1
2
, 0, 0

)
ds ≥ 2

3b1

∫ 1

0

s2f1
(
s, 0,

b1
2
,
b2
2

)
ds > 0.

Therefore, A1(h, h, k) ∈ Ph,e1 . Moreover, since g1 is a function with non-positive
values, we have

B1(h, h, k)(t) + e1(t) =

∫ 1

0

G(t, s)α1(s, h(s))ds− g1
(
h(1), k(1)

)( t2

2
− t3

6

)
≤

∫ 1

0

1

2
t2sα1(s,

b1
2
)ds− g1

(
b1
2
,
b2
2

)(
t2

2
− t3

6

)
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≤ t2

2

(∫ 1

0

sα1(s,
b1
2
)ds− g1

(
b1
2
,
b2
2

))
≤ 1

b1

(∫ 1

0

sα1(s,
b1
2
)ds− g1

(
b1
2
,
b2
2

))
h(t)

and

B1(h, h, k)(t) + e1(t) =

∫ 1

0

G(t, s)α1(s, h(s))ds− g1
(
h(1), k(1)

)( t2
2
− t3

6

)
≥ −g1

(
b1
2
,
b2
2

)(
t2

2
− t3

6

)
≥ −g1

(
b1
2
,
b2
2

)
t2

3

≥
(
− g1

(
b1
2
,
b2
2

)
2

3b1

)
h(t).

Again, from (C4), we have

1

b1

(∫ 1

0

sα1(s,
b1
2
)ds− g1

(
b1
2
,
b2
2

))
≥ − 2

3b1
g1

(
b1
2
,
b2
2

)
> 0.

Thus, B1(h, h, k) ∈ Ph,e1 .
Analogously, we demonstrate that, A2(h, k, k), B2(h, k, k) ∈ Pk,e2 .
2) Using (C2), it’s easy to check that the hypothesis (H1) of Theorem 3.1 is

satisfied.
3) We show that hypotheses (H2) and (H3) of Theorem 3.1 are satisfied. Let

x ∈ Ph,e1 , y ∈ Pk,e2 , t ∈ [0, 1] and t′ ∈ (η, 1). Then by (C4), we have

A1

(
t′x+ (t′ − 1)e1,

1

t′
x+ (

1

t′
− 1)e1,

1

t′
y + (

1

t′
− 1)e2

)
(t)

=

∫ 1

0

G(t, s)f1

(
s, t′x(s) + (t′ − 1)e1(s),

1

t′
x(s) + (

1

t′
− 1)e1(s),

1

t′
y(s) + (

1

t′
− 1)e2(s)

)
ds− e1(t)

≥
∫ 1

0

G(t, s)f1

(
s, t′x(s) + (t′ − 1)

b1
8
,
1

t′
x(s) + (

1

t′
− 1)

b1
8
,
1

t′
y(s) + (

1

t′
− 1)

b2
8

)
ds

− e1(t)

≥
∫ 1

0

G(t, s)φ1(t
′)f1

(
s, x(s), x(s), y(s)

)
ds− e1(t)

≥ φ1(t
′)

(∫ 1

0

G(t, s)f1
(
s, x(s), x(s), y(s)

)
ds− e1(t)

)
+
(
φ1(t

′)− 1
)
e1(t)

= φ1(t
′)A1(x, x, y)(t) +

(
φ1(t

′)− 1
)
e1(t)

and

B1

(
t′x+ (t′ − 1)e1,

1

t′
x+ (

1

t′
− 1)e1,

1

t′
y + (

1

t′
− 1)e2

)
(t)



734 H. El Bazi & A. Sadrati

=

∫ 1

0

G(t, s)α1(s, t
′x(s) + (t′ − 1)e1(s)

)
ds

− g1

(
1

t′
x(1) + (

1

t′
− 1)e1(1),

1

t′
y(1) + (

1

t′
− 1)e2(1)

)(
t2

2
− t3

6

)
− e1(t).

From (C3), we have

B1

(
t′x+ (t′ − 1)e1,

1

t′
x+ (

1

t′
− 1)e1,

1

t′
y + (

1

t′
− 1)e2

)
(t)

≥
∫ 1

0

G(t, s)(t′)nα1(s, x(s))ds− (t′)ng1
(
x(1), y(1)

)( t2
2
− t3

6

)
− e1(t)

= (t′)n
[ ∫ 1

0

G(t, s)α1(s, x(s))ds− g1
(
x(1), y(1)

)( t2
2
− t3

6

)
− e1(t)

]
+
(
(t′)n − 1

)
e1(t)

= (t′)nB1

(
x, x, y)(t) +

(
(t′)n − 1

)
e1(t).

We follow the same reasoning for A2 and B2.
4) Finally, we prove that (H4) of Theorem 3.1 is satisfied. We have for all

x ∈ Ph,e1 , y ∈ Pk,e2 and t ∈ [0, 1],

A1(x, x, y)(t) =

∫ 1

0

G(t, s)f1
(
s, x(s), x(s), y(s)

)
ds− e1(t)

≥ 1

3
t2
∫ 1

0

s2f1
(
s,− b1

8
, ∥x∥, ∥y∥)

)
ds− e1(t)

≥ δ

∫ 1

0

1

2
t2sα1(s, ∥x∥)ds− δg1

(
x(1), y(1)

)1
2
t2 − e1(t)

≥ δ

∫ 1

0

G(t, s)α1(s, x(s))ds− δg1
(
x(1), y(1)

)( t2
2
− t3

6

)
− δe1(t) + (δ − 1)e1(t)

= δB1(x, x, y)(t) + (δ − 1)e1(t).

Analogously, we prove that A2(x, y, y)(t) ≥ δB2(x, y, y)(t)+ (δ− 1)e2(t). The proof
is complete.

Example 4.1. Consider the system of nonlinear elastic beams equations (4.2) with
b1 = 4, b2 = 8

3 and, for s ∈ [0, 1], x, u ∈
[
− 1

2 ,∞
)
, y, v ∈

[
− 1

3 ,∞
)
, we set

f1(s, x, u, y) = 25
√
2
(
s+ sx

)1/2

+
(5
6
s+ 1 + su+ sy

)−1/2

,

f2(s, x, v, y) = 40
(s
2
+ sy

)1/3

+
(5
6
s+ 1 + sx+ sv

)−1/3

,

α1(s, x) =

 1
25s

(
x+ 1

2

)2
, −1

2 ≤ x ≤ 9
2 ,

s, x ≥ 9
2 ,

, α2(s, y) =
s2

2

(
y +

3

2

)−2

,

g1(x, y) =

x+ y if −5
6 ≤ x+ y ≤ −4

9 ,

−4
9 if x+ y ≥ −4

9 ,
,
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g2(x, y) =



x− y − 1
3 if −1

2 ≤ x ≤ −1
6 , −1

3 ≤ y ≤ 0,

−y − 1
2 if −1

6 ≤ x, −1
3 ≤ y ≤ 0,

x− 1
3 if −1

2 ≤ x ≤ −1
6 , 0 ≤ y,

− 1
2 if −1

6 ≤ x, 0 ≤ y.

Then, it is easy to check that the functions f1, f2, g1, g2, α1 and α2 satisfy assump-
tions (C1) and (C2) of Theorem 4.1.

Next, for all s ∈ [0, 1], t ∈ (0, 1), x, u ∈
[
− 1

2 ,∞
)
, y, v ∈

[
− 1

3 ,∞
)
, one can show

that

f1
(
s, tx+ (t− 1)

1

2
,
1

t
x+ (

1

t
− 1)

1

2
,
1

t
y + (

1

t
− 1)

1

3

)
≥

√
tf1

(
s, x, x, y),

f2
(
s,

1

t
x+ (

1

t
− 1)

1

2
,
1

t
y + (

1

t
− 1)

1

3
, ty + (t− 1)

1

3

)
≥

√
tf2(s, x, y, y).

Notice that there exists η1 ∈ (0, 1) such that
√
t ≥ t+ t−t3

5 .
Also, if we put

h1(x) =

x, −1
2 ≤ x ≤ −1

6 ,

−1
6 , x ≥ −1

6 ,
and h2(y) =

−y − 1
3 ,

−1
3 ≤ y ≤ 0,

− 1
3 , y ≥ 0,

then we have g2(x, y) = h1(x) + h2(y), for all x ∈
[
− 1

2 ,∞
)
and y ∈

[
− 1

3 ,∞
)
.

Let t ∈ (0, 1) and x ∈
[
− 1

2 ,∞
)
. Then we distinguish two cases.

First case . x ≥ − 1
6 .

Then 1
tx+ ( 1t − 1) 12 ≥ − 1

6 , therefore h1(
1
tx+ ( 1t − 1) 12 ) ≤ t3h1(x).

Second case . x ≤ − 1
6 .

i) If 1
tx+ ( 1t − 1) 12 ≤ − 1

6 , then

1

t
x+ (

1

t
− 1)

1

2
≤ t3x ⇔ x(1− t4) ≤ −(1− t)

1

2

⇔ x(1 + t)(1 + t2) ≤ −1

2
.

It’s clear that there exists ε1 ∈ (0, 1), for all t ∈ (ε1, 1), (1 + t)(1 + t2) > 3.
Since 0 ≤ x ≤ − 1

6 then, for all t ∈ (ε1, 1), we have x(1 + t)(1 + t2) ≤ − 1
2 .

Furthermore

h1
(1
t
x+ (

1

t
− 1)

1

2

)
≤ t3h1(x).

ii) If 1
tx+ ( 1t − 1) 12 ≥ − 1

6 , then

1

t
x+ (

1

t
− 1)

1

2
≥ −1

6
⇔ t3x+ (t3 − t4)

1

2
≥ −1

6
t4

⇔ t3x ≥ −1

6
t4 − (t3 − t4)

1

2
=

t4

3
− t3

2
.

It’s easy to show that for all t ∈ (0, 1), we have t4

3 − t3

2 ≥ − 1
6 . Hence,

t3x ≥ − 1
6 , which implies that

h1(
1

t
x+ (

1

t
− 1)

1

2
) ≤ t3h1(x).
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Again, by separating cases, we establish the existence of ε2 ∈ (0, 1) such that, for
all t ∈ (ε2, 1) and y ∈

[
− 1

3 ,∞
)
, the following inequality holds

h2(ty + (t− 1)
1

3
) ≤ t3h2(y).

Let η2 = max{ε1, ε2}. Then we obtain

g2

(
1

t
x+ (

1

t
− 1)

1

2
, ty + (t− 1)

1

3

)
≤ t3g2(x, y),

for all t ∈ (η2, 1), x ∈
[
− 1

2 ,∞
)
and y ∈

[
− 1

3 ,∞
)
. Analogously we prove the

existence of η3 ∈ (0, 1) satisfying

g1

(
1

t
x+ (

1

t
− 1)

1

2
,
1

t
y + (

1

t
− 1)

1

3

)
≤ t3g1(x, y),

α1(s, tx+ (t− 1)
1

2

)
≥ t3α1(s, x),

α2(s,
1

t
y + (

1

t
− 1)

1

3

)
≥ t3α2(s, y),

for all t ∈ (η3, 1), x ∈
[
− 1

2 ,∞
)
and y ∈

[
− 1

3 ,∞
)
. Thus, the hypothesis (C3) of

theorem 4.1 is satisfied for λ = 5, n = 3, η = max{η1, η2, η3} and φ1(t) = φ2(t) =√
t. Moreover, by a simple calculation we show that the assumption (C4) is satisfied

with δ = 6.
Finally, all hypotheses of theorem 4.1 are verified. Consequently, system (4.2)

with the functions given above has a unique solution in Ph,e1 × Pk,e2 , where h, k
and ei (i = 1, 2) are given by (4.4).

Open question

Given that theorem 3.1 depends primarily on the fixed point theorem for operators
of Meir–Keeler type, how can we oversee (H1) hypothesis which is related to the
monotony?
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