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Convergence Analysis for the SM-Iteration in
Banach Spaces

Monika Swami1 and M. R. Jadeja2,†

Abstract In this article, the fixed point of the SM iterative approach is ap-
proximated via Suzuki mapping. In the context of Banach spaces, we provide
both weak and strong convergence for the SM iteration. Then, by comparing it
with certain well-known iterations, we give some numerical examples to show
the effectiveness of SM iteration for the Suzuki-type mapping.
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1. Introduction

Fixed point theory is a valuable tool for resolving a variety of practical mathemat-
ics difficulties. The Banach contraction principle [5] was the first step toward the
fixed point theory on metric spaces. Since many nonlinear analysis problems can-
not be solved analytically, iterative approaches for approximating fixed points of
various kinds of mappings become essential. In this sense, the development of other
processes benefited greatly from the foundation provided by Picard iteration [14].
Though it was successful for contraction mappings, a wider class of mappings con-
structed on Banach spaces (BS), namely non-expansive mappings, may not neces-
sarily converge to the fixed point, as demonstrated in 1955 by Krasnoselskii [10],
where a mapping F : V → V , for V being a non-empty closed and convex subset of
BS E, is said to be non-expansive if it satisfies the inequality ∥Fκ−Fy∥ ≤ ∥κ− y∥,
for all κ, y ∈ V . In addition, if Fix(F) ̸= ϕ, where Fix(F) = {κ ∈ V : Fκ = κ} and
∥Fκ−q∥ ≤ ∥κ−q∥, for every κ ∈ V , set of fixed points (FP), and q ∈ Fix(F), then
F is called quasi-non-expansive. The main reason for this behaviour is that succes-
sive iterations of non-expansive mappings do not need to converge to a fixed point,
unlike contraction mappings. Since then, numerous additional iterative procedures
have been developed for numerically calculating the fixed points of non-expansive
mappings. For instance, one of the first iteration was proposed by Mann [11], which
is described as follows: for an arbitrary chosen κ0 ∈ V , the iteration is defined as:

κn+1 = αnκn + (1− αn)Fκn, n ≥ 0,
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where, {αn} is a real sequence in the interval (0, 1). After that two-step iterative
method, which is Ishikawa [9] iteration, mostly used for finding fixed point of non-
expansive mappings: for initial point κ0 ∈ V , this iteration is defined as

κn+1 =(1− αn)κn + αnFyn,

yn =(1− βn)κn + βnFκn, n ≥ 0,

where {αn}, {βn} ∈ (0, 1). In the similar manner, Agarwal et al. [2], Noor [12],
Abbas and Nazir [1] worked in the same direction. The subsequent three-step
iterations, as described by Thakur et al. [19] in 2016, Rathee and Swami [15] in
2020, Ahmad et al. [4] in 2021, will be examined in this follow-up for finding fixed
points of non-expansive mapping, which are defined, for self map F on V , the initial
point κ0 ∈ V with real number sequences {αn}, {βn}, {γn} ∈ (0, 1).

In 2016, Thakur [19] defined the following iteration:

κn+1 = (1− αn)Fzn + αnFyn,

yn = (1− βn)zn + βnFzn,

zn = (1− γn)κn + γnFκn. (TH)

In 2020, Rathee and Swami [15] proposed an iteration as follows:

κn+1 = F((1− αn)Fzn + αnFyn),

yn = F((1− βn)κn + βnzn),

zn = Fκn. (SM)

In 2021, the following iteration is defined by Ahmad et al. [4]

κn+1 = F((1− αn)Fzn + αnFyn),

yn = Fzn,

zn = (1− βn)κn + βnFκn. (JK)

On the other hand, in 2008, Suzuki [18] made significant progress by defining an
intriguing expansion of non-expansive mappings, which is called Suzuki mapping
(condition (C)). Suzuki mapping is defined for a self map F : V → V if the
following condition holds:

1

2
∥κ − Fκ∥ ≤ ∥κ − y∥

=⇒ ∥Fκ − Fy∥ ≤ ∥κ − y∥, for all κ, y ∈ V. (1.1)

It is evident that for certain domain elements, the Suzuki mappings meet the non-
expansive criteria. Suzuki [18] used a simple example to illustrate his point that
the newly introduced class is larger than the class of non-expansiveness. For this,
define a mapping T on [0, 3] by

Tκ =

{
0 if κ ̸= 3

2 if κ = 3.

This condition (C) caught the attention of many researchers who worked in the
direction of finding different fixed point theorems. Here, in the current research,
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motivated by the results of [3,4,8,20,21], our goal is to broaden the scope of the SM
iterative process research to include the larger category of non-expansive mappings,
which is Suzuki mapping and compare with the (TH) and (JK) iterations. In
this regard, we establish convergence results for Suzuki mappings to fixed points
within the framework of uniformly convex Banach spaces. Additionally, illustrative
examples are provided to support and validate our results.

2. Preliminaries

In order to understand our new results, let’s first go over some theoretical conclu-
sions.

Definition 2.1. [7] A normed vector space X is called uniformly convex (UC) if
for each ϵ ∈ [0, 2] there is δ > 0 such that for κ, y ∈ X, ∥κ∥ ≤ 1, ∥y∥ ≤ 1 and
∥κ − y∥ ≥ ϵ imply ∥κ+y

2 ∥ ≤ 1− δ.

We consider V to be any non-empty closed and convex subset of BS E, and a
bounded sequence {κn} in E. Assume that b is any fixed element from E and define

• R(b, {κn}), the asymptotic radius of {κn} at b where R(b, {κn}) =
lim supn→∞∥b− κn∥.

• R(V, {κn}), the asymptotic radius of {κn} associated with V where
R(V, {κn}) = inf{R(b, {κn}) : b ∈ V }.

• F(V, {κn}), the asymptotic center of {κn} associated with V where
F(V, {κk}) = {b ∈ V : R(b, {κn}) = R(V, {κn})}.

The set F(V, {xn}) is widely recognized for being a singleton whenever E is uniformly
convex Banach space (UCBS) [6].

Lemma 2.1. [18] Let V be a non-empty subset of a Banach space E, and if
F : V → V is a Suzuki mapping, then

1. ∀ u ∈ V and q ∈ Fix(F), the fact ∥Fu− Fq∥ ≤ ∥u− q∥ holds.

2. ∀ u, v ∈ V ,we have

∥u− Fv∥ ≤ 3∥u− Fu∥+ ∥u− v∥. (2.1)

Definition 2.2. [13] A Banach space E is said to satisfy the Opial property if for
each weakly convergent sequence {κn} in E with a weak limit u,

lim
n→∞

inf∥κn − u∥ < lim
n→∞

inf∥κn − v∥

holds for all v ∈ E with u ̸= v.

The demiclosed principle refers to the following outcome, given by Suzuki [18].

Lemma 2.2. [18] Let V be any non-empty subset of a BS E having the Opial
property, and if F : V → V is a Suzuki mapping, then:

{uk} ⊆ V, uk ⇀ w, ∥uk − Fuk∥ → 0 =⇒ Fw = w. (2.2)

Here, uk ⇀ w, denotes weak convergence, which means that for any continuous
linear functional F on Banach space, F(uk) → F(w) as k → ∞.
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Senter and Doston [17] introduced the following condition (I):

Definition 2.3. [17] A mapping F : V → V is said to satisfy condition (I), if there
exists a non-decreasing function h : [0,∞) → [0,∞) with h(0) = 0, h(a) > 0 for
every a > 0, and ∥b− Fb∥ ≥ h(d(b, F ix(F)) for all b ∈ V .

Lemma 2.3. [18] Let V be a weakly compact convex subset of UCBS E and F be
a self-mapping on V . Assume that F satisfies the condition (C). Then F has a fixed
point.

Lemma 2.4. [16] Let 0 < a ≤ γk ≤ b < 1; ∀ k ∈ N, η ≥ 0 and {yk}, and
{zk} be sequences in UCBS, E with lim supk→∞∥yk∥ ≤ η, lim supk→∞∥zk∥ ≤ η,
and limk→∞∥γkyk + (1− γk)zk∥ = η. Then, limk→∞∥yk − zk∥ = 0.

3. Main results

In this section, we prove the weak and strong convergence for the SM iteration.

Lemma 3.1. Let V be any non-empty closed and convex subset of a BS E, and
F : V → V be a Suzuki mapping with Fix(F) ̸= ϕ. Suppose {κn} is the sequence
given in (SM). Then, limn→∞∥κn − q∥ exists for every q ∈ Fix(F ).

Proof. Take q ∈ Fix(F). By equation (SM) and Lemma (2.1), one obtain

∥zn − q∥ =∥Fκn − q∥ ≤ ∥κn − q∥, (3.1)

∥yn − q∥ =∥F((1− βn)κn + βnzn)− Fq∥
≤ ∥(1− βn)(κn − q) + βn(zn − q)∥
≤ (1− βn)∥κn − q∥+ βn∥zn − q∥
≤ ∥κn − q∥. (3.2)

Thus,

∥κn+1 − q∥ =∥F((1− αn)Fzn + αnFyn)− q∥
≤ ∥(1− αn)Fzn + αnFyn − q∥
≤ ∥(1− αn)(Fzn − q) + αn(Fyn − q)∥
≤ (1− αn)∥zn − q∥+ αn∥yn − q∥
≤ ∥κn − q∥. (3.3)

Thus, we conclude from equation (3.3) that {∥κn − q∥} is bounded and non-
increasing for all q ∈ Fix(F). Hence limn→∞∥κn − q∥ exists.

Theorem 3.1. Consider E to be UCBS and V be its non-empty closed and convex
subset with F : V → V be a Suzuki mapping. Also, consider a sequence {κn} as in
(SM). Then, Fix(F) ̸= ϕ if and only if {κn} is bounded, and limn→∞∥Fκn−κn∥ =
0.

Proof. First we assume that {κn} is bounded and limn→∞∥Fκn − κn∥ = 0. We
shall prove that Fix(F) ̸= ϕ. Now let q ∈ F(V, {κn}). By Lemma (2.1), we have

R(Fq, {κn}) = lim sup
n→∞

∥κn − Fq∥

≤ 3 lim sup
n→∞

∥κn − Fκn∥+ lim sup
n→∞

∥κn − q∥
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= lim sup
n→∞

∥κn − q∥

= R(q, {κn}). (3.4)

It follows that Fq ∈ F(V, {κn}). Since in UCBS, asymptotic centers are singleton,
we have Fq = q. Hence, Fix(F) ̸= ϕ.
Conversely, we consider that Fix(F) ̸= ϕ. From Lemma (3.1), {κn} is bounded and
limn→∞∥κn − q∥ exists. Now, if

lim
n→∞

∥κn − q∥ = η. (3.5)

From equation (3.1), it is known that ∥zn − q∥ ≤ ∥κn − q∥. Taking lim sup on both
sides of equation (3.1) and using (3.5), one obtains

lim sup
n→∞

∥zn − q∥ ≤ lim sup
n→∞

∥κn − q∥ = η. (3.6)

By Lemma (2.1), we find

lim sup
n→∞

∥Fκn − q∥ ≤ lim sup
n→∞

∥κn − q∥ = η. (3.7)

Now the following inequality holds true:

∥κn+1 − q∥ =∥F((1− αn)Fzn + αnFyn)− q∥
≤(1− αn)∥zn − q∥+ αn∥yn − q∥,

After combining with equation (3.2), we find

∥κn+1 − q∥ − ∥κn − q∥ ≤(1− αn)∥zn − q∥+ (αn − 1)∥κn − q∥,

⇒ ∥κn+1 − q∥ − ∥κn − q∥
(1− αn)

≤∥zn − q∥ − ∥κn − q∥,

which follows that

∥κn+1 − q∥ − ∥κn − q∥ ≤∥κn+1 − q∥ − ∥κn − q∥
(1− αn)

≤∥zn − q∥ − ∥κn − q∥. (3.8)

Taking limit supremum in equation (3.8) with equations (3.3) and (3.5), one obtains

η = lim sup
n→∞

∥κn+1 − q∥ ≤ lim sup
n→∞

∥zn − q∥ ≤ η,

which implies that

lim sup
n→∞

∥zn − q∥ = η. (3.9)

From equation (3.2), we get

∥yn − q∥ ≤(1− βn)∥κn − q∥+ βn∥zn − q∥,
i.e. lim sup

n→∞
∥yn − q∥ ≤ lim sup

n→∞
∥(1− βn)(κn − q) + βn(Fκn − q)∥ = η. (3.10)

From equations (3.5), (3.6), (3.10) and Lemma (2.4), one finds

lim sup
n→∞

∥Fκn − κn∥ = 0.

Hence, the proof is complete.
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Theorem 3.2. Let V , F and the sequence {κn} be the same as defined in Theorem
(3.1). Then {κn} weakly converges to the fixed point of F.

Proof. The proof uses a different iterative procedure and is identical to the proof
of Theorem 2 in [4]. For the sole purpose of making the document stand alone, we
decide to show the proof.

From Theorem (3.1), we proved that {κn} is bounded and limn→∞∥Fκn−κn∥ =
0. Since E is uniformly convex, E is reflexive. As a result, it is simple to identify
a subsequence, {κnk

} of {κn} such that κnk
⇀ u to some u ∈ V . By Lemma

(2.2), u ∈ Fix(F) . We will demonstrate that u is the weak limit of {κn}. Suppose,
if possible, u is not the weak limit of {κn}. Then we get another subsequence,
specifically, {κnl

} of {κn} in such a way that κnl
⇀ v and u ̸= v. Again, from

Lemma (2.2), v ∈ Fix(F). From Lemma (3.1) and Opial’s property, we get

lim
n→∞

∥κn − u∥ = lim
k→∞

∥κnk
− u∥

< lim
k→∞

∥κnk
− v∥

= lim
n→∞

∥κn − v∥

= lim
l→∞

∥κnl
− v∥

< lim
l→∞

∥κnl
− u∥

< lim
n→∞

∥κn − u∥. (3.11)

Therefore, limn→∞∥κn − u∥ ≤ limn→∞∥κn − v∥, obviously contradicting itself.
Hence, the proof is complete.

We now demonstrate the following results on strong convergence.

Theorem 3.3. Consider V , F and the sequence {κn} be the same as defined in
Theorem (3.1). Then sequence {κn} converges strongly to the fixed point of F.

Proof. Once more, the proof is identical to the proof of Theorem 3 in [4]. We can
write Fix(F) ̸= ϕ from Lemma (2.3). By Theorem (3.1), limn→∞∥Fκn − κn∥ = 0.
We can quickly identify a strongly convergent subsequence, since the domain M is
compact, namely, {κkj

} of {κn} with a limit, say, x. From Lemma (2.1), we have

∥κnj
− Fκ∥ ≤ 3∥κnj

− Fκnj
∥+ ∥κnj

− κ∥.

Hence, κnj
→ Fκ whenever j → ∞, so the uniqueness of limits follows Fκ = κ.

By Lemma (3.1), limn→∞∥κn −κ∥ exists. Hence, {κn} strongly converges to limit
x.

Theorem 3.4. Assume V , F and the sequence {κn} be the same as they are de-
scribed in Theorem (3.1). Additionally, if F satisfies the condition (I), then {κn}
strongly converges to a fixed point of F.

Proof. From Lemma (3.1), the existence of limn→∞∥κn− q∥ for any q ∈ Fix(F ),
implies the existence of limn→∞ d(κn, F ix(F)). Suppose limn→∞∥κn − q∥ = s, for
some s ≥ 0. If s = 0, thereafter we get the desired result. Assume s ̸= 0, then from
condition(I), we find

f(d(κn, F ix(F)) ≤ d(κn,Fκn) = ∥Fκn − κn∥.
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From the assumption, Fix(F) ̸= ϕ and using Theorem (3.1), limn→∞∥Fκn−κn∥ =
0, which implies

lim
n→∞

d(κn, F ix(F)) = 0.

From the properties of the function F, we find

lim
n→∞

d(κn, F ix(F)) = 0.

Let {κnk
} be the subsequence of {κn} and {yk} ∈ Fix(F) such that

∥κnk
− yk∥ <

1

2k
∀k ∈ N. (3.12)

Using equation (3.3), we obtain

∥κnk+1
− yk∥ ≤ ∥κnk

− yk∥ ≤ 1

2k
.

For k → ∞, it follows

∥yk+1 − yk∥ ≤∥yk+1 − κnk+1
∥+ ∥κnk+1

− yk∥

≤ 1

2k+1
+

1

2k

<
1

2k−1
→ 0.

Thus, {yk} ∈ Fix(F) is a Cauchy sequence and due to closedness of set Fix(F),
we find {yk} converges to the fixed point q. Assuming k → ∞ in (3.12), we get
{κnk

} → q ∈ Fix(F). As limn→∞∥κn − q∥ exists, it follows that κn → q. Hence,
the proof is complete.

4. Numerical example

In this section, we provide examples to support our findings.

Example 4.1. Consider V = [0, 2], a closed and convex subset of a Banach space
R with a self map F : V → V , defined as:

Fκ =

{
2− κ, ifκ < 1

8
κ+6
7 , ifκ ≥ 1

8 .
(4.1)

By subsequent calculations, we find that F is a Suzuki mapping, but it is not
non-expansive. For this, choose κ = 7/69 and y = 7/55, and we notice that

∥Fκ − Fy∥ =|Fκ − Fy| =
∣∣∣∣1− 7

69
− 337

385

∣∣∣∣ ,
=
27, 182

26, 565
>

98

3795
= ∥κ − y∥,

which implies that mapping F is not a non-expansive on V .
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Next, we divide the solution of the Suzuki property of F on V in two cases, given
as below.

Case 1: Choose κ ∈ [0, 1/8); then (1/2)∥κ − Fκ∥ = ∥κ − 1∥ ≤ ∥κ − y∥ gives
y ≥ 1; i.e. y ∈ [1, 2]. So, one has

∥Fκ − Fy∥ =

∣∣∣∣y + 6

7
− (2− κ)

∣∣∣∣ = ∣∣∣∣7κ + y − 8

7

∣∣∣∣ < 6

7
,

∥κ − y∥ =|κ − y| >
∣∣∣∣18 − 1

∣∣∣∣ = 7

8
.

Hence, (1/2)∥κ − Fκ∥ ≤ ∥κ − y∥ =⇒ ∥Fκ − Fy∥ ≤ ∥κ − y∥.
Case 2: Select κ ∈ [(1/8), 2]; then (1/2)∥κ−Fκ∥ = (1/2)|((κ+6)/7)−κ| = ((6−

6κ)/14) ∈ [0, 3/4]. For (1/2)∥κ − Fκ∥ ≤ ∥κ − y∥, one has ((6− 6κ)/14) ≤ |y − κ|,
so the following possible situations occur:

(a) Whenever κ < y, ((6 − 6κ)/14) ≤ y − κ =⇒ y ≥ ((4κ + 3)/7) =⇒ y ∈
[(1/2), 1] ⊂ [(1/8), 2]. So,

∥Fκ − Fy∥ =

∣∣∣∣κ + 6

7
− y + 6

7

∣∣∣∣ = 1

7
∥κ − y∥ ≤ ∥κ − y∥.

Therefore, (1/2)∥κ − Fκ∥ ≤ ∥κ − y∥ =⇒ ∥Fκ − Fy∥ ≤ ∥κ − y∥.
(b) Whenever κ > y, ((6 − 6κ)/14) ≤ κ − y =⇒ y ≤ κ − ((6 − 6κ)/14) =

((20κ − 6)/14) =⇒ y ∈ [−2, 2]. Since y ∈ [0, 2], y ≤ ((10κ − 3)/7) =⇒ κ ∈
[(3/10), (17/10)]. So, the case is κ ∈ [(3/10), (17/10)] and y ∈ [0, 2].

When κ ∈ [(3/10), (17/10)] and y ∈ [(1/8), 2] are already included in part (a),
we assume κ ∈ [(3/10), 1] and y ∈ [0, (1/8)); then

∥Fκ − Fy∥ =

∣∣∣∣κ + 6

7
− (2− y)

∣∣∣∣ ,
=

∣∣∣∣κ + 7y − 1

7

∣∣∣∣
To make things easier, first we assume κ ∈ [(3/10), 1] and y ∈ [0, (1/8)). Then
∥Fκ − Fy∥ ≤ (1/8) and ∥κ − y∥ > (7/40). Hence, ∥Fκ − Fy∥ ≤ ∥κ − y∥.

Next, for κ ∈ [1, (17/10)] and y ∈ [0, (1/8)), we find ∥Fκ − Fy∥ ≤ (9/40) and
∥κ− y∥ > (7/8). Hence, ∥Fκ− Fy∥ ≤ ∥κ− y∥. So, (1/2)∥Fκ− Fy∥ ≤ ∥κ− y∥ =⇒
∥Fκ − Fy∥ ≤ ∥κ − y∥.

Hence, F is Suzuki mapping on V . Let αn = 2n/(7n + 9) and βn = (1/3n +
7))(1/2), n ∈ N. Table (1) and Figure (1) represents the strong convergence of iter-
ations (SM), leading (JK) and then (TH) to the fixed point q = 1. Clearly, (SM)
converges faster to q = 1.
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Table 1. Values of iteration (SM), (JK) and (TH) for the mapping F defined in Example (4.1)

n TH JK SM

1 0.9 0.9 0.9

2 0.998056709530883 0.999277985546009 0.999722387075840

3 0.999962765675244 0.999994380533018 0.999999240115821

4 0.999999290481345 0.999999953941357 0.999999997931432

5 0.999999986511409 0.999999999607583 0.999999999994382

6 0.999999999743813 0.999999999996553 0.999999999999985

7 0.999999999995135 0.999999999999969 1.000000000000000

8 0.999999999999908 1.000000000000000 1.000000000000000

9 0.999999999999998 1 1

10 1 1 1

11 1 1 1

Figure 1. Convergence behaviour of (SM), (JK) and (TH) iterates to q = 1, where, q is the unique
fixed point of the self map F in Example (4.1) with κ1 = 0.9
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Table 2. αn = 3n/(5n + 7) and βn = (1/(n + 7))1/2

Iterates number converges to 1

x1 TH JK SM

0.9 10 9 7

0.5 10 9 7

0.1 10 9 8

0.05 10 9 8

Table 3. αn = 1/
√
9n + 1 and βn = ((2n + 1)1/3)/(10n + 11)

Iterates number converges to 1

x1 TH JK SM

0.9 10 10 7

0.5 10 10 7

0.1 11 10 8

0.05 11 10 8

Table 4. αn = n/(n + 5)1/7 and βn = 1/
√

(7n + 3)

Iterates number converges to 1

x1 TH JK SM

0.9 9 11 7

0.5 9 11 7

0.1 9 11 7

0.05 9 11 7

5. Conclusion

One can find from Tables 1-4 that (SM) iterative method converges faster than
(TH) and (JK) for the Suzuki type mappings.
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