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Normal Form for the 1:1 Resonance Problems for
Delayed Reaction-Diffusion Systems*
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Abstract This article presents a direct method for calculating the normal
form coefficients of a 1:1 resonant Hopf bifurcation in reaction-diffusion sys-
tems with time delay and Neumann boundary conditions. The formulas ob-
tained in this paper can be easily implemented using a computer algebra sys-
tem such as Maple or Mathematica.
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1. Introduction

Hopf and generalized Hopf bifurcations have been extensively studied by many re-
searchers (e.g., see Ref. [1-5], and are associated with a pair of purely imaginary
eigenvalues at an equilibrium. If the Jacobian of a system evaluated at a critical
point involves two pairs of purely imaginary eigenvalues, the so-called “double-Hopf
bifurcation may occur. Such bifurcations may exhibit more complicated and inter-
esting dynamic behavior such as quasi-periodic motions on tori, and chaos (e.g., see
Ref. [6-10]). A bifurcation is called non-resonant if the ratio of the two eigenvalues
is not a rational number, otherwise it is called resonant. The most important reso-
nance is the 1:1 non-semisimple case, in which the purely imaginary eigenvalues at
criticality are assumed to be double and non-semisimple. This bifurcation has been
presented as an open problem in Kopell and Howard [11] and in Guckenheimer and
Holmes [7] and in Ref. [12-14]. To date there has been little research on the 1:1
resonant Hopf bifurcation.

The 1:1 resonance is important in a number of applications such as wind-induced
oscillations of bundled conductors and aircraft longitudinal dynamics when the
eigenvalues corresponding to a pair of elastic modes approach each other and the
imaginary axis, see Ref. [15].
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Normal form theory is one of the basic methods for the study of non-linear
dynamics such as the singularity, Hopf bifurcation and homoclinic and heteroclinic
bifurcations. The theory of normal form is concerned with constructing a series
of near identity non-linear transformations that simplify the non-linear systems
as much as possible. With the aid of normal form theory, we may obtain a set
of simpler differential equations, which is topologically equivalent to the original
systems. Being “simpler” means that some non-linear terms may be eliminated
from the original differential equations. Also the normal form for a 1:1 resonance
Hopf bifurcation was expressed by some researchers see Ref. [12,13,16], but there
are no explicit formulas relating the coefficients of the original system to those of
the normal form.

The main attention of the paper is focused on developing a new and efficient
computation of the normal forms for 1:1 resonant Hopf bifurcation. This bifurcation
has linear codimension-3, and a centre subspace of dimension 4. With the help of the
results presented in this paper, one can apply the analysis to any physical problem
exhibiting a generalized Hopf bifurcation with non-semisimple 1:1 resonance.

The aim of this paper is two-fold: first, to present an explicit formula for the
normal form of a generalized Hopf bifurcation with non-semisimple 1:1 resonance.
Second, to use the results with those obtained to the vector field.

2. Decomposition of the phase space

In this section, we explore the decomposition behaviour of abstract reaction diffusion
retarded functional differential equation with parameters in the phase space C =
C([—7,0]; X™), described by

u(t) = DAu+ L(p)ur + F(ut, 1), (2.1)

where u; € C is defined by u(8) = u(t +60),—7 < 6 <0, p € RP is a parameter
vector in a neighborhood V of zero. L(p):V — L(C,X™) is C* for k >3 and F :
CxRP — X™is C*(k > 2) with F(0,u) = 0, DF(0, ) = 0, D = diag(dy,ds,- - - d,,
and d; > 0 for i = 1,2,---m. X™ : {(uy,ug,---ul) € (H*(0,lx))™ : %(O,t) =
%(lﬂ, t)=0,i=1,2,---m} is the real-valued Hilbert space.

For Laplacian operator A, we have the following properties (see [17-20]).

(P1) DA generates a Cp semigroup {T'(t)}+>0 on X™ with |T'(t)| < Me“!(t >
0)for some M > 1,w € R and T'(t) is a compact operator for t > 0;

(P2) The eigenfunctions {8} : k € Ng = NUO0,j = 0,1,---m} of DA, with
corresponding eigenvalues {py, : k € Ny}, form an orthonormal basis for X™ where

_ k2 Y _ cos% k . .
pr = —qz.k € No and B} = ymej, ym = —L||cosfz|| : k € No,j = 0,1,---m.
Denote
<v(.), B >
<v(.),B; >
< l/(')vﬂk >i=
<v(.), B >

for v € C and By = (B4, B2, - -+ B™).
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Define L = L(0). Then, the linear homogeneous reaction diffusion retard func-
tional differential equation (2.1) can be written as

u(t) = DAu + Luy. (2.2)
We make the following hypothesis:
(H1) L can be extended to a bounded linear operator from BC to X™, where

BC = {(p :[-7,0] = X™ : ¢ continuous on [—T, 0),3911%1 w(0) € Xm}
e

with the sup norm.
Let A be the infinitesimal generator such that

Ap =&, Dom(A) = {p € C'([~7,0], X™) : $(0) = DAP(0) + L},
and the spectrum of A coincides with the point spectrum of A, i.e.
o(A) =0,(A) ={A€ C: A(N)y =0, fory € Dom(A),y # 0},
where

ANy =My — DAy — L(e)‘y), (2.3)

is the characteristic equation of (2.3). Using the theorem of reaction-diffusion, (2.3)
is equivalent to the sequence of equations detAy(A) = 0, where

Ar(\) == M — D — Ly(e*), k € Ny,

and the linear equation (2.2) is equivalent to a sequence of functional differential
equations
z(t) = —ux Dx(t) + Lyzy, (2.4)

with the characteristic equation given by (2.4), where x; =< u, 8 >€ C and

satisfying
0

() + Lo = [ dno)elo). veec (2.5)

—T

Here, n(0)(0 € [—7,0]) is an m x m matrix function of bounded variation.
Define the bilinear form between C and €’ = C([0, 7], X™") by

0 0
()i = $(0)(0) — [ /0 B(E — 0)dn(0)p(€)dE, ¥ € ', ¥ € C.

In the following, we will consider the case where L has a simple purely imag-
inary eigenvalues +iw with algebraic multiplicity 2 and geometric 1 and all other
eigenvalues have negative real parts when k = ky. C can be decomposed as

C=PaQ, WhereQ:{@GC:<¢,¢>=O,V¢EP*}7

with dim p = 3, where P is the eigenspace generalized by the eigenfunction corre-
sponding to iw. Choose the bases ® and ¥ for P and P* respectively such that

<U,d>=I d=0J ¥=-JT,
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where ®(0) = (61(0), $2(0), $1(0), $2(6)) which can be detedminded by
$1(6) = ¢1e™?, $2(6) = (¢ + 07)e™”.
(A — iw)¢? = 0, (A —iw)¢y = ¢7.
U(s) = (1(s), ¥a(s), 41 (s),1h2(s))T which can be detedminded by
Pa(s) = e by (s) = (] — syh)e” ™",
(A* + i)y = 0, (A" + iw)yd = ).

I is the m x m identity matrix and

w1l 0 0

0Oiw 0 O
J:

0 0 —iw 1

00 0 —w

Following the ideas in [5], we consider the enlarged phase space BC, and
BC = {90 :[-7,0) = X™ : ¢ continuous on [—7,0), Eelim p(f) e X™ } .
—0~

Then, the continuous projection 7 : BC' — P, defined by

m(p) = (¥, < @, B >).Br,

allows us to decompose the enlarged phase space BC' = P & Kern. We decompose
u € Cl as u(t) = ®x(t)Bx + y, where x(t) = (¥, < u(.), B >) and let

1 1
F(”?/’L) = F(x7yvu) = L(M) - L(O) + §F2(x7yau) + gFg(I’,y,,u) + h.o.t.

Then the original system becomes

i = Jr +U(0) < F(®xfr, y, 1), B >

4 . (2.6)
at = L1(y) + H(®z,y, p),
where B B
H((I)xvya:u‘) = (I - ﬂ—)XO* < F((bx/glﬁynu)?Bk >
With the formal Taylor expansions, system (2.6) can be rewritten as
o 1 gl
x_Jx+Zj22 ffj (xvya:u’)v (27)

W= Ly(w) + Y5 S 2@y, 1),

Let
1771 _ 1 1
M;U; = DU (z,p)Jx — Uj (2, p),

M;U? = DU (%, p)Jx — L U3 (2, ).
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Similar to the work of Song [3], (2.7) can be transforms into the following normal
form:

& =Jr+ 593(x,0,p) + 395(x,0,0) + - - -, (2.8)
9= Li(y) + 51952, 0, 1) + 5793 (2,0,0) + -+,

where g; = (9§,97), j = 2,3, given by
1 _ 71 1771 2 _ 72 27172
9; = I; = M;Uj, g5 = fj — MjU;
with . .
fa(,0,p) = fa(z,0,0), f5(2,0,pn) = f3(z,0,p)
and
. 3
f3(2,0,0) =fi(x,0,0) + i[Dmfj(x,0,0)Uj(x, 0,0) + D, f5(x,0,0)U3(x,0,0)
_DIU%(xvovo)g%(mvoa0)))]'

3. Explicit formulas of g;(z, u,0) with three param-
eters

We need to compute gi(z,u,0) in (2.8) with three parameters. For a normed
space Z, denote VJG(Z) the linear space of homogeneous polynomials of (z,pu) =

(21,22, 23, 3, 11, (42, p3) With degree j and with coefficients in Z and define M the
operator in Vj7 with the range in the same space by

M;(p, h) = (Mjp, M;h),

where

Mjlp = DwP(xnu)Jx - JP(J},/J,), \V’P(.ﬁ,,u) € HZ—H’H
and

oP, 0P, 0Py OP
Py(z, 1) 911 Ovs Ozs O1s
0Py OP; 0Py OP:
Pl ) = Py(, ) D, P(z,p) = | 00t 00x Os Ous
’ Py(z, 1) PR A 9Py 9P; OP3 9P
3\, L 8z, Oxy Ows Oxg
oP, 0Py, 0P, OP.
Py(x, ) 921 Ovs Ozs Ovs

szh = szh(x, w) = Doh(x, p)Jo — Agrh(x, jt).
Using M jl, we have the following decompositions,
VP (R?) =Im(M}) & (Im(M;)), VP (R?) = Ker(M,) & (Ker(M}))".
Then, g3(z,0, 1) can be expressed as

Q% (2,0,p) = Proj(lm(le))cle (w,0, ).

According to fact that féﬂ y2dx = 1, we obtain the following theorem.
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Theorem 3.1. Let

1 m m
fa(2,0, 1) = Xi1<icj<a1<m<a0] 5T j€m + X1<im<a,1<k<3b] 5 Tillkem

m
+X1<k<1<3,1 <m<ACl Kk U Em -

Then
0 0
(2,0, 1) = (0F1 111 + Do + bizps) w1 N 0
0 0
0 (0311 + blopia + b3gpus) o3
0
n (631 4 b1y s + (B35 + big)ua + (b33 + bi3) p3) 2
0
0
0
0
i 0
(631 + b3 1 + (b + b3a) o + (b5 + b3s)s) 24

4. Explicit formulas of gi(x,0,0)

Now let us compute U3 (z, ) by MaU3 (x, u) = PrOj(Im(le))f% (2,0,0).

The matrix of M} is

Ay —Iip O O
O A O O
O O Ay —-Ip

O O O A,
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where
w0 0 0 0 0 0 0 0 0
2w 0 0 0 0 0 0 0 0
00— 0 0 0 0 O 0 0
00 1 —w0O 0 0 O 0 0
A = 01 0 0w 0 0 0 0 0 ’
00 1 0 O0—-iw O O 0 0
00 0 1 0 1 —iw O 0 0
00 0 0O 0 0 0 —3iw O 0
00 0 0 0 0 O 2 Jiw O
00 0 0 0 0 0 O 1 —3iw
3w 0 00 0O OO 0 0 O
2 w00 0 00 O O O
0 0&w0O O OO0 O O O
0 0 1w 0 00 0 0 O
Ay — 0 1 003w 00 O 0 O
0 010 0iw0O 0 0 O
0 001 0 14w 0 0 O
0 000 0 0O0—-w 0 O
0 000 0 00 2 —iw O
0 000 0 00 0 1 —iw

000 0 0 O ai, ai 1
ui o 2 3w00 0 00 0 0 0 ai, aia
ui 3 0 0iwO 0 00 0 0 O ai 3 ais
ui 4 0 0 14w 0 00 0O 0 0 aiy ai,
upo [ [ 01 003w00 0 0 0 as.o N a3
ubs 0 0100 iw0 O 0 0 al s a3y |
Uj 4 0 001 0 14w 0 0 0 as 4 a4
u3 3 0 000 0 O0O0—iw 0 0 ai 5 a33
u3 4 0 000000 2 —iw O a3 4 a3,
ug 4 0 000 000 0 1 —iw ai 4 a2,
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000 0 0 0 ai
ui 5 2 3iwb 0 0 00 0 0 0 ais
ui g 0 0iw0O O 00 0O 0 O ais
uf 4 0 0 1iw 0O 00 0 0 O aia
udo | [ 0O 1 003w00 0 0 0 a3
sl | 0o 010 0iwo0 0 0 o a2y |
u3 .4 0 001 0 liwO 0 O a3.4
u3 3 0 000 0 0O0-iw 0 O a3s
u3 4 0 000000 2 —iw 0 a3.4
uf, 0 000000 0 1 —iw a4
uf -4 0 0 0 0 0 0 0 00 ai ai
uf, 25 -3 0 0 0 0 0 0 00 ai ats
uf 5 0 0 -0 0 0 0 0 00O al s als
uf 0 0 -0 0 0 0 00 ai 4 ata
wiz | _|#r gz 0 0 -5 0 0 0 00 e |, aso
ul 5 0 0 % 0 0 -2 0 0 00]]|als ass |
us 4 0 0 2% %5 0 H-L 0 00 a3 4 a3
ui s 0 0 00 0 0 0 £ 00 a33 a33
u3 4 0 0 0 0 0 0 0 =% Lo aj.4 as.4
ud 0 0 0 0 0 0 0 -2 L1 a4 ai
ui 5= 0 0 0 0 0 0 0 00) [al,
ui o 2z -3 0.0 0 0 0 0 00 ai s
ui 3 0 0 -0 0 0 0 0 00O als
uf 4 0 0 -0 0 0 0 00 aia
o | | #m g5z 0 0 =35 0 0 0 00 || az
wis| | 0 0 L 0 0 -0 0 00]|[ais
U4 0 0 2 %5 0 H -L 0 00]]|as4
u3 3 0O 0 0 0 0 0 0 <L 00 a3
u3 4 o 0 0 0 0 0 0 % o0 a3.4
U4 0 0 0 0 0 0 0 -2 %</ \ai,

Computation of UZ(z, ) by MaU3 (x, u) = Proj(Im(le))f%(x, 0,0).
Using M2U3(x,0,0) = f2(x,0,0), and defining U2 (z,0,0) = h(z), we have

Dyh(x)Jx — h(x) + Xolh(z)(0) — L(0)A(x)] = f3(x,0,0),
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where h stands for the derivative of h(z) respective to 6 and h(x) can be written as

h(x)(6) = haoooz] + ho2003 + hoo2023 + hooo2: + hi100T122

+ hio10T123 + h10017124 + ho1102273 + ho1012224 + hoo1173%4.
Similar to the work of Ref. [13], we have

haooo — 2iwhagoo — hi100 = 28(0) W (0)azz, ho200(0) — L(hoz00) = 2as2,

ho200 — 2iwhgz00 = 28(0)¥(0)a11, h2000(0) — L(ha2o00) = 2a11,

hio10 = 2®(0)¥(0)as3, hi010(0) = 2a13,

hotot = hot1o + hioo1 + 28(0) ¥ (0)aza, ho101(0) — L(hoio1) = 2as4,

h1100 — 2iwhi100 — h1100 = 2h2000 + 2@(0) ¥ (0)a12, h1100(0) — L(h1100) = 2a12,
h10o1 = hio1o + 22(0)¥(0)ars, h1001(0) — L(hioo1) = 2a14,

hot1o = hioto + 22(8)¥(0)azs, hi001(0) — L(hioo1) = 2ass,

where a;; = (agjl-),ag),al(-?)7al(-?))T, 1,7 =1,2,3,4.

0
0

0 0
Cl2 .1321‘3 a2 + al $2$4
g5(2,0,0) = 1131 4 (af14 113)T7
0 0
0 0
0 0
(afa3 + 2ai13)717223 n (afas + 2a114 — alag — 2a353) 17274
0 0
0 0
0 0 0
0 0 0
+ n )
0 0 0
azllSB-Tll'% (a’§33 + ai’Sg)SL’gxg (a%34 + 2a?33)$1x3x4
0
0
’ (4.1)
0

=W

4 3 4
(a34 + 2a335 — i34 — 2a744)T2T374

According to Theorem 3.1 and 4.1, we have the following about normal forms
of vector fields.
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Theorem 4.2. Suppose that the Jacobian of vector field (2.1) evaluated at a critical
point involves double purely imaginary eigenvalues with geometric multiplicity one.

Then, the reduced normal form with unfolding has the following form on the center
manifold near X = 0:

I w1 0 0 T
To _ 0w O 0 To
j'}3 0 0 —iw 1 I3
T4 00 0 —iw Ty
0 0
(03111 + bRgpua + bgpus) 2 N 0
0 0
0 (D311 + b3apa + bizps)s
0
n ((b31 4 b1y )1 + (D3 + blg)po + (b33 + big)ps)w2
0
0
0
0
_|_
0
(b1 + b31)p1 + (bl + b3g) o + (b3 + b33)p3)zs
0 0 0
9%1355%5”3 n (a%u + ahg)x%u n (a%23 + 2‘1%13)%1372953
0 0 0
0 0 0
0 0 0
a,, + 2at,, — alo. — 202,z 1m0 0 0
(ataq 114 — G123 523)T1T2T4 n n
0 0 0
0 af3321 73 (a333 + afzz)row3
0 0
0 0
+ + L (42)
0 0

4 3 4 3 3 4
(ai3q +2a733)T17324 (a334 + 2a535 — ajzy — 2a744)T27374
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It is worth noting that the first 4 vectors in the basis are complex conjugates of
the last 4, as expected. Hence, we can confirm that the coefficients in the equation
satisfy the following conditions:

2 _ 4 2 _ 4 1 _ -3 2 _ 4
113 = A133, Q114 = Q233, 4113 = G133, Q123 = A134)

2 _ 4 1 _ -3 1 _ -3 2 _ -4
Q14 = Q2345 Q114 = Q233, (123 = A134, Q223 = Q144-

Denote Ay = (b3, 11 + biopz + bisps), A1 = (b31u1 + bgopz + bisus); A2 = (b3, +

b1y )+ (b3 4b1o) pa+(b35+b1g) ps), Ae = (b, 4b31 ) 1 +(bia+b3y) pra+(bis+bds) us);
z1 = X1, 21 = T3, 22 = To, Z = T4, the normal form up to the third order is

1 w1 z1 0 0 0
= + +
29 0 iw 29 A121 + Aozo a?22 5 (a3, + ati5)2i%
0 0
N ot . (43)
(afy3 + 2a},3) 212271 (afyy + 20114 — ajgz — 2a353) 21222

— i0 — il — — 42 — 42 1 —
Let 21 = re™, 2z =19e"™, @ =01 — b, a = ayy3, b = ajyy +an3, ¢ =
a3ys + 2ai,5, and d = a?y, + 2ai;, — aly; — 2a3.5. Therefore, we can obtain the

following:

1 = r2C08y,

7'y = r1[Re(\1)cosp — Im(a)sing] + Re(Aa)ra + ri[Re(a)cosp — Im(a)sing],

)
+r2ra[Re(b)cos2p — Im(b)sin2¢ + Re(c)] + r1r3[Re(d)cosp — Im(d)sineg,

’I"S
¢ = —2sing — L[Im(A1)cosp + Re(A2)sing] — 71

T

[Im(a)cosp + Re(a)siny]
) (d)

(
—12[Im(b)cos2¢p + Re(b)sin2p + Im(c)] — rira[Im(d)cosp + Re(d)sing.

(4.4)

The number of the positive equilibrium points of (4.4) corresponds to the number
of the periodic solutions of (2.1).

5. Conclusion

In this paper, we have derived the normal form computational formulas for 1:1
resonant Hopf bifurcation based on normal form theory. The core of the research
lies in constructing a novel and efficient computational method to solve for the
normal form of 1:1 resonant Hopf bifurcation. The bifurcation features a linear
codimension-3, and a centre subspace of dimension 4.
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6. Appendix the calculation of complementary spa-
ce

6.1. Proof of Theorem 3.1

Let 1,22, 23,24 be independent variables, pu1, o, 3 be independent parameters,
C be the complex number field, and

1 0 0 0 T
A1
0 1 0 0 To
€1 = ,€2 = y€3 = , €4 = ;X = =1 2
0 0 1 0 T3
H3
0 0 0 1 Ty

Let ¢, 7, m be positive integers, and
2 m m
Hi 5(X,p) = {X1<i<j<a1<m<a0] 50T j€m + 1< jm<abi jTifljem~+

m m M m
Yi<i<j<a1<m=<acyifjemlai’y, b, ¢y € Ch

With the general inner product, H? | 3 is an inner product space over C.

Define the linear translation M3 on H3, 4 by J as follows:

Denote E,, the n x n identity matrix, E;; the matrix that (i, j) element is 1 and
other elements 0, and

x5 =0, e =(0,0,0,0)".
Define two maps «, 3 :
1,1=1,2, ) 0,7=0,2,4,

a(i) = B(i) =
—1,i=3,4. 1,i=1,3.

Lemma 6.1. For any x;Tjem, TillkCm, Ik iim € Hf+3, we have

M (ziwjen) = [ai) + a(j) — a(m)]iwzizjen + [B(D)zivi12; + B())Tiwj11]en
—B(m — Dzizjem—1,
M3 (zippen) = [a(i) — a(m)]iwz;prem + B(0)xir1prem — B(m — ) xippem_1,
My (prpiem) = —o(m)iwpppen — B(m — 1) g pem—1.
Proof.
My (ziz€m)
= (2;Emj + jEmi) (22 + twzy )er + iwzses + (24 — iwzs)es — iwxsey)
—(iwE11 4+ Eqa + iwEsy — iwEss + Esq — iwEyy)T,xi€m,
= [a(i) + a(j) — a(m)]iwzizjem + [B())Tirz; + B(1)Tizj+1]em

—B(m — 1)z;xjem—1.
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M; (wipinem)

= p Emi((iwzy 4+ x2)e1 + iwzaes — (iwzs + x4)e3 — iwxgey)
—(iwFE11 + E12 + iwFEsy — iwE33 + E3y — iwEyy)x;ikem

= [a(i) — a(m)]iwz; prem + B(1)Tit1prem — Bim — 1) pigem—1.
My (prepuaenm)

= —(iwE11 + Ei2 + iwEsy — iwE33 + E3y — iwEya) g fliem 0

= _O‘(m)iw,u}c,ulem - ﬁ(m - l)ﬂkﬂlem—L

Proof. [Theorem 3.1] (1) Cleverly choose a standard orthogonal basis of H7 5 as

follows:

f1 = Ti1T1€1, f2 = T1x2€1, f3 = T2x2€1, f4 = T1T3€q, fs = T1T4€1,

fo = xaxzer, fr=xax4e1, f3=1x31301, fo= 373401, [10= Tam4e],

fi1 = ziper, fi2 = wapie1, fis = x1poer, fia = vopser, fis
fi5 = wouser, fir = xapier, fis = vapier, fio = xTapger, fao
fo1 = T3H3€1, fo2 = T4p3€1, foz = H1M1€1, foa = H1M2€1, fas

fa6 = popaer, for = papser, fog = pHspser;

Ja0 = z1T1€2, f30 = T1T2€2, f31 = ToX2€2, f32 = T1T3€2, f33
f34 = wax3ea, f35 = Taxs€2, f36 = T3T3€2, f37 = T3T4€2, f38
f30 = x1p1€2, fa0 = Tap1€2, fa1 = T1p2e2, fi2 = Topzea, fi3
faa = wapzes, fas = T3p1€2, fa6 = Tap1e2, far = T3p2€2, fi8
Ja9 = z3pzez, fso = Tapzez, fs1 = pipaes, fsa = pipae2, fs3

fsa = popoes, fs5 = papises, fse = papzes;

fs7 = z171€3, f58 = T1T2€3, f50 = TaTae3, feo = T1T3€3, fo1
fe2 = waxzes, fo3 = wazaes, foa = w373€3, fo5 = T3T4€3, fo6
fer = x1p1€3, fos = Tap1€3, foo = T1p2e3, fr0 = Tapzes, fr1
fr2 = xapzes, fr3 = x3piez, fra = vapiez, frs = r3pzes, fre
Jrr = x3pses, frs = Tapses, fro = pipies, fso = pip2es, fs1

f82 = H2l2€3, f83 = H2H3€E3, f84 = H3HU3€E3;

HAY RIS T
Tyql42€1,

H1p3€1,

T1T4€2,
T4T4€2,
T1p3€2,
Typ2€2,

H1p3e€2,

T1T4€3,
T4T4€3,
T1p3€3,
Typ2€2,

Hnip3es,



Normal Form for the 1:1 Resonance Problems 1079

fss = z171€4, f36 = T1W2e4, fe7 = aoes, fss = w1T3€4, f39 = T1T464,
foo = z2w3eq, fo1 = Tawseq, foo = w3w3es, foz3 = w3ws€4, fos = TaTyey,
fos = w1p1es, fos = Tapres, for = T1poes, fog = Topzes, foo = Tipzey,
fi00 = wapzes, flor = x3pies, floz = Tapries, flo3 = T3pzes, floa = Tapizey,
fi05 = x3u3zeq, fro6 = Tapzes, fror = pipies, fios = pipzes, fioo = papses,

f11o = H2M2€4, f111 = U2M3€4, f112 = HU3HU3€E4.

Using Lemma 6.1, we get the matrix of M3 (HZ, ) on the basis fi, fa, -, fi12.
Al—E%5|0O| O
Ol A |0O] O
M = ,
O| O |B|—Esg
Ol O |0|] B
where
iwEs + Cy 16) 0] 10) 16) o
16) —iwE, + Cs 16) 16) 16) o
A o o —3iwEs + C1| O 16) o
o o I6) o Cs o o ’
O O O O |—2iwEg + C3 O
16) 16) 16) 16) 16) —iwEsg
3iwE; + C1 16) o 16) o| o
o iwEy + Co o 10) o| o
B o o —iwEs + Cy 16) o| o
o o o o 2iwEs +C3| O] O ’
o o o 16 Cs| O
o 16) o o O |iwEs
0000 000000
000 100000
1000 000000
Ci=|200],C= ,O3 =
1000 001000
010 000000
0011 000010

Using elementary column transformation, M can be simplified as follows:

Eio

E22
—Cs Osx6
M — Eog

Eg

Ea2
—Cj3 Osx6
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Let

(91392,"' » 938, 945, 946, " - * , 9100, 9107, 9108, " * ,9112)

Eg

—Cj3 O6x6

:(f17f2a"'7.f112) Eag

Eg

—Cj3 O x6

Es

. . 1 2
Then7 91,92, , 938,945,946, " * , 9100, 9107, 108, - - , g112 1S & basis of MQ (H4+3)~
Because

Eio

Eg

FEbg 5 (H - E6)
Eg

Es

is invertible, gsg = f39, 940 = f10, 941 = fa1, 9a2 = fa2, ga3 = fa3, gaa = faa,
g101 = fio1, 9102 = f102: 9103 = f103, 9104 = fi04, 9105 = f105, 9106 = fio6 is a basis
of a space complementary to Mj(H3,4). That is

Hf+3 = ‘M21(Hf+3) oW,

where W is the subspace spanned by

0 0 0 0 0 0
T1p1 T2l T2 T2 2 T1H3 T3

o |l o [l o [ o || o || o]

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

o |l o [ o || o |f o || o

T3l Tyf1 T3 M2 T4 b2 T3M3 T4p3
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(2) Write fi(x,0,u) = Zifl agfr = 211;21 Yrgr. Then

Eio
U1 Es ai
Y2 P22 a9
—C3 Esg
= Eos
E¢
Eo2
Y112 —Cs Bo a112
Eg
E1o
Es al
E32 ag
Cs Es
= Eozs
E¢
Ez2
Cs e ai12
Eg
Thus
Y39 = a39,

Y40 = @40 + a11,
Ya1 = Q41,

Ya2 = @42 + a13,
Y43 = Q43,

Y44 = Q44 + a5,
Y101 = @101,

Y102 = Q102 + ars,
Y103 = @103,

Y104 = Q104 + a7s,
Y105 = G105,

Y106 = Q106 1+ a7,

Yi = a4,

i=1,2,---,38,45,46, -- 100,107,108, - - , 112.

Since 2?31 yigi+2§$5 yi9i+23i2107 yigi € M3 (H3, 3), there exists P(x, 1) € H3 5
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such that

0 0

b2 T b2 +b1 T
f4(@,0,p) = M3 (P(z, )+ | 1 n (021 + byy) 2

0 0
0 0
0 0 0 0
by i N (039 + big)xapa n bizrips n (b33 + big)zaps n
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
+ + + +
0 0 0 0
b3y w301 (b1 + b31)Tapn b3aT3hn (bl + b3y)zapn
0 0
0 0
Jr
0 0
b3zx3 i3 (bds + b33)xaps

Remark 6.1. In general, there exist infinitely many spaces witch are complemen-
tary to the space M3 (HZ, ).
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