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Decay of Solutions to the Three-Dimensional
Generalized Navier-Stokes Equation with
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Abstract In this paper, we consider the three-dimensional generalized Navier-
Stokes equation with a nonlinear damping term |u|β−1(β ≥ 1). Firstly, utiliz-
ing the Fourier splitting method, we derive decay estimates for weak solutions
to the equations when α = 0 and β = 1, as well as when 0 < α < 3

4
for any

β = 2. Secondly, for 0 < α < 5
4
and any β > max{ 4α

3
+ 1, 2}, we obtain the

same result.
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1. Introduction

In this paper, we investigate the decay of solutions to the following Cauchy problem
for the incompressible generalized Navier-Stokes equations with a damping term
|u|β−1u(β ≥ 1): 

ut + (u · ∇)u+ Λ2αu+∇P + |u|β−1u = 0,

div u = 0,

u(x, 0) = u0(x),

(1.1)

where u = u(x, t) ∈ R3 and P = P (x, t) ∈ R represent the unknown velocity field
and the pressure, respectively. u0 denotes the prescribed initial data satisfying
divu0 = 0. α ≥ 0, β ≥ 1, are real parameters. Λ2α is defined through Fourier
transform (see [7])

Λ̂2αf(ξ) = |ξ|2αf̂(ξ), f̂(ξ) =
∫
Rn

f(x)e−2πix·ξdx.

In recent studies concerning the well-posedness of Equation (1.1) with α = 1,
Cai et al. [1] employed the Galerkin approximation method to investigate properties
of the system. Their findings revealed the existence of a weak solution for any β > 1.
Furthermore, they determined that for β ≥ 7

2 , the solution becomes a global strong
solution, and it is unique for 7

2 ≤ β ≤ 5. Subsequently, Zhou [2] improved these
results, establishing that the strong solution exists globally for β ≥ 3 , and it is
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unique for all β ≥ 1. More recently, Cai et al. [8] have established the global
existence and uniqueness of strong solutions for Equation (1.1) when α ≥ 5

4 for
β ≥ 1 and when 1

2 + 2
β ≤ α ≤ 5

4 for 8
3 ≤ β < +∞.

Recently, our attention has been drawn to the asymptotic behavior of the weak
solutions of (1.1) with α = 1. Through the refinement of the traditional Fourier
splitting method, Jia et al. [3] provided the L2 decay rate of the weak solutions,
which holds for β ≥ 10

3 . Additionally, Jiang and Zhu et al. [4,5] demonstrated that, if
the initial condition satisfies ∥e△tu0∥L2 ≤ C(1+t)−µ with µ > 0, the weak solutions

of (1.1) with β ≥ 3 obey the bound ∥u(t)∥L2 ≤ C(1 + t)min{−µ, 34}. Yang et al. [6]
further strengthened this result, showing that for β ≥ 7

3 , the weak solutions satisfy

∥u(t)∥L2 ≤ C(1+ t)−α0 , where α0 is defined as α0 =

 min{µ, 5
4}, β ∈ ( 73 , 9]

min{µ, 3β−7
4(β−5)}, β ∈ (9,∞)

.

Recently, Jiu et al. [10] derived decay estimates for weak solutions of the three-
dimensional generalized Navier-Stokes equations. Motivated by [10], we aim to
enhance the derived decay estimates of the solution of (1.1) through an iterative
approach.

This paper focuses on the long-term behavior of the weak solutions to system
(1.1) specifically in the scenario where α < 5

4 . Our aim is to assess the influence of
the damping term by utilizing techniques detailed in references [4,6,9,10]. To estab-
lish our primary findings, we shall employ the Fourier splitting technique introduced
by Schonbek [9]. Our main results are given by the following theorems.

Theorem 1.1. Let α = 0 or β = 1. For u0 ∈ L2(R3) with div u0 = 0, the system
admits a weak solution such that

∥u∥22 ≤ Ce−2t,

where the constant C only depends on ∥u0∥L2(R3).

Theorem 1.2. Let 0 < α < 3
4 , β = 2. For u0 ∈ L1(R3) ∩ L2(R3) with div u0 = 0,

the system admits a weak solution such that

∥u∥22 ≤ C(1 + t)−
3
2α ,

where the constant C depends on α and ∥u0∥L2(R3).

Theorem 1.3. Let 0 < α < 5
4 , β > max{ 4α

3 + 1, 2}. For u0 ∈ L1(R3) ∩ L2(R3)
with div u0 = 0, the system admits a weak solution such that

∥u∥22 ≤ C(1 + t)−
3
2α ,

where the constant C depends on α, β and ∥u0∥L2(R3).

This paper is organized as follows. In Section 2, we will give some notations and
lemmas which will be used in the proof of our main Theorems. We will give the
proof Theorem 1.1, 1.2 and 1.3 in Section 3.

2. Preliminaries

The following Gagliardo-Nirenberg inequality plays a very important role in our
estimation.
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Lemma 2.1 (Gagliardo-Nirenberg inequality [11,12]). Let u belong to Lq in Rn and
its derivatives of order m, Dmu, belong to Lr, 1 ≤ q, r ≤ ∞. For the derivatives
Dmu, 0 ≤ j < m, the following inequalities hold

∥Dju∥Lp ≤ C∥Dmu∥αLr∥u∥1−α
Lq

where

1

p
=

j

n
+ α(

1

r
− m

n
) + (1− α)

1

q

for all α in the interval

j

m
≤ α ≤ 1.

Lemma 2.2 (Plancherel’s theorem). Assume f ∈ L1(Rn) ∩ L2(Rn). Then f̂ , f̌ ∈
L2(Rn) and

∥f̂∥L2(Rn) = ∥f̌∥L2(Rn) = ∥f∥L2(Rn).

Lemma 2.3 (Young inequality). Assume a > 0, b > 0, p > 1, q > 1, the following
inequalities hold

ab ≤ ap

p
+

bq

q

where

1

p
+

1

q
= 1.

Lemma 2.4 (Hölder inequality). Assume p > 1, q > 1, f ∈ Lp(R3), g ∈ Lp(R3).
Then fg ∈ L1(R3) and ∫

R3

fgdx ≤ ∥f∥Lp∥g∥Lq

where

1

p
+

1

q
= 1.

3. Proof of main theorems

In this section, we give the proof of our main theorems.

3.1. Proof of Theorem 1.1 and Theorem 1.2

Proof. For α = 0 or β = 1, taking the inner product (1.1) with u, after integration
by parts, we obtain

d

dt
∥u∥22 + 2∥u∥22 ≤ 0, (3.1)
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which implies

∥u∥22 ≤ e−2t∥u0∥22.

The proof of Theorem 1.1 is now complete.
Proof. For β = 2, taking the L2-inner product of the first equation of (1.1) with
u(x, t) and integrating over R3, we derive that

d

dt
∥u∥22 + 2∥u∥33 = −2∥Λαu∥22, (3.2)

which follows

∥u∥22 + 2

∫ t

0

∥u∥33(τ)dτ + 2

∫ t

0

∥Λαu∥22(τ)dτ = ∥u0∥22.

Applying Plancherel’s theorem, this yields

2∥Λαu∥22 = 2

∫
R3

|ξ|2α|û(ξ)|2dξ.

Let

S(t) = {ξ ∈ R3 : |ξ| ≤ g(t)}, g(t) = (
γ

2(1 + t)
)

1
2α , (3.3)

where γ is a constant to be determined. Direct calculation we have

2

∫
R3

|ξ|2α|û(ξ)|2dξ ≥ 2g2α(t)

∫
|ξ|≥g(t)

|û(ξ)|2dξ + 2

∫
|ξ|≤g(t)

|ξ|2α|û(ξ)|2dξ

≥ 2g2α(t)

∫
R3

|û(ξ)|2dξ − 2g2α(t)

∫
|ξ|≤g(t)

|û(ξ)|2dξ.
(3.4)

Consequently, from (3.2), we obtain

d

dt
∥u∥22 + 2∥u∥33 + 2g2α(t)∥u∥22 ≤ 2g2α(t)

∫
|ξ|≤g(t)

|û(ξ)|2dξ. (3.5)

Taking the divergence of (1.1) with β = 2, we obtain

∇ · [(u · ∇)u+ |u|u] + ∆P = 0,

since u is divergence free. It follows P is a solution of the equation, then we derive

∆̂P = −|ξ|2P̂ = −iξ · [ ̂(u · ∇)u(ξ, s) + |̂u|u(ξ, s)].

By utilizing the Duhamel principle, one can express û in the following integral form,

û(ξ, t) = e−|ξ|2αtû0(ξ)−
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
)[ ̂(u · ∇)u(ξ, s) + |̂u|u(ξ, s)]ds.

By utilizing the inequalities

| ̂(u · ∇)u(ξ, t)| ≤
3∑
i

|ξ||ûiu(ξ, t)| ≤ C|ξ|∥u(t)∥22, (3.6)
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and

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
)|̂u|u(ξ, s)ds| ≤

∫ t

0

∥u∥22(s)ds ≤ C(1 + t), (3.7)

where C is a constant, we can multiply equation (3.5) by G(t) = e2
∫ t
0
g2α(s)ds and

note that the volume |S(t)| = Cg3(t), we derive

d

dt
(G(t)∥u∥22) + 2G(t)∥u∥33

≤ Cg2α(t)G(t)[(1 + t)−
3
2α + (1 + t)−( 5

2α−2) + (1 + t)−( 3
2α−2)].

After integrating with respect to t, it becomes

(1 + t)γ∥u(t)∥22 + 2

∫ t

0

(1 + s)γ∥u(s)∥33ds

≤ ∥u0∥22 + C

∫ t

0

(1 + s)γ−1[(1 + s)−
3
2α + (1 + s)−( 5

2α−2) + (1 + s)−( 3
2α−2)]ds

≤ ∥u0∥22 + C(1 + t)γ [(1 + t)−
3
2α + (1 + t)−( 5

2α−2) + (1 + t)−( 3
2α−2)].

Finally, we have

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥33ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 5

2α−2) + (1 + t)−( 3
2α−2)].

By choosing γ suitably large, we obtain

∥u(t)∥22 ≤ C(1 + t)−( 3
2α−2). (3.8)

In the subsequent sections, we will utilize this initial preliminary decay to boot-
strap and attempt to obtain more precise estimates for ∥u∥22. There are three cases
that we need to consider.

Case 1: When 0 < α < 1
2 , it is important to note that 5

2α − 2 > 3
2α , indicating

that the decay obtained from ̂(u · ∇)u is sharper than the decay (1+ t)−
3
2α . We can

now improve the decay rate in (3.8). By utilizing (3.7) and (3.8), we can achieve a
better decay rate as follows:∫ t

0

∥u∥22(s)ds ≤ C

∫ t

0

(1 + s)−( 3
2α−2)ds ≤ C

2α

3− 6α
[1− (1 + t)−( 3

2α−3)] ≤ C.

Substituting the above estimate into (3.5) and choosing γ suitably large, we obtain

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥33ds ≤ C(1 + t)−
3
2α .

Case 2: When α = 1
2 , by using (3.8), we have

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds| ≤ C|ξ|

∫ t

0

(1 + s)−1ds

≤ C|ξ| ln(1 + t),

(3.9)
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and

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
)|̂u|u(ξ, s)ds| ≤

∫ t

0

∥u∥22(s)ds

≤ C

∫ t

0

(1 + s)−1ds

≤ C ln(1 + t).

(3.10)

Therefore, combined with (3.9) and (3.10), we obtain

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥33ds

≤ C[(1 + t)−γ + (1 + t)−3 + (1 + t)−5 ln2(1 + t) + (1 + t)−3 ln2(1 + t)].

By choosing γ suitably large gives

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥33ds ≤ C(1 + t)−2,

which implies ∫ t

0

∥u∥22(s)ds ≤ C.

Similar to Case 1, we finally obtain

∥u∥22 ≤ C(1 + t)−3.

Case 3: When 1
2 < α < 3

4 , by using (3.6) and (3.8), we have

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds| ≤ C|ξ|

∫ t

0

(1 + s)−( 3
2α−2)ds

≤ C|ξ|(1 + t)−( 3
2α−3),

(3.11)

and

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
)|̂u|u(ξ, s)ds| ≤

∫ t

0

∥u∥22(s)ds

≤ C

∫ t

0

(1 + s)−( 3
2α−2)ds

≤ C(1 + t)−( 3
2α−3).

(3.12)

Combined with (3.11) and (3.12), we have

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥33ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 9

2α−6)].

Since α < 3
4 , we have

3
2α −2 < 9

2α −6 < 3
2α . Repeating the steps above for n times,

we obtain

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥33ds
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≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−[ 3

2α+ 3
2α (2n−2)−2(2n−1)]].

By choosing γ, n suitably large, one has 3
2α + 3

2α (2
n − 2) − 2(2n − 1) > 1. Finally

we obtain

∥u∥22 ≤ C(1 + t)−
3
2α .

The proof of Theorem 1.2 is finished.

3.2. Proof of Theorem 1.3

Proof. By taking L2-inner product on both sides of the first equation of (1.1)
with u(x, t), we have

d

dt
∥u∥22 + 2∥u∥β+1

β+1 = −2∥Λαu∥22, (3.13)

and

∥u∥22 + 2

∫ t

0

∥u∥β+1
β+1(τ)dτ + 2

∫ t

0

∥Λαu∥22(τ)dτ = ∥u0∥22. (3.14)

Similar to the proof of Theorem 1.2, from (3.13), it follows that

d

dt
∥u∥22 + 2∥u∥β+1

β+1 + 2g2α(t)∥u∥22 ≤ 2g2α(t)

∫
|ξ|≤g(t)

|û(ξ)|2dξ. (3.15)

Taking the divergence of (1.1), we obtain

∇ · [(u · ∇)u+ |u|β−1u] + ∆P = 0,

since u is divergence free. It follows that P is a solution of the equation, then we
derive

∆̂P = −|ξ|2P̂ = −iξ · [ ̂(u · ∇)u(ξ, s) + ̂|u|β−1u(ξ, s)].

In order to estimate the term on the right side, utilizing the Duhamel principle, we
obtain

û(ξ, t) = e−|ξ|2αtû0(ξ)−
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
)[ ̂(u · ∇)u(ξ, s) + ̂|u|β−1u(ξ, s)]ds.

For β > 2, we have

∥u(t)∥β ≤ ∥u(t)∥
(β−2)(β+1)

β(β−1)

β+1 ∥u(t)∥
2

β(β−1)

2 .

Consequently, it follows that

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤
∫ t

0

e−|ξ|2α(t−s)∥u∥ββ(s)ds

≤
∫ t

0

∥u(s)∥
(β−2)(β+1)

β−1

β+1 ∥u(s)∥
2

β−1

2 ds

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1 .

(3.16)
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Then, we obtian ∫ t

0

∥u(s)∥ββds ≤ C(1 + t)
1

β−1 .

Mulitiplying (3.15) by G(t) = e2
∫ t
0
g2α(s)ds yields that

d

dt
(G(t)∥u∥22) + 2G(t)∥u∥β+1

β+1

≤ Cg2α(t)G(t)[(1 + t)−
3
2α + (1 + t)−( 5

2α−2) + (1 + t)−( 3
2α− 2

β−1 )].

Integrating the above inequality with respect to t leads to

(1 + t)γ∥u(t)∥22 + 2

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ ∥u0∥22 + C

∫ t

0

(1 + s)γ−1[(1 + s)−
3
2α + (1 + s)2−

5
2α + (1 + s)−( 3

2α− 2
β−1 )]ds

≤ ∥u0∥22 + C(1 + t)γ [(1 + t)−
3
2α + (1 + t)−( 5

2α−2) + (1 + t)−( 3
2α− 2

β−1 )].

We finally obtain

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 5

2α−2) + (1 + t)−( 3
2α− 2

β−1 )]. (3.17)

Next, we use an iterative method to complete the proof. Two cases will be
considered respectively in the rest of the proof.

3.2.1. α ∈ (0, 4
3 ]

In this subsection, for any α ∈ (0, 3
4 ] we prove the result for β ∈ (2,∞). In the case

of 0 < α ≤ 3
4 , 2 < β and 1

2 < α ≤ 3
4 , 2 < β ≤ 4α−1

2α−1 , from (3.17), by choosing γ
suitably large, we obtain

∥u(t)∥22 ≤ C(1 + t)−( 3
2α− 2

β−1 ). (3.18)

In the case of 1
2 < α ≤ 3

4 , β > 4α−1
2α−1 , one has 5

2α − 2 < 3
2α − 2

β−1 . Consequently, we
have

∥u(t)∥22 ≤ C(1 + t)−( 5
2α−2). (3.19)

Now we improve the decay rate in (3.18). Five cases will be considered respec-
tively.

(i) 0 < α ≤ 1
2 , 2 < β. A bootstrap-type argument will lead to a better decay

rate. Using (3.18), inequality (3.16) becomes

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1

≤ C(

∫ t

0

(1 + s)−( 3
2α− 2

β−1 )ds)
1

β−1

≤ C(1 + t)−( 3
2α− 2

β−1−1) 1
β−1

≤ C.

(3.20)
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Then we obtain

d

dt
(G(t)∥u∥22) + 2G(t)∥u∥β+1

β+1 ≤ Cg2α(t)G(t)(1 + t)−
3
2α .

Integrating with respect to time and choosing γ suitably yields

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds ≤ C[(1 + t)−γ + (1 + t)−

3
2α ]

≤ C(1 + t)−
3
2α .

(ii) 12 < α ≤ 3
4 , 2 < β < 3+2α

3−2α . Taking (3.18), inequality (3.6) becomes

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds|

≤ C|ξ|
∫ t

0

(1 + s)
2

β−1−
3
2α ds

≤ C
1

1 + 2
β−1 − 3

2α

|ξ|[(1 + t)−( 3
2α− 2

β−1−1) − 1]

≤ C|ξ|(1 + t)−( 3
2α− 2

β−1−1).

(3.21)

Using (3.18), inequality (3.16) becomes

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1

≤ C[

∫ t

0

(1 + s)−( 3
2α− 2

β−1 )ds]
1

β−1

≤ C(1 + t)−( 3
2α− 2

β−1−1) 1
β−1 .

(3.22)

Combined with (3.21) and (3.22), by choosing γ suitably large, we obtain

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 11

2α− 4
β−1−2) + (1 + t)−[ 3

2α− 2
β−1+( 3

2α− 2
β−1 )

2
β−1 ]]

≤ C(1 + t)−[ 3
2α− 2

β−1+( 3
2α− 2

β−1 )
2

β−1 ].

When 0 < 3
2α − 2

β−1 < 1, we obtain

3

2α
− 2

β − 1
<

3

2α
− 2

β − 1
+ (

3

2α
− 2

β − 1
)

2

β − 1
<

3

2α
,

and

1

α
> 2− 2

β − 1
> (2− 2

β − 1
)(1− 3

2α
+

2

β − 1
).
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Repeating the steps above to find a estimate sharper than the decay (1+ t)−
3
2α , for

β > 3, we have

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−

3(β−1)−4α
2α(β−3) ].

(3.23)

For β = 3, we derive that

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 3n

2α−n)].

(3.24)

For 2 < β < 3, we derive that

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 3

2α− 2
β−1 )(

qn−1
q−1 )],

(3.25)

where q = 2
β−1 . By choosing γ, n suitably large, where n is the number of iterations,

and noting 3(β−1)−4α
2α(β−3) ≥ 3

2α ,
3n
2α − n ≥ 3

2α , (
3
2α − 2

β−1 )(
qn−1
q−1 ) ≥ 3

2α , we have

∥u(t)∥22 ≤ C(1 + t)−
3
2α .

(iii) 12 < α ≤ 3
4 , β = 3+2α

3−2α . Similar to the proof of Case 2, one has

∥u(t)∥22 ≤ C(1 + t)−
3
2α .

(iv) 12 < α ≤ 3
4 ,

3+2α
3−2α < β ≤ 4α−1

2α−1 . Using (3.18), for 1+ 2
β−1 −

3
2α < 0, inequality

(3.6) becomes

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds|

≤ C|ξ|
∫ t

0

(1 + s)
2

β−1−
3
2α ds

≤ C
1

1 + 2
β−1 − 3

2α

|ξ|[(1 + t)−( 3
2α− 2

β−1−1) − 1]

≤ C|ξ|.

(3.26)

And inequality (3.16) becomes

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1

≤ C(

∫ t

0

(1 + s)−( 3
2α− 2

β−1 )ds)
1

β−1

≤ C(1 + t)−( 3
2α− 2

β−1−1) 1
β−1

≤ C.

(3.27)



Decay of Solutions to the 3D Navier-Stokes Equation with Nonlinear Damping 1047

This, combined with (3.26) and (3.27), yields

d

dt
(G(t)∥u∥22) + 2G(t)∥u∥β+1

β+1 ≤ Cg2α(t)G(t)[(1 + t)−
3
2α + (1 + t)−

5
2α ].

Integrating with respect to time and choosing γ suitably yields

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−

5
2α ]

≤ C(1 + t)−
3
2α .

Then we improve the decay rate in (3.19).

(v) 12 < α ≤ 3
4 , β > 4α−1

2α−1 . By using (3.19), it yields that

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds|

≤ C|ξ|
∫ t

0

(1 + s)−( 5
2α−2)ds

≤ C
2α

6α− 5
|ξ|[(1 + t)−( 5

2α−3) − 1]

≤ C|ξ|.

(3.28)

Next, we consider the estimate from ̂|u|β−1u. For 1
2 < α < 3

4 , we obtain

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1

≤ C[

∫ t

0

(1 + s)−( 5
2α−2)ds]

1
β−1

≤ C.

(3.29)

Hence by (3.28) and (3.29)

|û(ξ, t)| ≤ |û0(ξ)|+ C(1 + |ξ|), for ξ ∈ S(t).

Combining with (3.15) and integrating with respect to time yields

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−

5
2α ].

By choosing γ suitably large, we have

∥u(t)∥22 ≤ C(1 + t)−
3
2α .
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3.2.2. α ∈ ( 34 ,
5
4 )

In this subsection, for any α ∈ ( 34 ,
5
4 ) we prove the same result for β ∈ ( 4α3 + 1,∞).

In the case of 4α
3 + 1 < β < 4α−1

2α−1 , one has 5
2α − 2 ≥ 3

2α − 2
β−1 . Hence, by choosing

γ suitably large, the estimate takes the form

∥u(t)∥22 ≤ C(1 + t)−( 3
2α− 2

β−1 ). (3.30)

In the case of β ≥ 4α−1
2α−1 , one has 5

2α − 2 ≤ 3
2α − 2

β−1 . Consequently, by choosing γ
suitably large, we have

∥u(t)∥22 ≤ C(1 + t)−( 5
2α−2). (3.31)

Now we improve the decay rate in (3.30). Two cases will be considered respec-
tively.

(vi) 3
4 < α ≤ 5

6 , 4α
3 + 1 < β < 4α−1

2α−1 . In the case of 4α
3 + 1 < β < 3+2α

3−2α , similar

to the proof of (ii). In the case of β = 3+2α
3−2α , similar to the proof of Case 2. In the

case of 3+2α
3−2α < β < 4α−1

2α−1 , similar to the proof of (iv).

(vii) 5
6 < α < 5

4 , 4α
3 + 1 < β < 4α−1

2α−1 . In this case, similar to the proof of (ii).
In the rest of this subsection, we improve the decay rate in (3.31). Four cases

will be considered respectively.
(viii) 3

4 < α < 5
6 , β ≥ 4α−1

2α−1 . By using (3.31), it yields that

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds|

≤ C|ξ|
∫ t

0

(1 + s)−( 5
2α−2)ds

≤ C
2α

6α− 5
|ξ|[(1 + t)−( 5

2α−3) − 1]

≤ C|ξ|.

(3.32)

Next, we consider the estimate from ̂|u|β−1u. For 3
4 < α < 5

6 , we obtain

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1

≤ C[

∫ t

0

(1 + s)−( 5
2α−2)ds]

1
β−1

≤ C.

(3.33)

Hence by (3.32) and (3.33)

|û(ξ, t)| ≤ |û0(ξ)|+ C(1 + |ξ|), for ξ ∈ S(t).

Combining with (3.15) and integrating with respect to time yields

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds
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≤ C[(1 + t)−γ + (1 + t)−
3
2α ].

By choosing γ suitably large, we have

∥u(t)∥22 ≤ C(1 + t)−
3
2α .

(ix)When α = 5
6 and β ≥ 4α−1

2α−1 , similar to the proof of Case 2, it goes back to

the case 1
2 < α < 5

6 .

(x) 5
6 < α ≤ 1 , β ≥ 4α−1

2α−1 . By using (3.31), we obtain that

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds|

≤ C|ξ|
∫ t

0

(1 + s)−( 5
2α−2)ds

≤ C
2α

6α− 5
|ξ|[(1 + t)−( 5

2α−3) − 1]

≤ C|ξ|(1 + t)−( 5
2α−3).

(3.34)

It follows from (3.16) and (3.31) that

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1

≤ C[

∫ t

0

(1 + s)−( 5
2α−2)ds]

1
β−1

≤ C(1 + t)−( 5
2α−3) 1

β−1 .

(3.35)

Combining (3.34) and (3.35) together and choosing γ suitably easily yields

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 3

2α− 6α−6
α ) + (1 + t)−[ 3

2α− 2
β−1+( 5

2α−2) 2
β−1 ]]

≤ C(1 + t)−[ 3
2α− 2

β−1+( 5
2α−2) 2

β−1 ].

When 5
2α − 2 > 0, one has 3

2α − 2
β−1 < 3

2α − 2
β−1 + ( 5

2α − 2) 2
β−1 < 3

2α < 3
2α − 6α−6

α .

Repeating the steps as for (3.23) and choosing γ suitably gives that

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 3

2α− 6α−6
α ) + (1 + t)−

3(β−1)−4α
2α(β−3) ].

(3.36)

Note that 3(β−1)−4α
2α(β−3) > 1. It implies that we can also find a decay estimate (1+t)−

3
2α

in this case.
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(xi) 1 < α < 5
4 ,β ≥ 4α−1

2α−1 . Using (3.6), we obtain

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds|

≤ C|ξ|
∫ t

0

(1 + s)−( 5
2α−2)ds

≤ C
2α

6α− 5
|ξ|[(1 + t)−( 5

2α−3) − 1]

≤ C|ξ|(1 + t)−( 5
2α−3).

(3.37)

And by (3.16), it follows that

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1

≤ C[

∫ t

0

(1 + s)−( 5
2α−2)ds]

1
β−1

≤ C(1 + t)−( 5
2α−3) 1

β−1 .

(3.38)

Hence, combining (3.37) and (3.38) together and integrating with respect to time
yields

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 15

2α−6) + (1 + t)−[ 3
2α− 2

β−1+( 5
2α−2) 2

β−1 ]].

Similarly, we consider two cases.In the case of 2 + 1
2α−1 ≤ β < 2 + 1

6α−6 , one

has 15
2α − 6 > 3

2α − 2
β−1 + ( 5

2α − 2) 2
β−1 , which means

∥u(t)∥22 ≤ C(1 + t)−[ 3
2α− 2

β−1+( 5
2α−2) 2

β−1 ].

According to case (ii), the decay estimates from ̂|u|β−1u are used for ltaer iteration,
and similar to the result of (3.36), we obtain

∥u(t)∥22 ≤ C(1 + t)−
3
2α .

For this reason, we now only discuss the case where the better decay estimates

are derived from ̂(u · ∇)u to simplify the proof. In the case of β ≥ 2 + 1
6α−6 , one

has 15
2α − 6 ≤ 3

2α − 2
β−1 + ( 5

2α − 2) 2
β−1 , and we get

∥u(t)∥22 ≤ C(1 + t)−( 15
2α−6). (3.39)

Using (3.39) and (3.6), we have

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds|

≤ C|ξ|
∫ t

0

(1 + s)−( 15
2α−6)ds

≤ C
2α

14α− 15
|ξ|[(1 + t)−( 15

2α−7) − 1].

(3.40)
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Taking (3.39), inequality (3.16) is equivalent to

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds|

≤ (

∫ t

0

∥u(s)∥22ds)
1

β−1 (

∫ t

0

∥u(s)∥β+1
β+1ds)

β−2
β−1

≤ C[

∫ t

0

(1 + s)−( 15
2α−6)ds]

1
β−1

≤ C(1 + t)−( 15
2α−7) 1

β−1 .

(3.41)

Hence, combining (3.15), (3.40) and (3.41) together and integrating with respect to
time yields

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 3

2α+ 32
2α−14) + (1 + t)−[ 3

2α+( 15
2α−7) 2

β−1 ]].

In the case of 1 < α ≤ 15
14 , one has

15
2α − 6 > 1. Similar to the proof of (viii) and

(ix), by choosing γ suitably, we have

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 3

2α+ 32
2α−14) + (1 + t)−[ 3

2α+( 15
2α−7) 2

β−1 ]]

≤ C(1 + t)−
3
2α .

In the case of 15
14 < α ≤ 8

7 , similar to the proof of (x), by choosing γ suitably,
we obtain

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 3

2α+ 16
α −14) + (1 + t)−( 3

2α+( 15
2α−7) 2

β−1 )]

≤ C(1 + t)−( 3
2α+( 15

2α−7) 2
β−1 ).

Repeating the steps as (x), we obtain the same result.
In tha case of 8

7 < α < 5
4 and β ≥ 2+ 1

14α−16 , at this time, 8
α − 7 < ( 15

2α − 7) 1
β−1

and we obtain a sharper decay

∥u(t)∥22 ≤ C(1 + t)−( 35
2α−14).

Similary, repeat the steps above, after the nth iterative, inequalities become

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂(u · ∇)u(ξ, s)ds|

≤ C
2α

2αbn − 2cn + 1
|ξ|[(1 + t)−( 2cn−1

2α −bn) − 1],

(3.42)

and

|
∫ t

0

e−|ξ|2α(t−s)(I − ξ ⊗ ξ

|ξ|2
) ̂|u|β−1u(ξ, s)ds| ≤ C[(1 + t)−( 2cn−1

2α −bn)
1

β−1 − 1], (3.43)
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where bn = 2n+1 − 1, cn = 5 · 2n−1 − 2.
Based on thr discovered patterns, it is easy to see that if cn−1

bn−1
< α ≤ 2cn−1

2bn
, one

has 2cn−1
2α − bn > 0, similar to the proof of (viii) and (ix). If 2cn−1

2bn
< α ≤ cn

bn
, one

has 3
2α+

2cn
α −2bn > 3

2α , similar to the proof of (x). If cn
bn

< α < 5
4 , β ≥ 2+ 1

2bnα−2cn
,

one has cn
α − bn < ( 2cn−1

2α − bn)
1

β−1 . Combining (3.36), (3.42) and (3.43), we have

∥u(t)∥22 + 2(1 + t)−γ

∫ t

0

(1 + s)γ∥u(s)∥β+1
β+1ds

≤ C[(1 + t)−γ + (1 + t)−
3
2α + (1 + t)−( 3

2α−2bn+
2cn
α )].

By choosing n, γ suitably large, where n is the number of iterations, note that
3
2α − 2bn + 2cn

α > 1 , which means we can still find a decay in case (ix) to obatin

∥u(t)∥22 ≤ C(1 + t)−
3
2α .

The proof of Theorem 1.3 is finished.
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