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Dynamics in a Delayed Eco-epidemiological Model
with Disease in the Pest∗

Shiteng Lai1 and Sanling Yuan1,†

Abstract In ecology, it is of great significance to research the influence of
gestation period on the dynamics of eco-epidemiology. In the paper, we es-
tablish and explore a delayed predator-pest model with disease in pest. We
first analyze the existence and local stability of each equilibrium of the model.
Then, we investigate the existence of Hopf bifurcation at the coexistence equi-
librium. Moreover, we calculate the normal form to examine the properties of
Hopf bifurcation. Some numerical simulations are conducted to verify the the-
oretical results obtained and explore how the delay affects the biomass of pest.
Our findings may contribute to a better understanding of the mechanisms of
interaction between species in eco-epidemiology. At the same time, this study
also provides an insightful perspective into the control of pests in ecosystems.
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furcation, normal form

MSC(2010) 92C10, 92C15.

1. Introduction

In agriculture, organisms that cause harm to agriculture by destroying crops or
parasitizing livestock are referred to as pests. They can directly or indirectly cause
damage to the human population. It has been noticed that there are many animals
and birds that feed on pests but do not affect the development of ecosystem, and
therefore could be employed as an ecological method for the control of pest. This
has been investigated extensively by constructing mathematical models in many
recent research works [1–4]. On the other hand, some diseases may have a direct
impact on pests, which can serve as a biological control to indirectly reduce pest
populations [5–8]. In fact, once the pests are infected, they will become less mobile
and their escape responses are weakened. Additionally because the lifestyle of the
infected pests has changed and they live in habitats accessible to predators, and
therefore can be easily caught by predators [9,10]. Thus, a profound comprehension
of predation mechanisms is essential for elucidating the principles governing the eco-
epidemiological system. Bhattacharyya et al. [7] proposed a mathematical model for
pest management under virus infection which provides insights into the interaction
between infected pests and predator in the epidemiological dynamics. Joly et al. [11]
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have demonstrated that severe infection of Echinococcus granulosus makes moose
vulnerable to capture by wolves, suggesting that the disease plays a remarkable role
in regulating moose populations.

Eco-epidemiology is considered as a very significant field of research in math-
ematical biology that simultaneously takes into consideration the ecological and
epidemiological factors from both mathematical and ecological perspectives. The
mathematical modelling researches based on the eco-epidemiological frameworks
have attracted great attention of many researchers since the pioneering study of
Hadeler and Freedman [12] and Chattopadhyay and Arino [13], and there are
a large number of works devoted to exploring the impact of disease on ecosys-
tems [14–16]. In eco-epidemiology, researchers explore an ecosystem with contagion
either in predator [17–19] or in prey [20–22], or in both populations [23–25]. Li et
al. [19] explored a mathematical model with diseased predators in an open envi-
ronment, and obtained sufficient conditions for the disease to successfully invade
the system. Hsieh and Hsiao [23] put forward an eco-epidemiology model with in-
fected prey and infected predator, and their results indicate that the coexistence
of organisms is determined by ecological threshold. It is worthy of noting that the
eco-epidemiological models usually exhibit more complex dynamical behaviors than
those without diseases.

Notice that time delay is an extremely common phenomenon in ecosystems;
neglecting time delays implies neglecting the reality [26–28]. When developing an
eco-epidemiological model, it is important to keep in mind that predators need
to accumulate enough energy and nutrients over a period of time after eating to
reproduce successfully, and therefore the reproduction is not instantaneous. It also
important to explore the influence of time delay on the dynamics of the model
[21, 29–31]. As an example, Xiao and Chen [21] proposed a delayed mathematical
model with infected prey, in which the infected prey was assumed to be unable to
reproduce and predators need certain time to reproduce after consuming the prey.
Their results indicate that the delay may disrupt the stability of the system and
lead to the occurrence of Hopf bifurcation. It is worth noting that the pregnant
individuals may die during their pregnancy. It is necessary to incorporate this
when constructing ecological dynamics models. To the best of our knowledge, few
investigations have considered this factor in the eco-epidemiological models. In this
paper, by explicitly incorporating the effct of this factor using a survival probability
after pregnancy in the delay terms, we study how the time delay affects the dynamics
of an eco-epidemiological model.

The organization of this paper is as follows. In Section 2, we present the model
and some preliminary results, including the positivity and boundedness of the so-
lutions. In Section 3, we perform the existence and stability analysis of equilibria
of the model and derive conditions for the occurrence of Hopf bifurcation at the
coexisting equilibrium. In Section 4, we compute the normal form to determine the
nature of Hopf bifurcation. Some numerical simulations are given to confirm the
theoretical results obtained in Section 5. Finally, we briefly summarize the paper
in Section 6.

2. The model and some preliminaries

Assume that there is a disease spreading in a pest population, and that the infected
individuals are too vulnerable to compete for the resources with susceptibles. Mean-
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time, they can be easily preyed once encountering the predators. To explore the
combined effects of predators and disease in the control of pests, in Kar et al. [4],
the authors proposed an eco-epidemiological model as follows:

dS
dt = rS(1− S

K )− βIS − γSP
a+S ,

dI
dt = βIS −mIP − µI,

dP
dt = α1γSP

a+S + α2mIP − δP,

(2.1)

where S(t), I(t), P (t) are the numbers of susceptible pest, infected pest and preda-
tors at time t, respectively. All the parameters are nonnegative. r is the intrinsic
birth rate of susceptible pest, K is the carrying capacity of the pest, β is the trans-
mission rate of disease, a is the half-saturation constant, α1 and α2 stand for the
conversion factors, and µ and δ are respectively the natural death rates of infected
pest and predators; mI and γS

a+S are the response functions describing respectively
the capture rates of predators to the infected and susceptible pests, where m and
γ denote the corresponding maximum capture rates. See the flow diagram of the
model in Fig. 1. The authors have performed a detailed stability analysis of the
model, and indicate that the spread of disease in the pest population can induce
the occurrence of Hopf bifurcation.

Susceptible(S) Infectious(I)

Predator(P)

Figure 1. The flow diagram of model (2.1)

Notice that model (2.1) has not considered the time required for the conversion
from the pest preyed to predators, and therefore fails to comprehensively describe
the interactions between the pest and predators. Hence, it appears more appropriate
to incorporate it into model (2.1). By regarding the time required for the predators
to reproduce their offsprings after eating pests as a time delay τ , we propose the
following model:

dS
dt = rS(1− S

K )− βIS − γSP
a+S ,

dI
dt = βIS −mIP − µI,

dP
dt = αγS(t−τ)P (t−τ)

a+S(t−τ) e−δτ + αmI(t− τ)P (t− τ)e−δτ − δP,

(2.2)

where the factor e−δτ in the conversion rate term is used to describe the effect of
death of predators in the period of their pregnancy. Notice that we have assumed
α1 = α2 = α in model (2.2) since the susceptible pests and the infected pests are
the same species and therefore the same food for predators. From the perspective
of biological feasibility, model (2.2) should satisfy the following initial conditions:

S (ν) = ψ1 (ν) , I (ν) = ψ2 (ν) , P (ν) = ψ3 (ν) , ν ∈ [−τ, 0], (2.3)
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where (ψ1(ν), ψ2(ν), ψ3(ν)) ∈ C+ := C([−τ, 0],R3
+) and R3

+ = {(x1, x2, x3) ∈ R3 :
xi ≥ 0}.

The following two theorems are about the non-negativity and boundedness of
the solutions of model (2.2).

Theorem 2.1. For any initial value (ψ1(ν), ψ2(ν), ψ3(ν)) ∈ C+, the solution of
model (2.2) will remain nonnegative for all t ≥ 0.

Proof. Notice from the first two equations of S and I in model (2.2) that

S(t) = ψ1(0) exp

∫ t

0

[
r

(
1− S(ν)

K

)
− βI(ν)− γP (ν)

a+ S(ν)

]
dν,

I(t) = ψ2(0) exp

∫ t

0

(βS(v)−mP (v)− µ)dν.

Thus, we have that S(t) ≥ 0 and I(t) ≥ 0 for all t > 0 since ψi(0) ≥ 0, i = 1, 2.
Notice also that the third equation of P in model (2.2) can be written as

P (t)eδt = ψ3(0)+exp

∫ t

0

α

(
γS(ν − τ)P (ν − τ)

a+ S(ν − τ)
+mI(ν − τ)P (ν − τ)

)
e−δ(τ+ν)dν.

Thus we have that P (t) ≥ 0 for t ∈ [0, τ ] since ψ3(ν) ≥ 0 for ν ∈ [0, τ ]. Performing
the similar arguments, we can further prove in turn that P (t) ≥ 0 for t ∈ [(n −
1)τ, nτ ], n = 1, 2, · · · . The proof is thus completed.

Theorem 2.2. The solutions of model (2.2) with initial values in C+ are uniformly
ultimately bounded.

Proof. Consider the function defined by

V (t) = e−δτS(t− τ) + e−δτI(t− τ) +
1

α
P (t).

Differentiating V with respect to t along the solution of system (2.2) for t ≥ τ , we
obtain

dV

dt
=e−δτ

[
rS(t− τ)

(
1− S(t− τ)

K

)
− µI(t− τ)

]
− δ

α
P (t).

Now taking κ such that 0 < κ < min{µ, δ}, we can compute that

dV

dt
+κV ≤e−δτ

{
S(t− τ)

[
r

(
1− S(t− τ)

K

)
+ κ

]
−(µ− κ)I(t− τ)

}
− δ − κ

α
P (t)

≤e−δτS(t− τ)

[
r

(
1− S(t− τ)

K

)
+ κ

]
≤e−δτ K(r + κ)2

4r
:=M. (2.4)

Applying the comparison theorem, it then follows from (2.4) that

lim sup
t→∞

V (S, I, P ) ≤ M

κ
.

The proof is thus completed.



1100 S. Lai & S. Yuan

3. Existence and stability of equilibria

In this section, we first perform the analysis of the existence of equilibria of model
(2.2), then consider the stability of each equilibrium when it exists.

3.1. Existence of equilibriua

In the absence of time delay, i.e., τ = 0, in Kar et al. [4], the authors have performed
a detailed analysis on the existence of equilibria of model (2.1). In the presence of
delay, i.e., τ ̸= 0, we can easily obtain that there are five possible feasible equilibria
for model (2.2) by just assuming that αi = α, i=1,2 and using αe−δτ instead of α
in their analysis, namely,

(i) the trivial equilibrium E1 (0, 0, 0);

(ii) the boundary equilibrium E2 (K, 0, 0);

(iii) the predator free equilibrium E3 (S3, I3, 0), where S3 = µ
β and I3 = r(βK−µ)

β2K ,

which is feasible for β > µ
K ;

(iv) the infected pest free equilibrium E4 (S4, 0, P4), where S4 = aδ
αγe−δτ−δ

and

P4 =
arαe−δτ(Kαγe−δτ−(a+K)δ)

K(αγe−δτ−δ)2
, which is feasible for αγK

a+K e
−δτ > δ;

(v) the coexistence equilibrium E∗ (S∗, I∗, P ∗), where

P ∗ =
βS∗ − µ

m
, I∗ =

1

α2me−δτ

(
δ − αγS∗

a+ S∗ e
−δτ

)
,

which is feasible provided

µ

β
< S∗ <

aδ

αγe−δτ − δ
and α >

δ

γe−δτ
. (3.1)

Here S∗ is a positive root of the equation

r1S
2 + r2S + r3 = 0, (3.2)

with

r1 = rmαe−δτ ,

r2 = armαe−δτ −Krmαe−δτ +Kβδ,

r3 = Kaβδ −Kαγµe−δτ −Karmαe−δτ .

Now we analyze the existence of S∗. There are two cases:

(a) If r3 < 0, then Eq. (3.2) has a unique positive root:

S∗ =
−r2 +

√
r22 − 4r1r3
2r1

.

(b) If r2 < 0, r3 > 0 and r22 > 4r1r3, then Eq. (3.2) has two positive roots:

S∗
1 =

−r2 −
√
r22 − 4r1r3
2r1

and S∗
2 =

−r2 +
√
r22 − 4r1r3
2r1

.

To summarize, under the conditions given in (3.1), model (2.2) exists a unique
coexistence equilibrium if r3 < 0, and two coexistence equilibria provided
r2 < 0, r3 > 0 and r22 > 4r1r3 hold.
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3.2. Stability of equilibria

In the subsection, we will calculate the characteristic equation of model (2.2) at
each of its equilibria and analyze their local stabilities based on it.

Assume that Ē(S̄, Ī, P̄ ) is an equilibrium of model (2.2). Its associated charac-
teristic equation can be described as follows:

Det
(
λE −M − e−λτN

)
= 0, (3.3)

where E is the identity matrix of order 3, and

M =


r − 2rS̄

K − βĪ − γP̄
a+S̄

+ γS̄P̄

(a+S̄)
2 −βS̄ − γS̄

a+S̄

βĪ βS̄ −mP̄ − µ −mĪ

0 0 −δ

 ,

N =


0 0 0

0 0 0

aαγP̄

(a+S̄)
2 e−δτ αmP̄e−δτ

(
αγS̄
a+S̄

+ αmĪ
)
e−δτ

 .

3.2.1. Stability of equilibrium E1

At E1 (0, 0, 0), Eq. (3.3) becomes

(λ− r) (λ+ µ) (λ+ δ) = 0.

Its associated three characteristic roots are

λ1 = r > 0, λ2 = −µ < 0, λ3 = −δ < 0.

Thus, E1 is always an unstable saddle.

3.2.2. Stability of equilibrium E2

At E2 (K, 0, 0), Eq. (3.3) becomes

(λ+ r) (λ+ µ− βK)

(
λ+ δ − αγK

a+K
e−(δ+λ)τ

)
= 0. (3.4)

Obviously, λ1 = −r < 0 and λ2 = βK −µ are two roots of Eq. (3.4), and the other
roots satisfy

g1(λ) := λ+ δ − αγK

a+K
e−(δ+λ)τ = 0.

If βK − µ > 0, then λ2 = βK − µ > 0, and hence E2 is unstable.
In what follows, we assume that βK − µ < 0. Then g1 (λ) = 0 means that

λ+ δ =
αγK

a+K
e−(δ+λ)τ .

For any solution of g1 (λ) = 0, if we have ℜ (λ) ≥ 0 , then

δ ≤ |λ+ δ| =
∣∣∣∣ αγKa+K

e(−δ+λ)τ

∣∣∣∣ = αγK

a+K
e−δτ

∣∣e−λτ
∣∣ ≤ αγK

a+K
e−δτ .
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Therefore, E2 is locally asymptotically stable if and only if

0 < K < min

{
µ

β
,

aδ

αγe−δτ − δ

}
. (3.5)

3.2.3. Stability of equilibrium E3

At E3 (S3, I3, 0), Eq. (3.3) becomes[
λ+ δ −

(
αγS3

a+ S3
+ αmI3

)
e−(δ+λ)τ

](
λ2 +

rS3

K
λ+ β2S3I3

)
= 0.

Obviously, the equation λ2 + rS3

K λ + β2S3I3 = 0 has two roots with negative real
parts. We need only consider the equation

g2(λ) := λ+ δ −
(
αγS3

a+ S3
+ αmI3

)
e−(δ+λ)τ = 0,

which can be rewritten as

λ+ δ =

(
αγS3

a+ S3
+ αmI3

)
e−(δ+λ)τ .

For any solution of g2 (λ) = 0, if we have ℜ (λ) ≥ 0 , then

δ ≤ |λ+ δ| =
∣∣∣∣( αγS3

a+ S3
+ αmI3

)
e−(δ+λ)τ

∣∣∣∣ = ( αγS3

a+ S3
+ αmI3

)
e−δτ .

Hence, E3 is locally asymptotically stable if and only if

δ > α

(
γS3

a+ S3
+mI3

)
e−δτ . (3.6)

3.2.4. Stability of equilibrium E4

At E4 (S4, 0, P4), Eq. (3.3) becomes

(βS4 −mP4 − µ− λ) g3(λ, τ) = 0, (3.7)

where

g3 (λ, τ) :=λ
2 +

(
δ +

rS4

K
− γS4P4

(a+ S4)
2

)
λ+ δ

(
rS4

K
− γS4P4

(a+ S4)
2

)

−

(
λδ +

rS4

K
δ − γS4P4

(a+ S4)
2 δ −

aαγ2S4P4

(a+ S4)
3

)
e−δτe−λτ .

(3.8)

Obviously, Eq. (3.7) has a root λ1 = βS4 −mP4 − µ, which is positive if βS4 >
mP4 + µ. In this case, E4 is unstable.

In what follows, we assume that βS4 < mP4 + µ. We need only to consider the

roots of Eq. (3.8). Notice that if r
K− γP4

(a+S4)2
> 0. Then δ

(
rS4

K − γS4P4

(a+S4)
2

) (
1− e−δτ

)
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+ aαγ2S4P4

(a+S4)
3 e−δτ > 0, and hence λ = 0 is not a root of Eq. (3.8). Notice also that

when τ = 0, (3.8) becomes

g3 (λ, 0) =λ
2 +

(
rS4

K
− γS4P4

(a+ S4)
2

)
λ+

aαγ2S4P4

(a+ S4)
3 . (3.9)

It then follows (3.9) that if r
K − γP4

(a+S4)
2 > 0, the equation g3 (λ, 0) = 0 has two

negative real roots.
Assume that λ = iω with ω > 0 is a purely imaginary root of (3.8). Then we

have

−ω2+iω

(
δ +

rS4

K
− γS4P4

(a+ S4)
2

)
+ δ

(
rS4

K
− γS4P4

(a+ S4)
2

)

−

(
iωδ +

rS4

K
δ − γS4P4

(a+ S4)
2 δ −

aαγ2S4P4

(a+ S4)
3

)
e−δτe−iωτ = 0.

Applying the modulus operation to both sides of the above, we obtain

ω4 +

(δ + rS4

K

)2

−

(
γS4P4

(a+ S4)
2

)2

−
(
δe−δτ

)2ω2

+ δ2

(
rS4

K
− γS4P4

(a+ S4)
2

)2 (
1−

(
e−δτ

)2)
+

(
aαγ2S4P4

(a+ S4)
3 e

−δτ

)2

= 0.

Letting ν = ω2 yields

ν2 +

(δ + rS4

K

)2

−

(
γS4P4

(a+ S4)
2

)2

−
(
δe−δτ

)2 ν
+ δ2

(
rS4

K
− γS4P4

(a+ S4)
2

)2 (
1−

(
e−δτ

)2)
+

(
aαγ2S4P4

(a+ S4)
3 e

−δτ

)2

= 0.

(3.10)

It is easy to check that if r
K − γP4

(a+S4)
2 > 0, then (3.10) exists no positive real

roots. That is, there is no root λ = iω with ω > 0 for (3.8), which implies that
the root of (3.8) cannot cross the purely imaginary axis. Therefore, all roots of
(3.8) have negative real parts provided r

K − γP4

(a+S4)
2 > 0. As a result, E4 is locally

asymptotically stable if and only if

βS4 < mP4 + µ and
r

K
− γP4

(a+ S4)
2 > 0. (3.11)

Summarizing the above, we have the following theorem.

Theorem 3.1. For model (2.2), we have the following results:

(i) The trivial equilibrium E1 is always unstable, and it is a saddle point.

(ii) The boundary equilibrium E2 is asymptotically stable if 0 < K

< min
{

µ
β ,

aδ
αγe−δτ−δ

}
.
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(iii) The predator free equilibrium E3 is asymptotically stable if and only if δ >

α
(

γS3

a+S3
+mI3

)
e−δτ .

(iv) The infected pest free equilibrium E4 is asymptotically stable if and only if
βS4 < mP4 + µ and r

K − γP4

(a+S4)
2 > 0.

Remark 3.1. Notice that in the absence of delay, Kar et al. [4] have obtained the
corresponding stability result for each bounded equilibrium of model (2.1), which are
consistent with our obtained results in Theorem 3.1 when τ = 0 and αi = α, i = 1, 2.

3.2.5. Stability of equilibrium E∗

At E∗ (S∗, I∗, P ∗), we can easily compute that

M =


M1 M2 M3

M4 0 M5

0 0 M6

 , N =


0 0 0

0 0 0

N1 N2 N3

 ,

where

M1 = −rS
∗

K
+

γS∗P ∗

(a+ S∗)
2 , M2 = −βS∗, M3 = − γS∗

a+ S∗ ,

M4 = βI∗, M5 = −mI∗, M6 = −δ,

N1 =
aα1γP

∗

(a+ S∗)
2 e

−δτ , N2 = α2mP
∗e−δτ , N3 =

(
α1γS

∗

a+ S∗ + α2mI
∗
)
e−δτ .

The associated characteristic equation of model (2.2) at E∗(S∗, I∗, P ∗) is

Γ (λ, τ) := E (λ, τ) + F (λ, τ) e−λτ = 0, (3.12)

where

E (λ, τ) = λ3 +A2 (τ)λ
2 +A1 (τ)λ+A0 (τ) ,

F (λ, τ) = B2 (τ)λ
2 +B1 (τ)λ+B0 (τ) ,

and

A2 (τ) =
rS∗

K
− γS∗P ∗

(a+ S∗)
2 , A1 (τ) =

(
rS∗

K
− γS∗P ∗

(a+ S∗)
2

)
δ + β2S∗I∗,

A0 (τ) = δβ2S∗I∗, B2 (τ) = δ − α

(
γS∗

a+ S∗ +mI∗
)
e−δτ ,

B1(τ) = αe−δτ

(
m2I∗P ∗ +

aγ2S∗P ∗

(a+ S∗)
3

)
−

(
rS∗

K
− γS∗P ∗

(a+ S∗)
2

)
δ,

B0 (τ) = αe−δτS∗I∗P ∗

[
m2

(
r

K
− γP ∗

(a+ S∗)
2

)
+

mβγ

(a+ S∗)2
S∗

]
− δβ2S∗I∗.

When τ = 0, Eq. (3.12) becomes

λ3 + C1λ
2 + C2λ+ C3 = 0, (3.13)
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where

C1 = A2 (0) +B2 (0) =

(
r

K
− γP ∗

(a+ S∗)
2

)
S∗,

C2 = A1 (0) +B1 (0) = αm2I∗P ∗ + β2S∗I∗ +
aαγ2S∗P ∗

(a+ S∗)
3 ,

C3 = A0 (0) +B0 (0) = αS∗I∗P ∗

[
m2

(
r

K
− γP ∗

(a+ S∗)
2

)
+

mβγ

(a+ S∗)2
S∗

]
.

Obviously, if r
K > γP∗

(a+S∗)2
, then Ci > 0, i = 1, 2, 3. Moreover, we can compute that

C1C2 − C3 = S∗2
[(

r

K
− γP ∗

(a+ S∗)2

)(
β2I∗ +

aαγ2P ∗

(a+ S∗)3

)
− mαβγ

(a+ S∗)2
I∗P ∗

]
,

which is positive if and only if

r

K
>

mαβγI∗P ∗(a+ S∗)2

β2I∗(a+ S∗)3 + aαγ2P ∗ +
γP ∗

(a+ S∗)2
. (3.14)

According to the Routh-Hurwitz criterion, we know that all the roots of Eq. (3.13)
have negative real parts provided (3.14) holds. Thus, we can have the following
result.

Theorem 3.2. When τ = 0, the coexistence equilibrium E∗ is asymptotically stable
if and only if (3.14) holds.

Notice that if the stability of E∗ changes, then Eq. (3.12) must have purely
imaginary roots at some value of τ , which is one of its necessary conditions. Since
E∗ is the function of delay τ , both E (λ, τ) and F (λ, τ) are dependent on τ . That
is, the coefficients of equation (3.12) depend on τ . In the following, we will adopt
the approach proposed by Berreta and Kuang [33] to prove the existence of purely
imaginary roots of characteristic equation (3.12).

Assume that [0, τmax) is the maximum interval of delay τ where E∗ exists. For
τ ∈ [0, τmax), we make the following assumptions:

(a) E (0, τ) + F (0, τ) = A0 (τ) +B0 (τ) ̸= 0.

(b) E (iω, τ) + F (iω, τ) = A0 (τ) +B0 (τ)− ω2 (A2 (τ) +B2 (τ))
+ iω

(
A1 (τ) +B1 (τ)− ω2

)
̸= 0.

(c) lim
|λ|→∞

∣∣∣F (λ,τ)
E(λ,τ)

∣∣∣ = lim
|λ|→∞

B2(τ)λ
2+B1(τ)λ+B0(τ)

λ3+A2(τ)λ2+A1(τ)λ+A0(τ)
= 0 < 1.

(d) G (ω, τ) = |E (iω, τ)|2 − |F (iω, τ)|2 has at most finite positive solutions.

(e) Any positive solution of G (ω, τ) = 0 is continuously differentiable in τ .

Assume that λ(τ) = iβ (τ), β(τ) > 0, is a characteristic root of Eq. (3.12). By
substituting it in (3.12) and separating the real and imaginary parts, we obtainA2β

2 −A0 =
(
−B2β

2 +B0

)
cos (βτ) +B1β sin (βτ) ,

β3 −A1β = B1β cos (βτ)−
(
−B2β

2 +B0

)
sin (βτ) ,

(3.15)
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which gives
sin (βτ) =

B2β
5 + (A2B1 −A1B2)β

3 + (A1B0 −A0B1)β

B2
2β

4 + (B2
1 − 2B0B2)β2 +B2

0

,

cos (βτ) =
(B1 −A2B2)β

4 + (A2B0 −A1B1 +A0B2)β
2 −A0B0

B2
2β

4 + (B2
1 − 2B0B2)β2 +B2

0

.
(3.16)

Squaring and adding both sides of the two equations in (3.15), we obtain

β6 + q2β
4 + q1β

2 + q0 = 0, (3.17)

where

q2 = A2
2 − 2A1 −B2

2 , q1 = A2
1 − 2A0A2 + 2B0B2 −B2

1 , q0 = A2
0 −B2

0 .

If we put v = β2, then Eq. (3.17) becomes

R (v) := v3 + q2v
2 + q1v + q0 = 0. (3.18)

Notice that

R (0) = q0, lim
v→∞

R (v) = ∞ and R′ (v) = 3v2 + 2q2v + q1.

If q0 ≥ 0 and ∆ = 4(q22 − 3q1) > 0, R′(v) = 0 has two real solutions:

v+ =
−q2 +

√
q22 − 3q1
3

, v− =
−q2 −

√
q22 − 3q1
3

. (3.19)

Moreover,

R′′ (v+) = 2
√
∆ > 0, R′′ (v−) = −2

√
∆ < 0.

Obviously, v+ and v− are respectively the local minimum point and maximum point
of R (v). Song et al. [34] have performed a detailed analysis on the solutions of (3.18)
and obtained the following lemma.

Lemma 3.1. For the cubic polynomial equation (3.18), it has

(i) at least one positive solution if q0 < 0;

(ii) no positive solutions if q0 ≥ 0 and ∆ = 4
(
q22 − 3q1

)
≤ 0;

(iii) positive solutions if q0 ≥ 0, ∆ = 4
(
q22 − 3q1

)
> 0, v+ > 0, and R (v+) ≤ 0.

In what follows, without loss of generality, the coefficients in R (v) are assumed
to satisfy the following condition.

(H1) q0 < 0 or q0 ≥ 0, ∆ > 0, v+ > 0 and R (v+) < 0.

Notice that β can be expressed by Eq. (3.17) as an implicit function in terms of
τ . The solution could cross the imaginary axis a finite number of times since Eq.
(3.17) exists at most a finite number of real positive solutions for each τ .

Let Λ = {τ : τ > 0 and β (τ) is a positive solution of (3.17)}. Then, when τ ∈
ΛC := [0, τmax)\Λ, the stability will not change because there is no positive solution
for Eq. (3.17) (Chakraborty et al. [35]).
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On the other hand, when τ ∈ Λ, we define the angle φ (τ) ∈ (0, 2π) for the
solution of (3.17). We write the following

sin (φ (τ)) =
B2β

5 + (A2B1 −A1B2)β
3 + (A1B0 −A0B1)β

B2
2β

4 + (B2
1 − 2B0B2)β2 +B2

0

=
ξ1

|F (iβ, τ)|2
,

cos (φ (τ)) =
(B1−A2B2)β

4+(A2B0 −A1B1 +A0B2)β
2 −A0B0

B2
2β

4 + (B2
1 − 2B0B2)β2 +B2

0

=
ξ2

|F (iβ, τ)|2
,

(3.20)
where ξ1 and ξ2 are continuously differentiable functions of τ such that ξ21 + ξ22 =

|F (iβ, τ)|4 and |F (iβ, τ)|2 = |E (iβ, τ)|2. Substituting β = β (τ) in (3.20), φ (τ) ∈
(0, 2π) can be expressed as

φ (τ) =



arctan

(
−ξ1
ξ2

)
, if sin (φ (τ)) > 0, cos (φ (τ)) > 0;

π

2
, if sin (φ (τ)) = 1, cos (φ (τ)) = 0;

π + arctan

(
−ξ1
ξ2

)
, if cos (φ (τ)) < 0;

3π

2
, if sin (φ (τ)) = −1, cos (φ (τ)) = 0;

2π + arctan

(
−ξ1
ξ2

)
, if sin (φ (τ)) < 0.

When τ ∈ Λ, φ (τ) is continuous at τ . Besides, when φ (τ) ∈ (0, 2π) , τ ∈ Λ, φ (τ)
is also differentiable at τ . Noticing equation (3.20) and “φ (τ)” defined above for
τ ∈ Λ, we obtain

β (τ) τ = φ (τ) + 2mπ, m ∈ N0.

Let τm : Λ → R+
0 be the maps

τm (τ) =
1

β (τ)
(φ (τ) + 2mπ) ,m ∈ N0, τ ∈ Λ,

where β (τ) is a positive solution of (3.17). We further introduce the function
Lm : Λ → R by

Lm (τ) = τ − τm (τ) , τ ∈ Λ, m ∈ N0,

which is continuously differentiable at τ . For the numbers of τ ∈ Λ, Lm (τ) =
0, m ∈ N0, stability may change if the transversality condition holds [35]. We
introduce the following theorem from Berreta and Kuang [33].

Theorem 3.3. Let β (τ) be the positive real solution of equation (3.12) for τ ∈ Λ ⊆
R+

0 , and for some τ∗ ∈ Λ,

Lm (τ∗) = 0, for some m ∈ N0.

At τ = τ∗, the pair of conjugate pure imaginary solutions (i.e. ±iβ (τ∗)) of equation
(3.12) crosses the imaginary axis from left to right (right to left) if χ (τ∗) > 0
(χ (τ∗) < 0), where

χ (τ∗) = sign
{
R′

β (β (τ
∗) , τ∗)

}
sign

{
dLm (τ)

dτ

∣∣∣∣
τ=τ∗

}
,
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where R′
β (β (τ

∗) , τ∗) := ∂βR (β (τ∗) , τ∗) is the partial derivatives with respect to
β. Furthermore, assume that (3.14) holds and the positive equilibrium exists. The
coexistence equilibrium E∗ is asymptotically stable for 0 ≤ τ ≤ τ∗ and unstable for
τ ≥ τ∗. If χ (τ∗) ̸= 0, the model (2.2) will occur a Hopf bifurcation around the
coexistence equilibrium E∗.

4. Direction and stability of Hopf-bifurcation

In the preceding section, we demonstrated that model (2.2) undergoes a Hopf bi-
furcation at E∗ at τ = τ∗. Subsequently, we will employ the normal method of
Hassard [36] and the central manifold theory to formulate the expressions for as-
certaining the characteristic of the Hopf bifurcation at τ = τ∗.

The details of the derivations of quantities are given in Appendix A. Conse-
quently, g11, g20, g02 and g21 can be computed. Consequently, the following values
can be straightforwardly computed as:

c1(0) =
i

2ω∗τ∗

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21
2
,

µ2 = − ℜ{c1(0)}
ℜ{λ′(τ∗)}

,

β2 = 2ℜ{c1(0)},

T2 = −ℑ{c1(0)}+ µ2ℑ{λ
′
(τ∗)}

ω∗τ∗
.

Theorem 4.1. For model (2.2), the Hopf bifurcation is supercritical (resp. sub-
critical) if µ2 > 0 (resp. µ2 < 0). The periodic solutions are stable (resp. unstable)
if β2 > 0 (resp. β2 < 0). The period increases (resp. decreases) if T2 > 0 (resp.
T2 < 0).

5. Numerical simulation

In the following, numerical simulations are performed to certify the accuracy of the
previous conclusion and to further understand the behavior of the system.

5.1. Non-delayed system

To verify the properties of model (2.1), let the parameter values be:

r = 1, K = 3, β = 0.55, γ = 3, a = 1,

m = 4, µ = 0.1, α = 0.9, δ = 3.
(5.1)

For the above set of parameters (5.1), by verifying that the conditions for the
existence of interior equilibrium point hold and the interior equilibrium point can
be calculated as E∗ (1.70808, 0.36028, 0.20986). As shown in Fig. 2, the interior
equilibrium E∗ of the model (2.1) is asymptotically stable. This figure further
shows that the population densities of predator and pest stabilize at their respective
equilibrium levels after fluctuating for a small period of time.
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Figure 2. Local asymptotic stability of model (2.1)

5.2. Delayed system

In the following, we select the following parameter values to verify the impact of
gestation delay on model (2.2):

r = 1, K = 3, β = 0.5, γ = 1, a = 1,

m = 2, µ = 0.1, α = 0.9, δ = 1.5.
(5.2)

For the above set of parameters (5.2), the delay-dependent interior equilibrium
point exists. Further, by verifying that the transversality condition (3.14) also holds,
so that the system will exhibit the Hopf bifurcation with respect to τ . By simple
calculation, we obtain τ∗ = 0.097 and τ∗∗ = 0.359.

When τ = 0.08, we can get the interior equilibrium E∗ (1.64729, 0.62845, 0.36182).
When the gestation delay τ < τ∗, the interior equilibrium E∗ is asymptotically
stable(see Fig. 3). When τ = 0.25, we can also obtain the interior equilibrium
E∗ (1.24799, 0.93491, 0.26199). However, the interior equilibrium E∗ becomes un-
stable once τ passes through τ∗, and the system (2.2) undergoes a Hopf-bifurcation
by Theorem 3.3 (see Fig. 4).

It is obvious that system (2.2) undergoes a transition from stability to instability
near the interior equilibrium point E∗ at τ = τ∗ = 0.097. When τ < τ∗, the
predator biomass and the susceptible pest biomass decreases as the gestation delay
increases, while the infected pest biomass increases as the gestation delay increases
(see Fig. 5). This phenomenon might potentially be ascribed to a decrease in
the predator population, which subsequently causes an increase in the biomass
of infected pests, thereby enabling the infection of more susceptible pests by the
infected ones.

By the algorithm given in Sect. 4, we get

c1(0) = −0.0596− 0.1602i, µ2 = 1.1509 > 0, β2 = −0.1193 < 0, T2 = 1.9238 > 0.

The Hopf bifurcation is supercritical and the bifurcated periodic solution is stable.
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Figure 3. E∗ is asymptotically stable when τ = 0.08 < τ∗

Figure 4. E∗ is unstable when τ∗ < τ = 0.25 < τ∗∗

Figure 5. Bifurcation diagram of S, I and P



Dynamics in a Delayed Eco-epidemiological Model with Disease in the Pest 1111

6. Discussion

Studies have shown that infectious diseases are one of the main reasons for the
death of pest population and play a leading role in the extinction of pests in more
severe cases. However, research in this aspect is not yet complete. Eco-epidemiology
dynamic model is a comparatively significant tool in population dynamics, which
reveals complex mechanisms among species. In this paper, we take into account
a predator-pest eco-epidemiological system with gestation delay. Firstly, we have
attained the nature of the solutions, which are prerequisites to ensure that the
system is biologically meaningful. Next, we have analyzed the existence and stability
of all the equilibriums. Further, we explore the existence of the Hopf bifurcation
of E∗. Moreover, the stability, the direction and the periodic solution of Hopf
bifurcation are determined.

Numerically, we verify the above analytical results. It is found that gestation
delay changes the stability behavior of system (2.2) into instability, and thereafter a
Hopf bifurcation occurs. This suggests that gestation delay plays an important role
in maintaining the stability of pest and predator population. Specifically, it can be
seen from Fig. 3 that when gestation period is below the critical threshold τ∗, the
coexistence equilibrium E∗ is stable. However, when gestation period exceeds the
critical threshold τ∗, the phenomenon of population fluctuation occurs (see Fig. 4).
This phenomenon means that the spread of epidemics among pests is periodic. It is
also revealed that repeated outbreak of epidemics might be caused by interactions
between diseased pest and predator.

In addition, we investigate the effects of different predator gestation period τ on
population biomass. Numerical simulations show that when τ < τ∗, the predator
biomass decreases with the increase of gestation period since a longer gestation
period decelerates the growth of predator population (see Fig. 5). When gestation
period τ increases, the infected pest biomass increases, while the susceptible pest
biomass decreases(see Fig. 5). This phenomenon could potentially be attributed to
a decline in the predator population, which subsequently leads to an escalation in the
biomass of infected pests, thereby facilitating the infection of more susceptible pests
by the infected ones. Hence it is an extremely effective approach for pest control to
combine using infection to target pest and using biological predator population with
small gestation period. Our studies findings provide significant ecological insights
into the pest control in agriculture and ecosystem management.

Future, making some research on the existence of Turing instability in a diffu-
sive eco-epidemiological system will be meaningful. Exploring the above questions
is both interesting and challenging, and we will investigate them further as open
problems.
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A. Computation of the Coefficients µ2, β2, T2

For convenience, let

S1 (t) = S (t)− S∗, I1 (t) = I (t)− I∗, P1 (t) = P (t)− P ∗,

and still denote S1 (t), I1 (t), P1 (t) by S (t), I (t), P (t). Let τ = τ∗ + µ, µ ∈ R.
Then µ = 0 is the Hopf bifurcation value of model (2.2) at the equilibrium E∗,
further normalize the delay with scaling t 7→

(
t
τ

)
. Drop the bar for simplicity of

notation, then model (2.2) is transformed into a functional differential equation in
C = C

(
[−1, 0],R3

)
as

U̇ (t) = LµUt + f (µ,Ut) , (A.1)

where U (t) = (S1 (t) , I1 (t) , P1 (t))
T ∈ R3, and Ut = Ut (θ) = U (t+ θ) =

(S1 (t+ θ) , I1 (t+ θ) , P1 (t+ θ))
T ∈ C, and Lµ : C → R3, f : R×C → R3 are given

respectively by

Lµ (ϕ) = (τ∗ + µ)

M

ϕ1(0)

ϕ2(0)

ϕ3(0)

+N


ϕ1(−1)

ϕ2(−1)

ϕ3(−1)


 ,

and

f (µ, ϕ) = (τ∗ + µ)


f1

f2

f3

 ,

where

f1 =l1ϕ
2
1(0) + l2ϕ1(0)ϕ2(0) + l3ϕ1(0)ϕ3(0) + l4ϕ

3
1(0) + l5ϕ

2
1(0)ϕ3(0) + · · · ,

f2 =m1ϕ1(0)ϕ2(0) +m2ϕ2(0)ϕ3(0) + · · · ,
f3 =n1ϕ

2
1(−1) + n2ϕ1(−1)ϕ3(−1) + n3ϕ2(−1)ϕ3(−1)

+ n4ϕ
3
1(−1) + n5ϕ

2
1(−1)ϕ3(−1) + · · · ,

and

l1 = − r

K
+
γP ∗ (a− S∗)

(a+ S∗)
3 , l2 = −β, l3 = − aγ

(a+ S∗)
2 ,

l4 =
2γP ∗ (S∗ − 2a)

(a+ S∗)
4 , l5 =

γ (a− S∗)

(a+ S∗)
3 m1 = β,

m2 = −m, n1 = − 2αγP ∗

(a+ S∗)
3 e

−δτ , n2 =
αγ

(a+ S∗)
2 e

−δτ ,
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n3 = mαe−δτ , n4 =
6αγP ∗

(a+ S∗)
4 e

−δτ , n5 = − 2αγ

(a+ S∗)
3 e

−δτ .

By the Riesz representation theorem, there exists a 3 × 3 matrix function ρ (θ, µ),
(−1 ≤ θ ≤ 0) whose components are of bounded variation function such that

Lµ (ϕ) =

∫ 0

−1

dρ(θ, µ)ϕ(θ) for ϕ ∈ C
(
[−1, 0],R3

)
. (A.2)

In fact, we can choose

ρ (θ, µ) = (τ∗ + µ)


− rS∗

K + γS∗P∗

(a+S∗)2
−βS∗ − γS∗

a+S∗

βI∗ 0 −mI∗

0 0 −δ

 δ (θ)

− (τ∗ + µ)


0 0 0

0 0 0

aαγP∗

(a+S∗)2
e−δτ αmP ∗e−δτ

(
αγS∗

a+S∗ + αmI∗
)
e−δτ

 δ (θ + 1) ,

(A.3)

where δ is the Dirac delta function.
Next, for ϕ ∈ C1

(
[−1, 0],R3

)
, we define the operator A (µ) as

A (µ)ϕ (θ) =


dϕ (θ)

dθ
, if θ ∈ [−1, 0),∫ 0

−1

dρ (s, µ)ϕ (s) = Lµ (ϕ) , if θ = 0,

(A.4)

and

R (µ)ϕ (θ) =

{
0, if θ ∈ [−1, 0),

f (µ, ϕ) , if θ = 0.
(A.5)

Since dUt

dθ = dUt

dt , then (A.1) is equivalent to the following operator equation

U̇t = A (µ)Ut +R (µ)Ut. (A.6)

For ψ ∈ C1
(
[−1, 0],

(
R3
)∗)

, define

A∗ (µ)ψ (s) =


− dψ (s)

ds
, if s ∈ [−1, 0),∫ 0

−1

dρT (t, 0)ψ (−t) , if s = 0,

(A.7)

and we also define a bilinear inner product

⟨ψ (s) , ϕ (θ)⟩ = ψ̄(0) · ϕ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ̄ (ξ − θ) dρ (θ)ϕ (ξ) dξ, (A.8)
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where ρ(θ) = ρ (θ, 0). Here, for a and b in Cn, a · b means
∑n

i=1 aibi, where ai and

bi are the components of the vectors a and b, respectively. Then A(0) and A∗(0)
are adjoint operators. Furthermore, ⟨ψ,Aϕ⟩ = ⟨A∗ψ, ϕ⟩.

Note that the above scaling transformation, the corresponding characteristic ex-
ponents and the associated frequencies are transformed into τλ and τω, respectively.
Hence, when µ = 0, ±iω∗τ∗ are the eigenvalues of A(0) and therefore they are also
eigenvalues of A∗(0). Let q (θ) be the eigenvector for A(0) corresponding to iω∗τ∗

and q∗ (θ) be the eigenvector for A∗(0) corresponding to −iω∗τ∗. Then we have

A(0)q (θ) = iω∗τ∗q (θ) , (A.9)

A∗(0)q∗ (s) = −iω∗τ∗q∗ (s) . (A.10)

From (A.4), we can rewrite (A.9) as follows
dq (θ)

dθ
= iω∗τ∗q (θ) , if θ ∈ [−1, 0),

L0q(0) = iω∗τ∗q (θ) , if θ = 0.
(A.11)

Using (A.11), we have
q (θ) = V eiω

∗τ∗θ, θ ∈ [−1, 0], (A.12)

where V = (v1, v2, v3)
T

is an undetermined constant vector, and from (A.11), the
constant vector V must satisfy(

M +Ne−iω∗τ∗
− iω∗I

)
V = 0,

i.e., 
M1 − iω∗ M2 M3

M4 −iω∗ M5

N1e
−iω∗τ∗

N2e
−iω∗τ∗

M6 +N3e
−iω∗τ∗ − iω∗



v1

v2

v3

 = 0,

where I denotes the 3× 3 identity matrix, and the above algebraic equation has an
infinite number of solutions. Without loss of generality, setting v1 = 1, we have

v2 =
M3M4 −M1M5 + iω∗M5

M2M5 + iω∗M3
,

v3 =
N1 (M2M5 + iω∗M3) +N2 (M3M4 −M1M5 + iω∗M5)

(M2M5 + iω∗M3) (iω∗ −N3e−iω∗τ∗ −M6)
.

Similarly, from (A.7), we rewrite (A.10) as follows
dq∗ (s)

ds
= iω∗τ∗q∗ (s) , if s ∈ (0, 1],∫ 0

−1

dρT (t, 0)φ (−t) = τ∗MTφ(0) + τ∗NTφ(1) = −iω∗τ∗q(0), if s = 0.

(A.13)
Using (A.13), we have

q∗ (s) = PV ∗eiω
∗τ∗s, s ∈ [0, 1], (A.14)
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where P and V ∗ = (v∗1 , v
∗
2 , v

∗
3) are an undetermined constant and constant vector

respectively, and from (A.13), the constant vector V ∗ must satisfy(
MT +NT eiω

∗τ∗
+ iω∗I

)
V ∗ = 0,

i.e., 
M1 + iω∗ M4 N1e

−iω∗τ∗

M2 iω∗ N2e
−iω∗τ∗

M3 M5 M6 +N3e
−iω∗τ∗

+ iω∗



v∗1

v∗2

v∗3

 = 0,

where I denotes the 3× 3 identity matrix, and the above algebraic equation has an
infinite number of solutions. Without loss of generality, setting v∗1 = 1, we have

v∗2 =
M2N1 −M1N2 − iω∗N2

M4N2 + iω∗N1
,

v∗3 =
M3 (M4N2 − iω∗N1) +M5 (M2N1 −M1N2 − iω∗N2)

(iω∗N1 −M4N2) (iω∗ +N3e−iω∗τ∗ +M6)
.

From (A.8), we have

⟨q∗(s), q (θ)⟩ =q̄∗(0)q(0)−
∫ 0

θ=−1

∫ θ

ξ=0

q∗ (ξ − θ) dρ (θ) q (ξ) dξ

=P̄ (1, v̄∗2 , v̄
∗
3) (1, v2, v3)

T

− P̄

∫ 0

θ=−1

∫ θ

ξ=0

(1, v̄∗2 , v̄
∗
3) e

−iω∗τ∗(ξ−θ)dρ(θ) (1, v2, v3)
T
eiω

∗τ∗ξdξ

=P̄ (1, v̄∗2 , v̄
∗
3) (1, v2, v3)

T − q∗T (0)

∫ 0

θ=−1

∫ θ

ξ=0

eiω
∗τ∗θdξdρ (θ) q(0)

=P̄ (1, v̄∗2 , v̄
∗
3) (1, v2, v3)

T − q∗T (0)

∫ 0

θ=−1

ξeiω
∗τ∗θ

∣∣∣∣θ
ξ=0

dρ (θ) q(0)

=P̄ (1, v̄∗2 , v̄
∗
3) (1, v2, v3)

T − q∗T (0)

∫ 0

θ=−1

θeiω
∗τ∗θdρ(θ)q(0)

=P̄ (1 + v2v̄
∗
2 + v3v̄

∗
3) + q∗T (0)τ∗


0 0 0

0 0 0

N1 N2 N3

 e−iω∗τ∗
q(0)

=P̄
[
1 + v2v̄

∗
2 + v3v̄

∗
3 + τ∗v̄∗3e

−iω∗τ∗
(N1 + v2N2 + v3N3)

]
=P̄ [1 + v2v̄

∗
2 + v3v̄

∗
3

+τ∗v̄∗3e
−iω∗τ∗

(
aαγP ∗

(a+ S∗)
2 e

−δτ + v2αmP
∗e−δτ + v3δ

)]
.

Next, one can choose P as

P̄ =
1

1 + v2v̄∗2 + v3v̄∗3 + τ∗v̄∗3e
−iω∗τ∗

(
aαγP∗

(a+S∗)2
e−δτ + v2αmP ∗e−δτ + v3δ

) , (A.15)
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to normalize q (θ) and q∗ (s) by the condition ⟨q∗ (s) , q (θ)⟩ = 1. Furthermore,
⟨q∗ (s) , q̄ (θ)⟩ = 0.

Using the same notations as in Hassard et al. [36], we first compute the coordi-
nates to describe the center manifold C0 at µ = 0. Let Xt be the solution of (A.1)
when µ = 0. Define

z (t) = ⟨q∗ (s) , Xt⟩ ,
W (t, θ) =Xt (θ)− z (t) q (θ)− z̄ (t) q̄ (θ)

=Xt (θ)− 2Re {z (t) q (θ)} .
(A.16)

On the center manifold C0 we have

W (t, θ) =W (z (t) , z̄ (t) , θ) , (A.17)

where

W (z (t) , z̄ (t) , θ) =W (z (t) , z̄ (t))

=W20 (θ)
z2 (t)

2
+W11 (θ) z(t)z̄(t)

+W02 (θ)
z̄2 (t)

2
+W30 (θ)

z3 (t)

6
+ · · · .

(A.18)

z (t) and z̄ (t) are local coordinates for center manifold C0 in the directions of q∗

and q̄∗. Note that W is real if Xt is. We shall deal with real solutions only. For the
solution Xt ∈ C0 of (A.1), since µ = 0, we have

ż (t) =
〈
q∗, Ẋt

〉
= ⟨q∗, A (0)Xt +R (0)Xt⟩

= ⟨q∗, A (0)Xt⟩+ ⟨q∗, R (0)Xt⟩ = ⟨A∗ (0) q∗, Xt⟩+ q̄∗ (0) · f (0, Xt)

=iω∗τ∗z (t) + q̄∗ (0) · f (0,W (z (t) , z̄ (t) , 0)) + 2Re {z (t) q (θ)}
≜iω∗τ∗z (t) + q̄∗ (0) · f0 (z (t) , z̄ (t)) .

(A.19)

We rewrite this equation as

ż (t) = iω∗τ∗z (t) + g (z (t) , z̄ (t)) , (A.20)

where
g (z (t) , z̄ (t)) = q̄∗ (0) · f0 (z (t) , z̄ (t)) ,

and expand g (z (t) , z̄ (t)) in powers of z (t) and z̄ (t), that is

g (z (t) , z̄ (t)) = g20
z2 (t)

2
+ g11z(t)z̄ (t) + g02

z̄2 (t)

2
+ g21

z2 (t) z̄ (t)

2
+ · · · . (A.21)

Noticing

Xt (θ) = (X1t (θ) , X2t (θ) , X3t (θ)) =W (t, θ) + zq (θ) + z̄q̄ (θ) ,

and
q (θ) = V eiω

∗τ∗θ = (1, v2, v3)
T
eiω

∗τ∗θ,

we have

X1t (0) =z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0) zz̄ +W

(1)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)
,
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X2t (0) =zv2 + z̄v̄2 +W
(2)
20 (0)

z2

2
+W

(2)
11 (0) zz̄ +W

(2)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)
,

X3t (0) =zv3 + z̄v̄3 +W
(3)
20 (0)

z2

2
+W

(3)
11 (0) zz̄ +W

(3)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)
,

X1t (−1) =ze−iω∗τ∗
+ z̄eiω

∗τ∗
+W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1) zz̄

+W
(1)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)
,

X2t (−1) =zv2e
−iω∗τ∗

+ z̄v̄2e
iω∗τ∗

+W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1) zz̄

+W
(2)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)
,

X3t (−1) =zv3e
−iω∗τ∗

+ z̄v̄3e
iω∗τ∗

+W
(3)
20 (−1)

z2

2
+W

(3)
11 (−1) zz̄

+W
(3)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)
.

Thus, from (A.21), we have

g (z, z̄) =q̄∗ (0) · f0 (z (t) , z̄ (t)) = q̄∗ (0) · f0 (0, Xt (t))

=τ∗P̄ (1, v̄∗2 , v̄
∗
3)



l1X
2
1t(0) + l2X1t(0)X2t(0)

+l3X1t(0)X3t(0) + l4X
3
1t(0) + l5X

2
1t(0)X3t(0)

m1X1t(0)X2t(0) +m2X2t(0)X3t(0)

n1X
2
1t(−1) + n2X1t(−1)X3t(−1) + n3X2t(−1)X3t(−1)

+n4X
3
1t(−1) + n5X

2
1t(−1)X3t(−1)


=τ∗P̄

{
l1X

2
1t(0) + l2X1t(0)X2t(0) + l3X1t(0)X3t(0)

+l4X
3
1t(0) + l5X

2
1t(0)X3t(0)

}
+ τ∗P̄ v̄∗2 {m1X1t(0)X2t(0)

+m2X2t(0)X3t(0)}+ τ∗P̄ v̄∗3
{
n1X

2
1t(−1) + n2X1t(−1)X3t(−1)

+n3X2t(−1)X3t(−1) + n4X
3
1t(−1) + n5X

2
1t(−1)X3t(−1)

}
=τ∗P̄

{
l1

[
z + z̄ +W

(1)
20 (0)

z2

2
+W

(1)
11 (0) zz̄ +W

(1)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]2
+ l2

[
z + z̄ +W

(1)
20 (0)

z2

2
+W

(1)
11 (0) zz̄ +W

(1)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]
×
[
zv2 + z̄v̄2 +W

(2)
20 (0)

z2

2
+W

(2)
11 (0) zz̄ +W

(2)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]
+ l3

[
z + z̄ +W

(1)
20 (0)

z2

2
+W

(1)
11 (0) zz̄ +W

(1)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]
×
[
zv3 + z̄v̄3 +W

(3)
20 (0)

z2

2
+W

(3)
11 (0) zz̄ +W

(3)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]
+ l4

[
z + z̄ +W

(1)
20 (0)

z2

2
+W

(1)
11 (0) zz̄ +W

(1)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]3
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+ l5

[
z + z̄ +W

(1)
20 (0)

z2

2
+W

(1)
11 (0) zz̄ +W

(1)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]2
×
[
zv3 + z̄v̄3 +W

(3)
20 (0)

z2

2
+W

(3)
11 (0) zz̄ +W

(3)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]}
+ τ∗P̄ v̄∗2

{
m1

[
z + z̄ +W

(1)
20 (0)

z2

2
+W

(1)
11 (0) zz̄ +W

(1)
02 (0)

z̄2

2

+O
(
| (z, z̄) |3

)]
×
[
zv2 + z̄v̄2 +W

(2)
20 (0)

z2

2
+W

(2)
11 (0) zz̄ +W

(2)
02 (0)

z̄2

2

+O
(
| (z, z̄) |3

)]
+m2

[
zv2 + z̄v̄2 +W

(2)
20 (0)

z2

2
+W

(2)
11 (0) zz̄

+W
(2)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]
×
[
zv3 + z̄v̄3 +W

(3)
20 (0)

z2

2
+W

(3)
11 (0) zz̄

}
+W

(3)
02 (0)

z̄2

2
+O

(
| (z, z̄) |3

)]
+ τ∗P̄ v̄∗3

{
n1

[
ze−iω∗τ∗

+ z̄eiω
∗τ∗

+W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1) zz̄ +W

(1)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)]2
+ n2

[
ze−iω∗τ∗

+ z̄eiω
∗τ∗

+W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1) zz̄

+W
(1)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)]
×
[
zv3e

−iω∗τ∗
+ z̄v̄3e

iω∗τ∗

+W
(3)
20 (−1)

z2

2
+W

(3)
11 (−1) zz̄ +W

(3)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)]
+ n3

[
zv2e

−iω∗τ∗
+ z̄v̄2e

iω∗τ∗
+W

(2)
20 (−1)

z2

2
+W

(2)
11 (−1) zz̄

+W
(2)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)]
×
[
zv3e

−iω∗τ∗
+ z̄v̄3e

iω∗τ∗

+W
(3)
20 (−1)

z2

2
+W

(3)
11 (−1) zz̄ +W

(3)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)]
+ n4

[
ze−iω∗τ∗

+ z̄eiω
∗τ∗

+W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1) zz̄

+W
(1)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)]3
+ n5

[
ze−iω∗τ∗

+ z̄eiω
∗τ∗

+W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1) zz̄ +W

(1)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)]2
×
[
zv3e

−iω∗τ∗
+ z̄v̄3e

iω∗τ∗
+W

(3)
20 (−1)

z2

2
+W

(3)
11 (−1) zz̄

+W
(3)
02 (−1)

z̄2

2
+O

(
| (z, z̄) |3

)]}
.

Comparing the coefficients with (A.21) we get

g20 =2τ∗P̄
{
l1 + l2v2 + l3v3 +m1v2v̄

∗
2 +m2v2v3v̄

∗
2 + n1v̄

∗
3e

−2iω∗τ∗
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+n2v3v̄
∗
3e

−2iω∗τ∗
+ n3v2v3v̄

∗
3e

−2iω∗τ∗
}

=2τ∗P̄
{
l1 + l2v2 + l3v3 + v̄∗2 [v2 (m1 +m2v3)] + v̄∗3

[
v3e

−2iω∗τ∗
(n2 + n3v2)

]}
,

g11 =τ∗P̄ {2l1 + l2v2 + l2v̄2 + l3v3 + l3v̄3 + v2v̄
∗
2m1 + v̄2v̄

∗
2m1 + v2v̄

∗
2 v̄3m2

+v̄2v̄
∗
2v3m2 + 2v̄∗3n1 + v3v̄

∗
3n2 + v̄3v̄

∗
3n2 + v2v̄3v̄

∗
3n3 + v̄2v3v̄

∗
3n3}

=2τ∗P̄

{
1

2
[2l1 + l2 (v2 + v̄2) + l3 (v3 + v̄3)] +

1

2
v̄∗2 [m1 (v2 + v̄2)

+m2 (v2v̄3 + v̄2v3)] +
1

2
v̄∗3 [2n1 + n2 (v3 + v̄3) + n3 (v2v̄3 + v̄2v3)]

}
,

g02 =2τ∗P̄
{
l1 + l2v̄2 + l3v̄3 +m1v̄2v̄

∗
2 +m2v̄2v̄3v̄

∗
2 + n1v̄

∗
3e

2iω∗τ∗

+n2v̄3v̄
∗
3e

2iω∗τ∗
+ n3v̄2v̄3v̄

∗
3e

2iω∗τ∗
}

=2τ∗P̄ {l1 + l2v̄2 + l3v̄3 + v̄∗2 [v̄2 (m1 +m2v̄3)]

+v̄∗3

[
e2iω

∗τ∗
(n1 + n2v̄3 + n3v̄2v̄3)

]}
,

g21 =2τ∗P̄

{
l1

(
W

(1)
20 (0) + 2W

(1)
11 (0)

)
+ l2

(
1

2
v̄2W

(1)
20 (0) +

1

2
W

(2)
20 (0)

+v2W
(1)
11 (0) +W

(2)
11 (0)

)
+ l3

(
1

2
v̄3W

(1)
20 (0) +

1

2
W

(3)
20 (0) + v3W

(1)
11 (0)

+W
(3)
11 (0)

)
+ 3l4 + l5 (v̄3 + 2v3) +m1v̄

∗
2

(
1

2
v̄2W

(1)
20 (0) +

1

2
W

(2)
20 (0)

+v2W
(1)
11 (0) +W

(2)
11 (0)

)
+m2v̄

∗
2

(
1

2
v̄3W

(2)
20 (0) +

1

2
v̄2W

(3)
20 (0)

+v3W
(2)
11 (0) + v2W

(3)
11 (0)

)
+ n1v̄

∗
3

(
2e−iω∗τ∗

W
(1)
11 (−1) + eiω

∗τ∗
W

(1)
20 (−1)

)
+n2v̄

∗
3

(
1

2
v̄3e

iω∗τ∗
W

(1)
20 (−1) +

1

2
eiω

∗τ∗
W

(3)
20 (−1) + v3e

−iω∗τ∗
W

(1)
11 (−1)

+e−iω∗τ∗
W

(3)
11 (−1)

)
+ n3v̄

∗
3

(
1

2
v̄3e

iω∗τ∗
W

(2)
20 (−1) +

1

2
v̄2e

iω∗τ∗
W

(3)
20 (−1)

+v3e
−iω∗τ∗

W
(2)
11 (−1) + v2e

−iω∗τ∗
W

(3)
11 (−1)

)
+ 3n4v̄

∗
3e

−iω∗τ∗

+n5v̄
∗
3e

−iω∗τ∗
(2v3 + v̄3)

}
.

Since there are W20(θ) and W11(θ) in g21, we still need to compute them. From
(A.1), (A.16) and (A.20), we have

Ẇ = Ẋt − żq − ˙̄zq̄

=

{
AW − 2Re {q̄∗(0) · f0(z, z̄)q(θ)} , if θ ∈ [−1, 0),

AW − 2Re {q̄∗(0) · f0(z, z̄)q(θ)}+ f0(z, z̄), if θ = 0.

≜ AW +H(z, z̄, θ),

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · . (A.22)
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On the other hand, on C0 near to the origin, we have

Ẇ =Wz ż +Wz̄ ˙̄z.

Using (A.18) and (A.20) to replace Wz and ż and their conjugates by their power
series expansions, comparing the coefficients with the right hand side of (A.22), we
obtain

(2iω∗τ∗I −A)W20(θ) = H20(θ), −AW11(θ) = H11(θ), (A.23)

where I denotes the 3×3 identity matrix. From (A.22), we know that for θ ∈ [1, 0),

H(z, z̄, θ) =− q̄∗(0) · f0(z, z̄)q(θ)− q∗(0) · f̄0(z, z̄)q̄(θ)
=− g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ).

(A.24)

Substituting (A.21) into (A.22) gives

H(z, z̄, θ) =[−g20q(θ)− ḡ02q̄(θ)]
z2

2
+ [−g11q(θ)− ḡ11q̄(θ)]zz̄

+ [−g02q(θ)− ḡ20q̄(θ)]
z̄2

2
+ · · · .

(A.25)

Comparing the coefficients in (A.25) with those in (A.22) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ). (A.26)

From (A.23), (A.26) and the definition of A, we have

Ẇ20(θ) = 2iω∗τ∗W20(θ) + g20q(θ) + ḡ02q̄(θ). (A.27)

Notice that

q(θ) = (v1, v2, v3)
T
eiω

∗τ∗θ = q(0)eiω
∗τ∗θ.

Hence, using the method of variation of constants, the solution of (A.27) is given
by

W20(θ) =
ig20
ω∗τ∗

q(0)eiω
∗τ∗θ +

iḡ02
3ω∗τ∗

q̄(0)e−iω∗τ∗θ + E1e
2iω∗τ∗θ, (A.28)

where E1 =
(
E

(1)
1 , E

(2)
1 , E

(3)
1

)
∈ R3 is a constant vector.

Similarly, from (A.23), (A.26) and the definition of A, we have

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ), (A.29)

and

W11(θ) = − ig11
ω∗τ∗

q(0)eiω
∗τ∗θ +

iḡ11
ω∗τ∗

q̄(0)e−iω∗τ∗θ + E2, (A.30)

where E2 =
(
E

(1)
2 , E

(2)
2 , E

(3)
2

)
∈ R3 is also a constant vector.

In what follows, we seek appropriate constant vectors E1 and E2 in (A.28) and
(A.30), respectively. From (A.23) and the definition of A, we know that when θ = 0,

A(0)W20(θ) =

∫ 0

−1

dρ(θ)W20(θ) = 2iω∗τ∗W20(0)−H20(0), (A.31)
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and

A(0)W11(θ) =

∫ 0

−1

dρ(θ)W11 (θ) = −H11(0), (A.32)

where ρ(θ) = ρ(θ, 0). And from (A.22), we can obtain when θ = 0,

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τ∗ (H1, H2, H3)
T
, (A.33)

H11(0) = −g11q(0)− ḡ11q̄(0) + 2τ∗ (P1, P2, P3)
T
, (A.34)

where

H1 =l1 + l2v2 + l3v3, H2 = v2(m1 +m2v3), H3 = v3e
−2iω∗τ∗

(n2 + n3v2),

P1 =
1

2
[2l1 + l2(v2 + v̄2) + l3(v3 + v̄3)], P2 =

1

2
[m1(v2 + v̄2) +m2(v2v̄3 + v̄2v3)],

P3 =
1

2
[2n1 + n2(v3 + v̄3) + n3(v2v̄3 + v̄2v3)].

Noticing that(
iω∗τ∗I −

∫ 0

−1

eiω
∗τ∗θdρ(θ)

)
q(0) = 0,

(
−iω∗τ∗I −

∫ 0

−1

e−iω∗τ∗θdρ(θ)

)
q̄(0) = 0,

and substituting (A.28) and (A.33) into (A.30), we have(
2iω∗τ∗I −

∫ 0

−1

e2iω
∗τ∗θdρ(θ)

)
E1 = 2τ∗ (H1, H2, H3)

T
.

From the definition of A, we have∫ 0

−1

e2iω
∗τ∗θdρ(θ) = A(µ)e2iω

∗τ∗θ = Lµ

(
e2iω

∗τ∗θ
)
.

Therefore, when µ = 0, we have

∫ 0

−1

e2iω
∗τ∗θdρ(θ) = τ∗


M1 M2 M3

M4 0 M5

0 0 M6

+ τ∗


0 0 0

0 0 0

N1 N2 N3

 e−2iω∗τ∗
.

That is,
2iω∗ −M1 −M2 −M3

−M4 2iω∗ −M5

−N1e
−2iω∗τ∗ −N2e

−2iω∗τ∗
2iω∗ −M6 −N3e

−2iω∗τ∗

E1 = 2


H1

H2

H3

 .

It follows that

E
(1)
1 =

△11

△1
, E

(2)
1 =

△12

△1
, E

(3)
1 =

△13

△1
,

where

△1 =Det


2iω∗ −M1 −M2 −M3

−M4 2iω∗ −M5

−N1e
−2iω∗τ∗ −N2e

−2iω∗τ∗
2iω∗ − V6 −N3e

−2iω∗τ∗

 ,
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△11 =2Det


H1 −M2 −M3

H2 2iω∗ −M5

H3 −N2e
−2iω∗τ∗

2iω∗ − V6 −N3e
−2iω∗τ∗

 ,

△12 =2Det


2iω∗ −M1 H1 −M3

−M4 H2 −M5

−N1e
−2iω∗τ∗

H3 2iω∗ − V6 −N3e
−2iω∗τ∗

 ,

△13 =2Det


2iω∗ −M1 −M2 H1

−M4 2iω∗ H2

−N1e
−2iω∗τ∗ −N2e

−2iω∗τ∗
H3

 .

Similarly, substituting (A.30) and (A.34) into (A.32), we can obtain(∫ 0

−1

dρ(θ)

)
E2 = −2τ∗ (P1, P2, P3)

T
.

From the definition of A, we have∫ 0

−1

dρ(θ) = A(µ) = Lµ,

therefore, when µ = 0, we have

∫ 0

−1

dρ(θ) = τ∗


M1 M2 M3

M4 0 M5

0 0 M6

+ τ∗


0 0 0

0 0 0

N1 N2 N3

 ,

thus, we have 
M1 M2 M3

M4 0 M5

N1 N2 M6 +N3

E2 = −2


P1

P2

P3

 .

It follows that

E
(1)
2 =

△21

△2
, E

(2)
2 =

△22

△2
, E

(3)
2 =

△23

△2
,

where

△2 =Det


M1 M2 M3

M4 0 M5

N1 N2 M6 +N3

 , △21 =2Det


P1 M2 M3

P2 0 M5

P3 N2 M6 +N3

 ,

△22 =2Det


M1 P1 M3

M4 P2 M5

N1 P3 M6 +N3

 , △23 =2Det


M1 M2 P1

M4 0 P2

N1 N2 P3

 .
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