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Abstract We study a quasistatic contact problem from both variational and
numerical perspectives, focusing on a thermo-piezoelectric body interacting
with an electrically and thermally rigid foundation. The contact is modeled
with a normal damped response and unilateral constraint for the velocity field,
associated with a total slip-dependent version of Coulomb’s law of dry friction.
The electrical and thermal conditions on the contact surface are described
by Clarke’s subdifferential boundary conditions. We formulate the problem’s
weak form as a system combining a variational-hemivariational inequality with
two hemivariational inequalities. Utilizing recent results in the theory of hemi-
variational inequalities, along with the fixed point method, we demonstrate
the existence and uniqueness of the weak solution. Furthermore, we examine
a fully discrete scheme for the problem employing the finite element method,
and we establish error estimates for the approximate solutions.
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1. Introduction

Recently, the study of contact problems between thermo-piezoelectric bodies, has
garnered significant attention in both industrial and real-world scenarios, and re-
mains an active area of research. These problems arise from the coupling of me-
chanical, electrical and thermal properties, In the literature, several mathematical
results address thermo-piezoelectric contact problems. Some findings on mathemat-
ical modeling and variational analysis can be found in [1, 2, 8, 9, 13, 14]. Addition-
ally, numerical schemes and their error estimates are discussed in [2, 7, 8, 13]. We
extend these results to a quasistatic case by incorporating nonmonotone bound-
ary conditions defined by Clarke’s subdifferential and employing the principles of
hemivariational inequalities.
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The theory of hemivariational inequalities was introduced in the early 1980s by
Panagiotopoulos in [28, 29]. This theory is grounded in the properties of Clarke’s
subdifferential for locally Lipschitz functions, which may be nonconvex. These
inequalities have been instrumental in describing and analyzing various problems in
Mechanics, Physics, and Engineering Sciences, particularly in Contact Mechanics
[10,20].

The present paper introduces a new mathematical model for a quasistatic fric-
tional contact between a thermo-piezoelectric body and an electrically and thermally
conducting rigid foundation. The novelty of this model lies in the application of
the normal damped response and unilateral constraint for the velocity field. The
damper coefficient depends on the normal displacement, associated with a version
of Coulomb’s law of dry friction, in such a way that the friction bound depends on
the total slip, and in modeling the electrical and thermal conditions on the contact
surface using subdifferential boundary conditions involving nonconvex functionals.
From a mathematical perspective, we demonstrate the well-posedness of the result-
ing model. To approximate the solution, we propose a fully discrete scheme and
estimate the error between the numerical solution and the exact solution, achiev-
ing optimal order accuracy for the linear finite element method under additional
regularity assumptions.

The rest of the paper is organized as follows. In Section 2, we present the model
of a thermo-piezoelectric body in a quasistatic frictional contact with a conductive
rigid foundation. In Section 3, we introduce the notation and assumptions for the
problem’s data and derive the variational formulation of the problem. Section 4
contains the existence and uniqueness proof for a weak solution to the problem.
Finally, in Section 5, we propose a fully discrete scheme for the numerical solution,
along with related error estimates and convergence results.

2. Problem statement

In the current section we present a classic formulation of the contact problem of a
thermo-piezoelectric body with a thermally and electrically conducting rigid foun-
dation in a quasistatic process.

We consider a thermo-piezoelectric body which initially occupies a bounded
domain Ω ⊂ Rd (d = 2, 3) with a smooth boundary Γ = ∂Ω. The body is acted
upon by body forces of density f0, volume electric charges of density q0, and volume
heat source term qth on Ω. It is also subject to mechanical, electrical and thermal
constraints at its boundary. To formulate these constraints we divide Γ into three
measurable and disjoint parts Γ1, Γ2 and Γ3 on one hand, such that |Γ1| > 0,
and we also consider a partition of Γ1 ∪ Γ2 into two measurable and disjoint parts
Γa and Γb on the other hand, such that |Γa| > 0. We assume that the body is
clamped on Γ1, the electrical potential vanishes on Γa and the temperature is zero
on Γ1 ∪ Γ2. We also assume that surface tractions of density f2 act on Γ2 and a
surface electrical charge of density qb is prescribed on Γb. Over the contact surface
Γ3, the body may come frictional contact with a conductive obstacle, the so called
foundation, whose potential and temperature are assumed to be maintained at φF

and θF , respectively.
We denote by [0, T ] the time interval of interest, where T > 0, and by x ∈ Ω∪Γ

and t ∈ [0, T ] the spatial and the time variable, respectively. Sometimes, we omit
the explicit dependence of various functions on x and t. Moreover, we use Div and
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div to represent the divergence operators for tensor and vector fields, respectively,
that is

Divτ = (τij,j), ∀τ ∈ Sd,

divv = vi,i, ∀v ∈ R,

where the index that follows a comma indicates a partial derivative with respect to
the corresponding component of the spatial variable. We denote the space of second
order symmetric tensors on Rd by Sd. Additionally, we define the inner product
and its associated norm on Rd and Sd by

u · v = uivi, ∥v∥ =
√
v · v, ∀u, v ∈ Rd,

σ · τ = σijτij , ∥τ∥ =
√
τ · τ , ∀σ, τ ∈ Sd.

We denote by ν the unit outward normal on boundary Γ and we shall adopt the
usual notation for normal and tangential components of vectors and tensors

u = uνν + uτ , uν = u · ν and σν = σνν + στ , σν = (σν) · ν.

We will use the standard notation for Lebesgue and Sobolev spaces associated with
Ω and Γ. For a real Banach space (B, ∥·∥B), we denote by B∗ the dual space of B
and we use the notation (·, ·)B∗×B to represent the duality pairing between B∗ and
B. For 1 ≤ p ≤ ∞, we use the usual notation for the space Lp(0, T ;B). We denote
by C(0, T ;B) the space of continuous functions from [0, T ] to B.

Let λ : B → R be a locally Lipschitz function. The (Clarke) generalized di-
rectional derivative of λ at x ∈ B in the direction ν ∈ B, denoted by λ0(x; ν), is
defined by

λ0(x; ν) = lim sup
y→x,ω↓0

λ(y + ων)− λ(y)

ω
,

and the (Clarke) generalized gradient of λ at x, denoted by ∂λ(x), is a subset of B∗

given by
∂λ(x) = {ζ ∈ B∗ | λ0(x; ν) ≥ (ζ, ν)B∗×B for all ν ∈ B}.

A locally Lipschitz function λ is called (Clarke) regular at x ∈ B if for all ν ∈ B
the one-sided directional derivative λ0(x; ν) exists and satisfies λ0(x; ν) = λ′(x; ν)
for all ν ∈ B.

Finally, to present our problem, we denote by u : Ω× (0, T ) → Rd the displace-
ment field, θ : Ω× (0, T ) → R the temperature field, φ : Ω× (0, T ) → R the electric
potential, σ : Ω × (0, T ) → Sd the stress tensor, q : Ω × (0, T ) → Rd the heat
flux vector and D : Ω × (0, T ) → Rd the electric displacement field. Moreover, let
ε(u) = (∇u + (∇u)T )/2 denote the linearized strain tensor, where (∇u)T denotes
the transpose of ∇u.

Now, we present the classical model for the quasistatic Coulomb’s frictional
contact problem for thermo-piezoelectric materials.

Problem 2.1. Find a displacement field u : Ω× (0, T ) → Rd, an electric potential
φ : Ω × (0, T ) → R and a temperature field θ : Ω × (0, T ) → R such that for all
t ∈ (0, T )

σ(t) = Aε(u̇(t)) + Fε(u(t))− ETE(φ(t))− θ(t)M in Ω, (2.1)
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D(t) = BE(φ(t)) + Eε(u(t))− θ(t)P in Ω, (2.2)

q(t) = −K∇θ(t) in Ω, (2.3)

−Divσ(t) = f0(t) in Ω, (2.4)

divD(t) = q0(t) in Ω, (2.5)

θ̇(t) + divq(t) = N (u̇(t)) + qth(t) in Ω, (2.6)

u(t) = 0 on Γ1, (2.7)

σ(t)ν = f2(t) on Γ2, (2.8)

θ(t) = 0 on (Γ1 ∪ Γ2), (2.9)

φ(t) = 0 on Γa, (2.10)

D(t) · ν = qb(t) on Γb, (2.11)

σν(t) + ς(t) ≤ 0, u̇ν(t)− g ≤ 0,

(σν(t) + ς(t))(u̇ν(t)− g) = 0,

ς(t) ∈ hν(t, uν(t))∂jν(u̇ν(t)),

 on Γ3, (2.12)

∥στ (t)∥ ≤ Fb

(
t,

∫ t

0

∥uτ (s)∥ ds
)
,

−στ (t) = Fb

(
t,

∫ t

0

∥uτ (s)∥ ds
)

u̇τ (t)

∥u̇τ (t)∥
, if u̇τ (t) ̸= 0,

 on Γ3, (2.13)

D(t) · ν ∈ ∂je(φ(t)− φF ) on Γ3, (2.14)

q(t) · ν ∈ ∂jc(θ(t)− θF ) on Γ3, (2.15)

u(0) = u0, θ(0) = θ0 in Ω. (2.16)

We provide a brief commentary on the equations and boundary conditions (2.1)
to (2.16). Equations (2.1)-(2.3) represent the thermo-electro-viscoelastic constitu-
tive law in which A is the viscosity tensor, F is the elasticity tensor, E is the
piezoelectric tensor, M is the thermal expansion tensor, B is the electric permittiv-
ity tensor, P is the thermal expansion tensor, K is the thermal conductivity tensor,
and E(φ) = −∇φ is the electric field. Equations (2.4)-(2.6) denote the equilibrium
conditions for the stress, electric displacement, and heat flux fields, respectively.
Here, the function N describes the impact of the velocity field on temperature.
In [3], the function N was specified as a linear function N (ζ) = −M · ε(ζ). Con-
ditions (2.7)-(2.8), (2.9) and (2.10)-(2.11) represent the mechanical, thermal and
electrical boundary conditions, respectively, whose physical interpretation was dis-
cussed earlier in the second paragraph of this section. Condition (2.12) represents
the normal damped response condition in such a way that the normal velocity is
limited, in which g > 0 represents a given bound. jν is a prescribed function and
the condition ς(t) ∈ hν(t, uν(t))∂jν(u̇ν(t)) on Γ3 represents a generalization of the
normal damped response condition where hν is a given damper coefficient depend-
ing on the normal displacement [23]. An example of the function jν is presented
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in [18]

jν(r) =


0 if r < 0,

a− b

2a
r2 + br if 0 ≤ r ≤ a,

ar +
a(b− a)

2
if r > a,

with 0 < a < b. We refer to [22, 26] for more examples. (2.13) represents a version
of the Coulomb law of dry friction, where Fb denotes the friction bound. Details
on such a frictional contact condition is found in [26] and some references therein.
Condition (2.14) represents the electrical conductivity requirement over Γ3 where
je is a prescribed function. We can take for example

je(r) = ke

∫ r

0

p(s)ds for all r ∈ R,

where p is a prescribed real-valued function and ke is the electric conductivity
coefficient. For the choice p(r) = r, the condition (2.14) rewrites to the following
form

D(t) · ν = ke(φ(t)− φF ) on Γ3.

For more examples of subdifferential boundary conditions similar to (2.14), we re-
fer to [24, 25]. Relation (2.15) describes the heat exchange between Γ3 and the
foundation, where jc is a prescribed function given by

jc(r) =
1

2
kcr

2, ∀r ∈ R,

such that kc is the heat exchange coefficient between the body and the foundation,
the condition (2.15) reduces to the equation

q(t) · ν = kc(θ(t)− θF ) on Γ3.

For more details, see [27]. Finally, (2.16) specifies the initial conditions of the
problem, where u0 and θ0 are given functions representing the initial displacement
and initial temperature, respectively.

3. Variational formulation

In this section, we derive a weak formulation of Problem 2.1. To achieve this,
we first need to introduce some notations. Let H, H1(Ω) and H be the following
spaces

H = [L2(Ω)]d, H1(Ω) = [H1(Ω)]d, H = {σ = (σij);σij = σji ∈ L2(Ω)}.

The spaces H, H and H1(Ω) are real Hilbert spaces endowed with the following
inner products

(u, v)H =

∫
Ω

uividx, ∀u, v ∈ H,
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(σ, τ)H =

∫
Ω

σijτijdx, ∀σ, τ ∈ H,

(u, v)H1(Ω) = (u, v)H + (ε(u), ε(v))H, ∀u, v ∈ H1(Ω),

and let ∥·∥H , ∥·∥H and ∥·∥H1(Ω) be their associated norms, respectively. Keeping in

mind (2.7), we introduce the closed subspace of H1(Ω)

V = {v ∈ H1(Ω) | v = 0 on Γ1},

and the set of admissible velocity fields K defined by

K = {v ∈ V | vν − g ≤ 0 on Γ3}.

We define over the space V the inner product

(u, v)V = (ε(u), ε(v))H, ∀u, v ∈ V,

and its associated norm
∥v∥V = ∥ε(v)∥H . (3.1)

Since |Γ1| > 0, the following Korn’s inequality [12] holds: there exists ck > 0 such
that

∥ε(v)∥H ≥ ck ∥v∥H1(Ω) , ∀v ∈ V. (3.2)

It follows from (3.1) and (3.2) that ∥·∥V is equivalent on V to the usual norm
∥·∥H1(Ω), therefore (V, ∥·∥V ) is a real Hilbert space. For simplicity, for an element

ω ∈ H1(Ω), we still denote by ω its trace γ(ω) on Γ. By trace theorem, there exists
a constant c0 > 0 such that

∥v∥[L2(Γ3)]d
≤ c0 ∥v∥V , ∀v ∈ V.

For the electric potential, we introduce the closed function subspace of H1(Ω)

W = {ξ ∈ H1(Ω) | ξ = 0 on Γa}.

Over W , we consider the following inner product

(φ, ξ)W = (∇φ,∇ξ)H , ∀φ, ξ ∈W, (3.3)

and the associated norm
∥ξ∥W = ∥∇ξ∥H . (3.4)

Since |Γa| > 0, Friedrichs-Poincaré inequality holds, i.e. there exists a constant
cp1 > 0 such that

∥∇ξ∥H ≥ cp1 ∥ξ∥H1(Ω) , ∀ξ ∈W. (3.5)

It follows from (3.4)-(3.5) that ∥·∥W is equivalent on W with ∥·∥H1(Ω) and then

(W, ∥·∥W ) is a real Hilbert space. Moreover, by trace theorem, there exists a con-
stants c1 > 0 such that

∥ξ∥L2(Γ3)
≤ c1 ∥ξ∥W , ∀ξ ∈W. (3.6)

For the temperature field, we introduce the closed function subspace of H1(Ω)

Q = {η ∈ H1(Ω) | η = 0 on Γ1 ∪ Γ2}.
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Over Q, we consider the following inner product

(θ, η)Q = (∇θ,∇η)H , ∀θ, η ∈ Q, (3.7)

and the associated norm
∥η∥Q = ∥∇η∥H . (3.8)

Since |Γ1| > 0, Friedrichs-Poincaré inequality holds, i.e. there exists a constant
cp2 > 0 such that

∥∇η∥H ≥ cp2 ∥η∥H1(Ω) , ∀η ∈ Q. (3.9)

It follows from (3.8)-(3.9) that ∥·∥Q is equivalent on Q with ∥·∥H1(Ω) and then

(Q, ∥·∥Q) is a real Hilbert space. Moreover, by trace theorem, there exists a con-
stants c2 > 0 such that

∥η∥L2(Γ3)
≤ c2 ∥η∥Q , ∀η ∈ Q. (3.10)

To study Problem 2.1 we need the following assumptions on its data.
(H1) The viscosity tensor A : Ω× (0, T )× Sd → Sd satisfies

1. A(·, t, ζ) is continuous for all t ∈ (0, T ) and ζ ∈ Sd.
2. A(x, ·, ·) is continuous for a.e. x ∈ Ω.

3. There existsmA > 0 such that (A(x, t, ζ1)−A(x, t, ζ2))(ζ1−ζ2) ≥ mA ∥ζ1 − ζ2∥2
for all ζ1, ζ2 ∈ Sd and a.e. (x, t) ∈ Ω× (0, T ).

4. There exists LA > 0 such that ∥A(x, t, ζ1)−A(x, t, ζ2)∥ ≤ LA ∥ζ1 − ζ2∥ for
all ζ1, ζ2 ∈ Sd and a.e. (x, t) ∈ Ω× (0, T ).

5. There exist ā0 ∈ C(0, T ;L2(Ω))+ and ā1 > 0 such that ∥A(x, t, ζ)∥ ≤ ā0(x, t)+
ā1 ∥ζ∥ for all ζ ∈ Sd and a.e. (x, t) ∈ Ω× (0, T ).

6. A(x, t, 0) = 0 for a.e. (x, t) ∈ Ω× (0, T ).

(H2) The elasticity tensor F : Ω× Sd → Sd satisfies

1. F(·, ζ) is measurable on Ω for all ζ ∈ Sd.

2. There exists mF > 0 such that (F(xζ1)−F(x, ζ2))(ζ1 − ζ2) ≥ mF ∥ζ1 − ζ2∥2
for all ζ1, ζ2 ∈ Sd and a.e. x ∈ Ω.

3. There exists LF > 0 such that ∥F(x, ζ1)−F(x, ζ2)∥ ≤ LF ∥ζ1 − ζ2∥ for all
ζ1, ζ2 ∈ Sd and a.e. x ∈ Ω.

4. F(x, t, 0) = 0 for a.e. (x, t) ∈ Ω× (0, T ).

(H3) The thermal conductivity tensor K : Ω× Rd → Rd satisfies

1. K(·, ζ) is measurable on Ω for all ζ ∈ Rd.

2. K(x, ·) is continuous on Rd for a.e. x ∈ Ω.

3. There exists mK > 0 such that (K(x, ζ1)−K(x, ζ2))(ζ1 − ζ2) ≥ mK ∥ζ1 − ζ2∥2
for all ζ1, ζ2 ∈ Rd, a.e. x ∈ Ω.

4. There exist k̄0 ∈ L2(Ω)+ and k̄1 > 0 such that ∥K(x, ζ)∥ ≤ k̄0(x) + k̄1 ∥ζ∥ for
all ζ ∈ Rd, a.e. x ∈ Ω.

5. K(x, 0) = 0 for a.e. x ∈ Ω.
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(H4) The electric permittivity tensor B : Ω× Rd → Rd satisfies

1. There exists mB > 0 such that (B(x, ζ1)− B(x, ζ2))(ζ1 − ζ2) ≥ mB ∥ζ1 − ζ2∥2
for all ζ1, ζ2 ∈ Rd and a.e. x ∈ Ω.

2. B(x, 0) = 0 for a.e. x ∈ Ω.

(H5) The piezoelectric tensor E : Ω× Sd → Rd satisfies

1. There exists LE > 0 such that ∥E(x, ζ1)− E(x, ζ2)∥ ≤ LE ∥ζ1 − ζ2∥ for all
ζ1, ζ2 ∈ Sd and a.e. x ∈ Ω.

2. E(x, 0) = 0 for a.e. x ∈ Ω.

(H6) The thermal expansion tensor M : Ω× R → Sd satisfies

1. M(·, ζ) is measurable on Ω for all ζ ∈ R.
2. There exists LM > 0 such that ∥M(x, ζ1)−M(x, ζ2)∥ ≤ LM ∥ζ1 − ζ2∥ for all
ζ1, ζ2 ∈ R and a.e. x ∈ Ω.

3. M(x, 0) = 0 for a.e. x ∈ Ω.

(H7) The pyroelectric tensor P : Ω× R → Rd satisfies

1. There exists LP > 0 such that ∥P(x, ζ1)− P(x, ζ2)∥ ≤ LP ∥ζ1 − ζ2∥ for all
ζ1, ζ2 ∈ R and a.e. x ∈ Ω.

2. P(x, 0) = 0 for a.e. x ∈ Ω.

(H8) The function N : Rd → R satisfies

1. N (ζ) ∈ L2(Ω) for all ζ ∈ Sd.
2. There exists LN > 0 such that ∥N (ζ1)−N (ζ2)∥L2(Ω) ≤ LN ∥ζ1 − ζ2∥V for all

ζ1, ζ2 ∈ Rd.

(H9) The friction bound function Fb : Γ3 × (0, T )× R → R+ satisfies

1. Fb(·, t, r) is measurable for all t ∈ (0, T ) and r ∈ R.
2. Fb(x, ·, r) is continuous for all r ∈ R and a.e. x ∈ Γ3.

3. There exists LF > 0 such that ∥Fb(x, t, r1)− Fb(x, t, r2)∥ ≤ LF ∥r1 − r2∥ for
all r1, r2 ∈ R, t ∈ (0, T ) and a.e. x ∈ Γ3.

4. x 7→ Fb(x, t, 0) belongs to L
2(Γ3) for all t ∈ (0, T ).

(H10) The functional jν : R → R satisfies

1. jν is locally Lipschitz.

2. There exists c0ν ≥ 0 such that ∥∂jν(r)∥ ≤ c0ν for all r ∈ R.

3. There exists αν > 0 such that j0ν(r1; r2 − r1) + j0ν(r2; r1 − r2) ≤ αν ∥r1 − r2∥2
for all r1, r2 ∈ R.

4. Either jν or −jν is regular.

(H11) For π = e, c, the functional jπ : Γ3 × R → R satisfies

1. jπ(·, r) is measurable on Γ3 for all r ∈ R.
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2. jπ(·, 0) ∈ L1(Γ3).

3. jπ(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3.

4. There exists c0π ≥ 0 such that ∥∂jπ(x, r)∥ ≤ c0π for all r ∈ R and a.e. x ∈ Γ3.

5. There exists mπ ≥ 0 such that (ζ1 − ζ2)(ξ1 − ξ2) ≥ −mπ ∥ξ1 − ξ2∥2 for all
ζi, ξi ∈ R, ζi ∈ ∂jπ(x, ξi), i=1,2, for a.e x ∈ Γ3.

6. There exists απ > 0 such that j0π(x, r1; r2−r1)+j0π(x, r2; r1−r2) ≤ απ ∥r1 − r2∥2
for all r1, r2 ∈ R and a.e. x ∈ Γ3.

7. Either jπ(x, ·) or −jπ(x, ·) is regular for a.e. x ∈ Γ3.

(H12) The function hν : Γ3 × (0, T )× R → R+ satisfies

1. hν(·, t, r) is continuous for all t ∈ (0, T ) and r ∈ R.
2. There exists Mh > 0 such that 0 < hν(x, t, r) ≤ Mh for all r ∈ R, t ∈ (0, T )

and a.e. x ∈ Γ3.

3. There exists Lh > 0 such that ∥hν(x, t, r1)− hν(x, t, r2)∥ ≤ Lh ∥r1 − r2∥ for
all r1, r2 ∈ R, t ∈ (0, T ) and a.e. x ∈ Γ3.

(H13) The forces, traction, bound g, volume and surface charge densities, heat
source strength, electric potential of the foundation, temperature of the foundation,
and initial conditions are assumed to exhibit the following regularity.

1. f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ; [L2(Γ2)]
d), g ∈ L2(Γ3), u0 ∈ V .

2. q0 ∈ L2(0, T ;L2(Ω)), qb ∈ L2(0, T ;L2(Γb)), φF ∈ L2(Γ3).

3. qth ∈ L2(0, T ;L2(Ω)), θF ∈ L2(Γ3), θ0 ∈ L2(Ω).

(H14) The following smallness conditions are satisfied

1. mA > Mhανc
2
0 +

LE + LM

2
.

2. mB > αec
2
1 +

LE + LP

2
.

3. mK > αcc
2
2.

Next, we define the elements f(t) ∈ V ∗, qe(t) ∈W ∗ and qc(t) ∈ Q∗ by

(f(t), v)V ∗×V =

∫
Ω

f0(t) · vdx+

∫
Γ2

f2(t) · vdΓ, (3.11)

(qe(t), ξ)W∗×W =

∫
Ω

q0(t)ξdx−
∫
Γb

qb(t)ξdΓ, (3.12)

(qc(t), η)Q∗×Q =

∫
Ω

qth(t)ηdx, (3.13)

for all w ∈ V , ξ ∈W and η ∈ Q.
Finally, from [16, Theorem 15] we show that there exists a unique element φ0 ∈

W such that for all ξ ∈W

(B∇φ0,∇ξ)H − (Eε(u0),∇ξ)H + (θ0P,∇ξ)H

+

∫
Γ3

j0e (φ0 − φF ; ξ)dΓ ≥ (qe(0), ξ)W∗×W .
(3.14)



748 M. Alaoui, E-H. Essoufi, A. Ouaanabi & M. Bouallala

This equation ensures compatibility between the initial displacement and initial
temperature fields.

Now, by applying Green’s formula and the definition of the Clarke subdiffer-
ential, we derive the following variational formulation of Problem 2.1, which is
expressed in terms of the displacement field, electric potential and temperature
field.

Problem 3.1. Find a displacement field u : (0, T ) → V , an electric potential
φ : (0, T ) → W and a temperature field θ : (0, T ) → Q a.e. t ∈ (0, T ) such that for
all w ∈ K, ξ ∈W and η ∈ Q

(Aε(u̇(t)), ε(w − u̇(t)))H + (Fε(u(t)), ε(w − u̇(t)))H

+ (ET∇φ(t), ε(w − u̇(t)))H − (θ(t)M, ε(w − u̇(t)))H

+

∫
Γ3

Fb

(
t,

∫ t

0

∥uτ (s)∥ ds
)
(∥wτ∥ − ∥u̇τ (t)∥)dΓ

+

∫
Γ3

hν(t, uν(t))j
0
ν(u̇ν(t);wν − u̇ν(t))dΓ

≥(f(t), w − u̇(t))V ∗×V ,

(3.15)

(B∇φ(t),∇ξ)H − (Eε(u(t)),∇ξ)H + (θ(t)P,∇ξ)H

+

∫
Γ3

j0e (φ(t)− φF ; ξ)dΓ ≥ (qe(t), ξ)W∗×W ,
(3.16)

(θ̇(t), η)L2(Ω) + (K∇θ(t),∇η)H − (N (u̇(t)), η)L2(Ω)

+

∫
Γ3

j0c (θ(t)− θF ; η)dΓ ≥ (qc(t), η)Q∗×Q,
(3.17)

u(0) =u0, θ(0) = θ0. (3.18)

4. An existence and uniqueness result

Our main existence and uniqueness of the solutions of Problem 3.1 is the following.

Theorem 4.1. Assume the hypotheses (H1) − (H14). Then Problem 3.1 has a
unique solution (u, φ, θ) which satisfies the following regularity conditions

u ∈ C(0, T ;V ), u̇ ∈ L2(0, T ;V ) and u̇(t) ∈ K for a.e. t ∈ (0, T ), (4.1)

φ ∈ L2(0, T ;W ), (4.2)

θ ∈ L2(0, T ;Q), θ̇ ∈ L2(0, T ;Q∗). (4.3)

The proof of Theorem 4.1 will be conducted in several steps, utilizing argu-
ments based on fixed point theory as well as hemivariational inequalities.

Step 1. Let z ∈ L2(0, T ;V ∗). We consider the following intermediate problem.
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Problem 4.1. Find a displacement field uz(t) ∈ V for a.e t ∈ (0, T ) such that

(Aε(u̇z(t)), ε(w − u̇z(t)))H + (Fε(uz(t)), ε(w − u̇z(t)))H

+

∫
Γ3

Fb

(
t,

∫ t

0

∥uzτ (s)∥ ds
)
(∥wτ∥ − ∥u̇zτ (t)∥)dΓ

+

∫
Γ3

hν(t, uzν (t))j
0
ν(u̇zν (t);wν − u̇zν (t))dΓ + (z(t), w − u̇z(t))V ∗×V

≥ (f(t), w − u̇z(t))V ∗×V , ∀w ∈ K,

(4.4)

uz(0) = u0. (4.5)

Lemma 4.1. Assume the hypotheses (H1), (H2), (H9), (H12), (H10), (H13)(1) and
(H14)(1). Then, Problem 4.1 has a unique solution uz ∈ C(0, T ;V ) with u̇z ∈
L2(0, T ;V ) and u̇z(t) ∈ K for a.e. t ∈ (0, T ). Moreover, for z1, z2 ∈ L2(0, T ;V ∗),
let us denote by uz1 and uz2 the solutions of Problem 4.1 corresponding to z1 and
z2, respectively. Then there exists a constant c > 0 such that for all t ∈ (0, T )

∥uz1(t)− uz2(t)∥
2
V +

∫ t

0

∥u̇z1(s)− u̇z2(s)∥
2
V ds ≤ c

∫ t

0

∥z1(s)− z2(s)∥2V ∗ ds. (4.6)

Proof. We will apply Theorem 5. in [23] with the following functional framework:
E = H, X = Y = Z = L2(Γ3).

We introduce the operators A : (0, T ) × E × V → V ∗, I : L2(0, T ;V ) →
L2(0, T ;V ), R1 : L2(0, T ;V ) → L2(0, T ;E), R2 = 0, R3 : L2(0, T ;V ) → L2(0, T ;Y ),
R4 : L2(0, T ;V ) → L2(0, T ;Z) and M : V → X given by

(A(t, λ, v), y) = (A(t, ε(v)) + λ, ε(y))H, for all t ∈ (0, T ), λ ∈ E and v, y ∈ V,

(Iv)(t) = u0 +

∫ t

0

v(s)ds, for all v ∈ L2(0, T ;V ) and t ∈ (0, T ),

(R1v)(t) = Fε((Iv)(t)), for all v ∈ L2(0, T ;V ) and t ∈ (0, T ),

(R3v)(t) =

∫ t

0

∥∥∥∥∫ s

0

vτ (r)dr + u0τ

∥∥∥∥ ds, for all v ∈ L2(0, T ;V ) and t ∈ (0, T ),

(R4v)(t) = [(Iv)(t)]ν , for all v ∈ L2(0, T ;V ) and t ∈ (0, T ),

Mv = vν for all v ∈ V.

Let the functions ψ : (0, T )×Y ×V ×V → R and j : (0, T )×Z×X → R be defines
by

ψ(t, u, w, v) =

∫
Γ3

Fb(t, u) ∥vτ∥ dΓ, for all t ∈ (0, T ), u ∈ Y and w, v ∈ V,

j(t, ζ, v) =

∫
Γ3

hν(t, ζ)jν(v)dΓ, for all t ∈ (0, T ), ζ ∈ Z and v ∈ X.

We define the element fz(t) ∈ V ∗ by

(fz(t), w)V ∗×V = (f(t)− z(t), w)V ∗×V , for all w ∈ V and t ∈ (0, T ).
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Now, we put vz(t) = u̇z(t) for all t ∈ (0, T ). Then, with the above notations, the
inequality (4.4) can be written as follows

(A(t, (R1vz)(t), vz(t))− fz(t), w − vz(t))V ∗×V + ψ(t, (R3vz)(t), vz(t), w)

+ ψ(t, (R3vz)(t), vz(t), vz(t)) + j0(t, (R4vz)(t),Mvz(t);Mw −Mvz(t)) ≥ 0,
(4.7)

for all w ∈ K. It follows from the hypotheses (H1), (H2), (H9), (H12), (H10),
(H13)(1) and (H14)(1) that we are able to apply Theorem 5 in [23], from which
we infer that problem (4.7) combined with the initial condition (4.5) has a unique
solution uz ∈ C(0, T ;V ) with u̇z ∈ L2(0, T ;V ) and u̇z(t) ∈ K for a.e. t ∈ (0, T ).
We turn now to show the estimate (4.6). Let z1, z2 ∈ L2(0, T ;V ∗). We write
the variational-hemivariational inequality (4.4) successively for z1 and z2 taking
w = u̇z2(t) in the first inequality and w = u̇z1(t) in the second one, and add the
resulting inequalities to obtain that for all t ∈ (0, T )

(Aε(u̇z1(t)− u̇z2(t)), ε(u̇z1(t)− u̇z2(t)))H

+ (Fε(uz1(t)− uz2(t)), ε(u̇z1(t)− u̇z2(t)))H

≤
∫
Γ3

[
Fb

(
t,

∫ t

0

∥∥uz1τ (s)∥∥ ds)−Fb

(
t,

∫ t

0

∥∥uz2τ (s)∥∥ ds)] (∥∥u̇z2τ (t))∥∥−∥∥u̇z1τ (t)∥∥) dΓ
+

∫
Γ3

[
hν(t, uz1ν (t))j

0
ν(u̇z1ν

(t); u̇z2ν
(t)− u̇z1ν

(t))

+hν(t, uz2ν (t))j
0
ν(u̇z2ν

(t); u̇z1ν
(t)− u̇z2ν

(t))
]
dΓ

+ (z1(t)− z2(t), u̇z2(t)− u̇z1(t))V ∗×V .

(4.8)

From assumptions (H1) and (H2), it is easy to see that∫ t

0

(Aε(u̇z1(s)− u̇z2(s)),ε(u̇z1(s)− u̇z2(s)))Hds

≥ mA

∫ t

0

∥u̇z1(s)− u̇z2(s)∥
2
V ds,

(4.9)

∫ t

0

(Fε(uz1(s)− uz2(s)),ε(u̇z1(s)− u̇z2(s)))H ≥ mF

2
∥uz1(t)− uz2(t)∥

2
V , (4.10)

for all t ∈ (0, T ). Moreover, by (H9) we find that∫
Γ3

[
Fb

(
t,

∫ t

0

∥∥uz1τ (s)∥∥ ds)−Fb

(
t,

∫ t

0

∥∥uz2τ (s)∥∥ ds)] (∥∥u̇z2τ (t)∥∥−∥∥u̇z1τ (t)∥∥)dΓ
≤LF c

2
0 ∥u̇z1(t)− u̇z2(t)∥V

∫ t

0

∥uz1(s)− uz2(s)∥V ds.

(4.11)

We integrate (4.8) over (0, t), keeping in mind (4.9)-(4.11) and the assumptions
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(H10) to find that for all t ∈ (0, T )

mF

2
∥uz1(t)− uz2(t)∥

2
V + (mA −Mhανc

2
0)

∫ t

0

∥u̇z1(s)− u̇z2(s)∥
2
V ds

≤
∫ t

0

∥z1(s)− z2(s)∥V ∗ ∥u̇z1(s)− u̇z2(s)∥V ds

+ LF c
2
0

∫ t

0

[
∥u̇z1(s)− u̇z2(s)∥V

∫ s

0

∥uz1(r)− uz2(r)∥V dr
]
ds.

(4.12)

Remember the following modified Cauchy–Schwarz inequality

xy ≤ ϵx2 +
1

4ϵ
y2, ∀x, y ∈ R, ϵ > 0. (4.13)

Then, we deduce from (4.12) that there exists c > 0 such that for all t ∈ (0, T )

mF

2
∥uz1(t)− uz2(t)∥

2
V + (mA −Mhανc

2
0 − 2ϵ)

∫ t

0

∥u̇z1(s)− u̇z2(s)∥
2
V ds

≤ c

(∫ t

0

∥z1(s)− z2(s)∥2V ∗ ds+

∫ t

0

∥uz1(s)− uz2(s)∥V ds
)
.

(4.14)

Finally, we choose ϵ to be small enough, keeping in mind the smallness condition
(H14)(1), we then apply Gronwall’s lemma to get the estimate (4.6).

Step 2. we use the displacement field uz obtained in Lemma 4.1 to construct
the following auxiliary problem in terms of temperature field.

Problem 4.2. Find a temperature field θz(t) ∈ Q for a.e. t ∈ (0, T ) such that

(θ̇z(t), η)L2(Ω) + (K∇θz(t),∇η)H − (N (u̇z(t)), η)L2(Ω)

+

∫
Γ3

j0c (θz(t)− θF ; η)dΓ ≥ (qc(t), η)Q∗×Q, ∀η ∈ Q,
(4.15)

θz(0) =θ0. (4.16)

Lemma 4.2. Assume the hypotheses (H3), (H8), (H13)(3), (H11) and (H14)(3).
Then, Problem 4.2 has a unique solution θz ∈ L2(0, T ;Q) with θ̇z ∈ L2(0, T ;Q∗).
Moreover, for z1, z2 ∈ L2(0, T ;V ∗), let us denote by θz1 and θz2 the solutions of
Problem 4.2 corresponding to z1 and z2, respectively. Then there exists a constant
c > 0 such that for all t ∈ (0, T )

∥θz1(t)− θz2(t)∥
2
L2(Ω) +

∫ t

0

∥θz1(s)− θz2(s)∥
2
Q ds

≤ c

∫ t

0

∥z1(s)− z2(s)∥2V ∗ ds.

(4.17)

Proof. We use the Riesz’s representation theorem to define the element q̂c(t) ∈ Q∗

by
(q̂c(t), η)Q∗×Q = (qc(t), η)Q∗×Q + (N (ε(u̇(t))), η)L2(Ω).
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Then, we rewrite the inequality (4.15) as

(θ̇z(t), η)L2(Ω)+(K∇θz(t),∇η)H

+

∫
Γ3

j0c (θz(t)− θF ; η)dΓ ≥ (q̂c(t), η)Q∗×Q,
(4.18)

for all η ∈ Q. Under hypotheses (H3), (H8), (H13)(3) and (H11) and (H14)(3)
it follows by [27, Lemma 11] that the problem (4.18) combined with the initial
condition (4.16) has a unique solution θz ∈ L2(0, T ;Q) with θ̇z ∈ L2(0, T ;Q∗).On
the other hand, let z1, z2 ∈ L2(0, T ;V ∗). We write the inequality (4.15) successively
for z1 and z2, taking η = θz2(t)−θz1(t) in the first inequality and η = θz1(t)−θz2(t)
in the second one, and add the resulting inequalities to find that for all t ∈ (0, T )

(θ̇z1(t)− θ̇z2(t), θz1(t)− θz2(t))L2(Ω)

+ (K∇(θz1(t)− θz2(t)),∇(θz1(t)− θz2(t)))H

≤
∫
Γ3

[
j0c (θz1(t)− θF ; θz2(t)− θz1(t)) + j0c (θz2(t)− θF ; θz1(t)− θz2(t))

]
dΓ

+ (N (u̇z1(t))−N (u̇z2(t)), θz2(t)− θz1(t))L2(Ω).

(4.19)

We integrate this inequality over (0, t) and keep (H3), (H11) and the inequality
(4.13) to obtain that there exists c > 0 such that for all t ∈ (0, T )

1

2
∥θz1(t)− θz2(t)∥

2
L2(Ω) + (mK − αcc

2
2 − ϵ)

∫ t

0

∥θz1(s)− θz2(s)∥
2
Q ds

≤ c

∫ t

0

∥u̇z1(s)− u̇z2(s)∥
2
V ds,

(4.20)

where ϵ is a positive real parameter. Finally, we combine (4.20) with the estimate
(4.6) and keep in mind the smallness condition (H14)(3) and we chose ϵ to be small
enough to get the estimation (4.17).

Step 3. We use the displacement field uz and the temperature field θz obtained
in Lemma 4.1 and Lemma 4.2 respectively, to construct the following auxiliary
problem in terms of electric potential.

Problem 4.3. Find an electric potential φz(t) ∈W for a.e. t ∈ (0, T ) such that

(B∇φz(t),∇ξ)H − (Eε(uz(t)),∇ξ)H + (θz(t)P,∇ξ)H

+

∫
Γ3

j0e (φz(t)− φF ; ξ)dΓ ≥ (qe(t), ξ)W∗×W , ∀ξ ∈W.
(4.21)

Lemma 4.3. Assume the hypotheses (H4), (H5), (H7), (H13)(2), (H11) and (H14)(2).
Then Problem 4.3 has a unique solution φz ∈ L2(0, T ;W ). Moreover, for z1, z2 ∈
L2(0, T ;V ∗), let us denote by φz1 and φz2 the solutions of Problem 4.3 corre-
sponding to z1 and z2, respectively. Then there exists a constant c > 0 such that for
all t ∈ (0, T )

∥φz1(t)− φz2(t)∥
2
W ≤ c

∫ t

0

∥z1(s)− z2(s)∥2V ∗ ds. (4.22)
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Proof. By using the Riesz’s representation theorem we define the element q̂e(t) ∈
W ∗ by

(q̂e(t), ξ)W∗×W = (qe(t), ξ)W∗×W + (Eε(uz(t)),∇ξ)H − (θz(t)P,∇ξ)H ,

for all ξ ∈W and t ∈ (0, T ). Then, the inequality (4.21) can be written as

(B∇φz(t),∇ξ)H +

∫
Γ3

j0e (φz(t)− φF ; ξ)dΓ ≥ (q̂e(t), ξ)W∗×W , ∀ξ ∈W. (4.23)

Under hypotheses (H4), (H5), (H7), (H13)(2), (H11) and (H14)(2) it follows from
[24, Lemma 9] that there exists a unique solution to problem (4.23). Let z1, z2 ∈
L2(0, T ;V ∗). We write the hemivariational inequality (4.21) successively for z1 and
z2, taking ξ = φz2(t)− φz1(t) in the first inequality and ξ = φz1(t)− φz2(t) in the
second one, and add the resulting inequalities to find that for all t ∈ (0, T )

(B∇(φz1(t)− φz2(t)),∇(φz1(t)− φz2(t)))H

≤(Eε(uz1(t)− uz2(t)),∇(φz1(t)− φz2(t)))H

+ ((θz1(t)− θz2(t))P,∇(φz2(t)− φz1(t)))H

+

∫
Γ3

[
j0e (φz1(t)− φF ;φz2(t)− φz1(t))

+j0e (φz2(t)− φF ;φz1(t)− φz2(t))
]
dΓ.

(4.24)

We use the assumptions (H4), (H5) and (H7), (H11) and the inequality (4.13)
several times to obtain that there exists c > 0 such that for all t ∈ (0, T )

(mB − αec
2
1 − 2ϵ) ∥φz1(t)− φz2(t)∥

2
W

≤ c
(
∥uz1(t)− uz2(t)∥

2
V + ∥θz1(t)− θz2(t)∥

2
L2(Ω)

)
.

(4.25)

Finally, for ϵ sufficiently small, by combining (4.25) with the estimates (4.6), (4.17)
and the smallness condition (H14)(2), (4.22) holds.

Step 4. For z ∈ L2(0, T ;V ∗) we denote by θz and φz the solutions of Problem
4.2 and Problem 4.3, respectively, and we consider the operator
Λ : L2(0, T ;V ∗) → L2(0, T ;V ∗) defined by

(Λz(t), w)V ∗×V = (ET∇φz(t)− θz(t)M, ε(w))H, (4.26)

for all w ∈ V and a.e. t ∈ (0, T ).

Lemma 4.4. There exists a unique z̄ ∈ L2(0, T ;V ∗) such that Λz̄ = z̄.

Proof. Let z1, z2 ∈ L2(0, T ;V ∗). From (4.26) and after some algebra we find that
there exists c > 0 such that for all t ∈ (0, T )

∥Λz1(t)− Λz2(t)∥2V ∗ ≤ c
(
∥θz1(t)− θz2(t)∥

2
L2(Ω) + ∥φz1(t)− φz2(t)∥

2
W

)
. (4.27)

We combine this inequality with (4.17) and (4.22) to conclude that there exists
c > 0 such that

∥Λz1(t)− Λz2(t)∥2V ∗ ≤ c

∫ t

0

∥z1(s)− z2(s)∥2V ∗ ds, (4.28)
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for all t ∈ (0, T ). It follows from [21, Lemma 7] that Λ has a unique fixed point
z̄ ∈ L2(0, T ;V ∗).

Finally, we turn to prove Theorem 4.1. We denote by uz̄, θz̄ and φz̄ the
solutions of Problem 4.1, Problem 4.2 and Problem 4.3 corresponding to z̄,
respectively, where z̄ ∈ L2(0, T ;V ∗) is the unique fixed point of the operator Λ.
Since (z̄, w)V ∗×V = (ET∇φz̄(t) − θz̄(t)M, ε(w))H for all w ∈ V , we conclude that
the triplet (uz̄, φz̄, θz̄) is a solution to Problem 3.1. The uniqueness part of the
solution follows from uniqueness of the fixed point of operator Λ.

5. Fully discrete approximation: error estimates

In this section, we present a fully discrete approximation for Problem 3.1 and
establish an error estimate for the approximate solution.

Let Ω be a polygonal domain. We consider a finite element triangulation T h =
{Tr}r of Ω that is compatible with the boundary partitions, where h denotes the
spatial discretization parameter. Let P1(Tr) represent the space of polynomials of
degree at most 1 on Tr. We then define the following finite-dimensional spaces to
approximate V , W and Q, respectively:

V h = {wh ∈ [C(Ω)]d | wh
|Tr

∈ [P1(Tr)]d, wh = 0 on Γ1} ⊂ V, (5.1)

Wh = {ξh ∈ C(Ω) | ξh|Tr
∈ P1(Tr), ξh = 0 on Γa} ⊂W, (5.2)

Qh = {ηh ∈ C(Ω) | ηh|Tr
∈ P1(Tr), ηh = 0 on Γ1 ∪ Γ2} ⊂ Q. (5.3)

We also define a related finite element subset Kh of the space V h to approximate
K

Kh = {wh ∈ V h | wh
ν − g ≤ 0 on Γ3} ⊂ K. (5.4)

We consider a uniform partition t0 = 0 < t1 < ... < tN = T of [0, T ]. We denote
by k the time step size given by k = T

N . Moreover, for a continuous function f

we denote f(tn) = fn, and for a sequence {zn}Nn=0 we denote δzn = zn−zn−1

k . Let
uh0 and θh0 be the appropriate approximations of the initial conditions u0 and θ0,
respectively.

Using the backward Euler scheme, the fully discrete approximation of Problem
3.1 is formulated as follows.

Problem 5.1. Find a discrete velocity field vhk = {vhkn }Nn=0 ⊂ V h, a discrete
electric potential φhk = {φhk

n }Nn=0 ⊂ Wh and a discrete temperature field θhk =
{θhkn }Nn=0 ⊂ Qh such that for n = 1, 2, ..., N ,

(Aε(vhkn ), ε(wh − vhkn ))H + (Fε(uhkn ), ε(wh − vhkn ))H

+ (ET∇φhk
n , ε(wh − vhkn ))H − (θhkn M, ε(wh − vhkn ))H

+

∫
Γ3

Fb

(
tn, k

n−1∑
i=0

∥∥uhki ∥∥
)(∥∥wh

τ

∥∥− ∥∥vhknτ

∥∥) dΓ
+

∫
Γ3

hν(tn, u
hk
nν
)j0ν(v

hk
nν
;wh

ν − vhknν
)dΓ ≥ (fn, w

h − vhkn )V ∗×V , ∀wh ∈ Kh,

(5.5)
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(B∇φhk
n ,∇ξh)H − (Eε(uhkn ),∇ξh)H + (θhkn P,∇ξh)H

+

∫
Γ3

j0e (φ
hk
n − φF ; ξ

h)dΓ ≥ (qen , ξ
h)W∗×W , ∀ξh ∈Wh,

(5.6)

(δθhkn , ηh)L2(Ω) + (K∇θhkn ,∇ηh)H − (N (vhkn ), ηh)L2(Ω)

+

∫
Γ3

j0c (θ
hk
n − θF ; η

h)dΓ ≥ (qcn , η
h)Q∗×Q, ∀ηh ∈ Qh,

(5.7)

uhk0 = uh0 , θhk0 = θh0 . (5.8)

Here the discrete velocity field {vhkn }Nn=0 is related with the discrete displacement
{uhkn }Nn=0 field by the following equalities

vhkn = δuhkn and uhkn = uh0 +

n∑
i=1

kvhki , n = 1, ..., N. (5.9)

Using the same arguments presented in the previous section, it can be shown that
Problem 5.1 has a unique solution (uhk, φhk, θhk). Our objective here is to es-
timate the following numerical errors

∥∥un − uhkn
∥∥
V
,
∥∥vn − vhkn

∥∥
V
,
∥∥φn − φhk

n

∥∥
W
,∥∥θn − θhkn

∥∥
L2(Ω)

and
∥∥θn − θhkn

∥∥
Q
. Throughout this section, we will denote by c

the various positive constants that may depend on the solution and the problem’s
data, but are independent of the discretization parameters h and k. The value of c
may change from line to line.

Theorem 5.1. Let assumptions of Theorem 4.1 still hold, and let the following
condition

LM + LP < 2 (5.10)

be satisfied. Let (u, φ, θ) and (uhk, φhk, θhk) denote the solutions to Problem 3.1
and Problem 5.1, respectively. Then, the following error estimates hold for all
{wh

i }Ni=1 ⊂ Kh, {ξhi }Ni=1 ⊂Wh and {ηhi }Ni=1 ⊂ Qh

max
1≤n≤N

{∥∥un − uhkn
∥∥2
V
+
∥∥vn − vhkn

∥∥2
V
+
∥∥φn − φhk

n

∥∥2
W

+
∥∥θn − θhkn

∥∥2
L2(Ω)

}
+ k

N∑
i=1

∥∥θi − θhki
∥∥2
Q
≤ c

[∥∥u0 − uh0
∥∥2
V

+
∥∥θ0 − θh0

∥∥2
L2(Ω)

+
∥∥θ1 − ηh1

∥∥2
L2(Ω)

+ k

N∑
i=1

(∥∥∥θ̇i − δθi

∥∥∥2
L2(Ω)

+
∥∥θi − ηhi

∥∥2
L2(Ω)

+
∥∥θi − ηhi

∥∥2
Q
+
∥∥ηhi − θi

∥∥
L2(Γ3)

)
+ max

1≤n≤N

{∥∥vn − wh
n

∥∥2
V
+
∥∥φn − ξhn

∥∥2
W

+
∥∥θn − ηhn

∥∥2
L2(Ω)

+
∥∥vn − wh

n

∥∥
[L2(Γ3)]d

+
∥∥φn − ξhn

∥∥
L2(Γ3)

+ I2n

}
+
1

k

N−1∑
i=1

∥∥θi − ηhi − (θi+1 − ηhi+1)
∥∥
L2(Ω)

]
,

(5.11)
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where the integration error In is given by

In =

∥∥∥∥∥∥k
n∑

j=1

vj −
∫ tn

0

v(s)ds

∥∥∥∥∥∥
V

. (5.12)

Proof. By rearranging the terms, we rewrite (5.5) in the following form

(Aε(vhkn ), ε(vn − vhkn ))H + (Fε(uhkn ), ε(vn − vhkn ))H

+ (ET∇φhk
n , ε(vn − vhkn ))H − (θhkn M, ε(vn − vhkn ))H

+

∫
Γ3

Fb

(
tn, k

n−1∑
i=0

∥∥uhki ∥∥
)(∥∥wh

τ

∥∥− ∥∥vhknτ

∥∥) dΓ
+

∫
Γ3

hν(tn, u
hk
nν
)j0ν(v

hk
nν
;wh

ν − vhknν
)dΓ ≥ (fn, w

h − vhkn )V ∗×V

+ (Aε(vhkn ), ε(vn − wh))H + (Fε(uhkn ), ε(vn − wh))H

+ (ET∇φhk
n , ε(vn − wh))H − (θhkn M, ε(vn − wh))H,

(5.13)

for all wh ∈ Kh. Adding it to the inequality (3.15) at time t = tn with taking
w = vhkn , and using the boundedness of the functions Fb and hν , we find easily that
for all wh ∈ Kh

(Aε(vn − vhkn ), ε(vn − vhkn ))H ≤ (Aε(vn − vhkn ), ε(wh − vn))H

+ (Fε(un − uhkn ), ε(vhkn − vn))H + (ET∇(φn − φhk
n ), ε(vhkn − vn))H

+ ((θn − θhkn )M, ε(vhkn − vn))H + (Fε(un − uhkn ), ε(wh − vn))H

+ (ET∇(φn − φhk
n ), ε(wh − vn))H + ((θn − θhkn )M, ε(wh − vn))H

+Mh

∫
Γ3

[
j0ν(vnν ; v

hk
nν

− vnν ) + j0ν(v
hk
nν
;wh

ν − vhnν
k)

−j0ν(vnν
;wh

ν − vnν
)
]
dΓ +R(wh, vn),

(5.14)

where the residual R(w, v) is defined by

R(w, v) =(Aε(u̇n), ε(w − v))H + (Fε(un), ε(w − v))H

+ (ET∇φn, ε(w − v))H)− (θnM, ε(w − v))H∫
Γ3

Fb

(
tn,

∫ tn

0

∥u
τ
(s)∥ ds

)
(∥wτ∥ − ∥vτ∥) dΓ

+

∫
Γ3

hν(unν
)j0ν(vnν

;wν − vν)dΓ− (fn, w − v)V ∗×V .

(5.15)

By using the subadditivity of the function jν(x, r; ·) for all r ∈ R a.e. x ∈ Γ3, and
assumption (H10), we can easily find that∫

Γ3

[
j0ν(vnν

; vhknν
− vnν

) + j0ν(v
hk
nν
;wh

ν − vhknν
)− j0ν(vnν

;wh
ν − vnν

)
]
dΓ

≤αν

∫
Γ3

∥∥vn − vhkn
∥∥2 dΓ +

∫
Γ3

[
j0ν(v

hk
nν
;wh

ν − vnν )− j0ν(vnν ;w
h
ν − vnν

)
]
dΓ.

(5.16)
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From the definition of the generalized gradient we get

j0ν(v
hk
nν
;wh

ν − vnν ) = max
{
ζ · (wh

ν − vnν ) | ζ ∈ ∂jν(v
hk
nν
)
}

≤
∥∥wh

ν − vnν

∥∥∥∥∂jν(vhknν
)
∥∥ . (5.17)

Keeping in mind hypothesis (H10), we obtain that

j0ν(v
hk
nν
;wh

ν − vnν ) ≤ c0ν
∥∥wh

ν − vnν

∥∥ . (5.18)

Thus, we deduce from (5.16) that∫
Γ3

[
j0ν(vnν

; vhknν
− vnν

) + j0ν(v
hk
nν
;wh

ν − vhknν
)− j0ν(vnν

;wh
ν − vnν

)
]
dΓ

≤ ανc
2
0

∥∥vn − vhkn
∥∥2
V
+ 2c0ν

√
|Γ3|

∥∥wh − vn
∥∥
[L2(Γ3)]d

.

(5.19)

Proceeding as in [19], we find that there exists cR > 0 such that∥∥R(wh, vn)
∥∥ ≤ cR

∥∥wh − vn
∥∥
[L2(Γ3)]d

. (5.20)

Then, by using the Cauchy-Shwarz inequality and the inequality (4.13) several
times, we deduce from (5.14) that there exists c > 0 such that for all wh ∈ Kh

∥∥un − uhkn
∥∥2
V +

(
mA −Mhανc

2
0 −

LE + LM

2
− 2ϵ

)∥∥vn − vhkn
∥∥2
V

≤c
[∥∥un − uhkn

∥∥2
V
+
∥∥vn − wh

∥∥2
V
+
∥∥vn − wh

∥∥
[L2(Γ3)]d

]
+

(
LM

2
+ ϵ

)∥∥θn − θhkn
∥∥2
L2(Ω)

+

(
LE

2
+ ϵ

)∥∥φn − φhk
n

∥∥2
W
,

(5.21)

where ϵ is a positive real parameter.
Now, we write successively the hemivariational inequalities (3.16) at time t = tn

and (5.6) with substitute ξ by φhk
n − ξh, and ξh by ξh − φhk

n respectively, then we
add the two obtained inequalities to find that for all ξh ∈Wh

(B∇(φn − φhk
n ),∇(φn − φhk

n ))H ≤ (B∇(φn − φhk
n ),∇(φn − ξh))H

+ ((θn − θhkn )P,∇(φhk
n − ξh))H + (Eε(un − uhkn ),∇(ξh − φhk

n ))H

+

∫
Γ3

[
j0e (φn − φF ;φ

hk
n − ξh) + j0e (φ

hk
n − φF ; ξ

h − φhk
n )
]
dΓ.

(5.22)

We use the same idea used previously in the proof of (5.19), we also find that

j0e (φn − φF ;φ
hk
n − ξh) + j0e (φ

hk
n − φF ; ξ

h − φhk
n ) ≤ αec

2
1

∥∥φn − φhk
n

∥∥2
W

+ 2c0e
√

|Γ3|
∥∥φn − ξh

∥∥
L2(Γ3)

.
(5.23)

Then, we deduce from (5.22) that there exists c > 0 such that for all ξh ∈Wh(
mB − αec

2
1 −

LP

2
− 3ϵ

)∥∥φn − φhk
n

∥∥2
W

≤
(
LP

2
+ ϵ

)∥∥θn − θhkn
∥∥2
L2(Ω)

+ c
[∥∥un − uhkn

∥∥2
V
+
∥∥φn − ξh

∥∥2
W

+
∥∥φn − ξh

∥∥
L2(Γ3)

]
.

(5.24)
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Proceeding as in [5], we find that there exists c > 0 such that

∥∥ui − uhki
∥∥2
V
≤ c

∥∥u0 − uh0
∥∥2
V
+ k

i∑
j=1

∥∥vj − vhkj
∥∥2
V
+ I2i

 . (5.25)

Now, combining (5.21) and (5.24) and keeping in mind the previous inequality, we
find that there exists c > 0 such that for all wh ∈ Kh and ξh ∈Wh

∥∥un − uhkn
∥∥2
V
+

(
mA −Mhανc

2
0 −

LE + LM

2
− 2ϵ

)∥∥vn − vhkn
∥∥2
V

+

(
mB − αec

2
1 −

LP + LE

2
− 4ϵ

)∥∥φn − φhk
n

∥∥2
W

≤ c
{
I2n +

∥∥u0 − uh0
∥∥2
V

+ k

n∑
i=1

∥∥vi − vhki
∥∥2
V
+
∥∥vn − wh

∥∥2
V
+
∥∥φn − ξh

∥∥2
W

+
∥∥vn − wh

∥∥
[L2(Γ3)]d

+
∥∥φn − ξh

∥∥
L2(Γ3)

}
+

(
LM + LP

2
− 2ϵ

)∥∥θn − θhkn
∥∥2
L2(Ω)

.

(5.26)

Next, we write successively the inequalities (3.17) at time t = tn and (5.7) with
taking η = θhkn −ηh and ηh = ηh−θhkn respectively, and add the resulting inequalities
to find that for all ηh ∈ Qh

(δ(θn − θhkn ), θn − θhkn )L2(Ω) + (K∇(θn − θhkn ),∇(θn − θhkn ))H

≤(δθn − θ̇n, θn − θhkn )L2(Ω) + (θ̇n − δθn, θn − ηh)L2(Ω)

+ (K∇(θn − θhkn ),∇(θn − ηh))H + (N (vn)−N (vhkn ), ηh − θhkn )L2(Ω)

+

∫
Γ3

[
j0c (θn − θF ; θ

hk
n − ηh) + j0c (θ

hk
n − θF ; η

h − θhkn )
]
dΓ

+ (δ(θn − θhkn ), θn − ηh)L2(Ω).

(5.27)

Using a similar manner to (5.19), we can easily find that∫
Γ3

[
j0c (θn − θF ; θ

hk
n − ηh) + j0c (θ

hk
n − θF ; η

h − θhkn )
]
dΓ

≤αcc
2
2

∥∥θn − θhkn
∥∥2
Q
+ 2c0c

√
|Γ3|

∥∥θn − ηh
∥∥
L2(Γ3)

.

(5.28)

On the other hand, we have (see [19,31])

(δ(θn − θhkn ), θn − θhkn )L2(Ω)

≥ 1

2k

(∥∥θn − θhkn
∥∥2
L2(Ω)

−
∥∥θn−1 − θhkn−1

∥∥2
L2(Ω)

)
.

(5.29)

We substitute the two previous inequalities into (5.27) to deduce that there exists
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c > 0 such that for all ηh ∈ Qh

1

2k

(∥∥θn − θhkn
∥∥2
L2(Ω)

−
∥∥θn−1 − θhkn−1

∥∥2
L2(Ω)

)
+
(
mK − αcc

2
2 − ϵ

) ∥∥θn − θhkn
∥∥2
Q
≤ c

[∥∥vn − vhkn
∥∥2
V
+
∥∥θn − θhkn

∥∥2
L2(Ω)

+
∥∥∥θ̇n − δθn

∥∥∥2
L2(Ω)

+
∥∥θn − ηh

∥∥2
L2(Ω)

+
∥∥θn − ηh

∥∥2
Q
+
∥∥θn − ηh

∥∥
L2(Γ3)

]
+ (δ(θn − θhkn ), θn − ηh)L2(Ω).

(5.30)

We take n = i in the previous inequality, and we sum the result inequality over i
from 1 to n and keep in mind the following inequality

2k

n∑
i=1

(δ(θi − θhki ), θi − ηhi )L2(Ω) ≤ ϵ
∥∥θn − θhkn

∥∥2
L2(Ω)

+ c
{∥∥θn − ηhn

∥∥2
L2(Ω)

+
∥∥θ0 − θh0

∥∥2
L2(Ω)

+
∥∥θ1 − ηh1

∥∥2
L2(Ω)

}
+ k

n−1∑
i=1

∥∥θi − θhki
∥∥2
L2(Ω)

+
1

k

n−1∑
i=1

∥∥θi − ηhi − (θi+1 − ηhi+1)
∥∥2
L2(Ω)

,

(5.31)

to obtain that there exists c > 0 such that for all {ηi}ni=1 ⊂ Qh

(1− ϵ)
∥∥θn − θhkn

∥∥2
L2(Ω)

+ k
(
mK − αcc

2
2 − ϵ

) n∑
i=1

∥∥θi − θhki
∥∥2
Q

≤c
[∥∥θ0 − θh0

∥∥2
L2(Ω)

+
∥∥θ1 − ηh1

∥∥2
L2(Ω)

+
∥∥θn − ηhn

∥∥2
L2(Ω)

+ k

n∑
i=1

(∥∥θi − θhki
∥∥2
L2(Ω)

+
∥∥vi − vhki

∥∥2
V

)

+
1

k

n−1∑
i=1

∥∥θi − ηhi − (θi+1 − ηhi+1)
∥∥
L2(Ω)

+ k

n∑
i=1

(∥∥∥θ̇i − δθi

∥∥∥2
L2(Ω)

+
∥∥θi − ηhi

∥∥2
L2(Ω)

+
∥∥θi − ηhi

∥∥2
Q

+
∥∥θi − ηhi

∥∥
L2(Γ3)

)]
.

(5.32)

Finally, we combine (5.26) with (5.32),then we choose ϵ to be small enough and
keep in mind the smallness conditions (H14) and (5.10) to obtain that there exists
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c > 0 such that∥∥un − uhkn
∥∥2
V
+
∥∥vn − vhkn

∥∥2
V
+
∥∥φn − φhk

n

∥∥2
W

+
∥∥θn − θhkn

∥∥2
L2(Ω)

+ k

n∑
i=1

∥∥θn − θhkn
∥∥2
Q
≤ c

[∥∥θ0 − θh0
∥∥2
L2(Ω)

+
∥∥u0 − uh0

∥∥2
V

+
∥∥θ1 − ηh1

∥∥2
L2(Ω)

+
∥∥vn − wh

n

∥∥2
V
+
∥∥φn − ξhn

∥∥2
W

+
∥∥θn − ηhn

∥∥2
L2(Ω)

+
∥∥vn − wh

n

∥∥
[L2(Γ3)]d

+
∥∥φn − ξhn

∥∥
L2(Γ3)

+ I2n +
1

k

n−1∑
i=1

∥∥θi − ηhi − (θi+1 − ηhi+1)
∥∥
L2(Ω)

+ k

n∑
i=1

(∥∥∥θ̇i − δθi

∥∥∥2
L2(Ω)

+
∥∥θi − ηhi

∥∥2
L2(Ω)

+
∥∥θi − ηhi

∥∥2
Q
+
∥∥θi − ηhi

∥∥
L2(Γ3)

)
+k

n∑
i=1

(∥∥θi − θhki
∥∥2
L2(Ω)

+
∥∥vi − vhki

∥∥2
V

)]
,

(5.33)

for all {wh
i }ni=1 ⊂ Kh, {ξhi }ni=1 ⊂ Wh and {ηhi }ni=1 ⊂ Qh. We apply the discrete

Gronwall’s inequality [30] to derive the desired estimate (5.11).

Corollary 5.1. Let the assumptions of Theorem 5.1 hold. Under the following
regularity conditions

v ∈ C(0, T ; [H2(Ω)]d) ∩H1(0, T ;V ), v|Γ3
∈ C(0, T ; [H2(Γ3)]

d), (5.34)

φ ∈ C(0, T ;H2(Ω)) ∩ C(0, T ;W ), φ|Γ3
∈ C(0, T ;H2(Γ3)), (5.35)

θ ∈ C(0, T ;H2(Ω)) ∩ C(0, T ;Q) ∩H1(0, T ;Q) ∩H2(0, T ;L2(Ω)),

θ|Γ3
∈ C(0, T ;H2(Γ3)),

(5.36)

there exists c > 0 independent of h and k such that

max
1≤n≤N

{∥∥un − uhkn
∥∥
V
+
∥∥vn − vhkn

∥∥
H
+
∥∥φn − φhk

n

∥∥
W

+
∥∥θn − θhkn

∥∥
L2(Ω)

}
+ k

N∑
i=1

∥∥θi − θhki
∥∥
Q
≤ c(h+ k).

(5.37)

Proof. For n = 1, ..., N , we choose wh
n = Πh

V vn, ξ
h
n = Πh

Wφn and ηhn = Πh
Qθn the

finite element interpolant of vn, φn and θn, respectively, where Πh
B is the standard

finite element interpolation operator over B [11]. By using standard finite element
interpolation error estimates [6, 11, 17], we have the following approximation prop-
erties for n = 1, ..., N∥∥vn − wh

n

∥∥2
V
≤ ch2 ∥v∥2C(0,T ;[H2(Ω)]d) , (5.38)∥∥φn − ξhn

∥∥2
W

≤ ch2 ∥φ∥2C(0,T ;H2(Ω)) , (5.39)∥∥θn − ηhn
∥∥2
L2(Ω)

≤ ch2 ∥θ∥2C(0,T ;H2(Ω)) , (5.40)∥∥θn − ηhn
∥∥2
Q
≤ ch2 ∥θ∥2C(0,T ;H2(Ω)) , (5.41)
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n

∥∥
[L2(Γ3)]d

≤ ch2 ∥v∥C(0,T ;[H2(Γ3)]d)
, (5.42)∥∥φn − ξhn

∥∥
L2(Γ3)

≤ ch2 ∥φ∥C(0,T ;H2(Γ3))
, (5.43)∥∥θn − ηhn

∥∥
L2(Γ3)

≤ ch2 ∥θ∥C(0,T ;H2(Γ3))
. (5.44)

We assume that the discrete initial conditions uh0 and θh0 are chosen to be the finite
element interpolants of u0 and θ0 respectively, i.e. uh0 = Πh

V u0 and θh0 = Πh
Qθ0,

then (see [11,15]) ∥∥u0 − uh0
∥∥2
V
≤ ch2 ∥u0∥2[H2(Ω)]d , (5.45)∥∥θ0 − θh0

∥∥2
L2(Ω)

≤ ch2 ∥θ0∥2H2(Ω) . (5.46)

We also have that [4, 6]

In ≤ ck ∥v∥H1(0,T ;V ) , (5.47)

1

k

N−1∑
i=1

∥∥θi − ηhi − (θi+1 − ηhi+1)
∥∥2
Q
≤ ch2 ∥θ∥2H1(0,T ;Q) , (5.48)

n∑
i=1

∥∥∥θ̇i − δθi

∥∥∥2
L2(Ω)

≤ ck ∥θ∥2H2(0,T ;L2(Ω)) . (5.49)

By combining the estimates (5.38)-(5.49) with the error estimate (5.11), we find
that there exists a constant c > 0 such that

max
1≤n≤N

{∥∥un − uhkn
∥∥2
V
+
∥∥vn − vhkn

∥∥2
V
+
∥∥φn − φhk

n

∥∥2
W

+
∥∥θn − θhkn

∥∥2
L2(Ω)

}
+ k

N∑
i=1

∥∥θi − θhki
∥∥2
Q
≤ c(h2 + k2).

(5.50)

Finally, keeping in mind the additional regularity (5.34)-(5.36) and the fact that
0 < k < 1, we conclude the convergence rate (5.37).
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[16] P. Gamorski, S. Migórski, Hemivariational inequalities modeling electro-elastic unilateral
frictional contact problem, Mathematics and Mechanics of Solids, 2018, 23(3), 329–347.

[17] W. Han, M. Shillor, M. Sofonea, Variational and numerical analysis of a quasistatic vis-
coelastic problem with normal compliance, friction and damage, J Comput Appl Math, 2001,
137(2),377–398
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