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Abstract For some abcd-water wave models describing small amplitude, long
wavelength gravity waves on the surface of water, in this paper, by using the
method of dynamical systems to analyze corresponding traveling wave systems
and find the bifurcations of phase portraits, the dynamical behavior of systems
can be derived. Under some given parameter conditions, for a wave component,
the existence of periodic wave solutions, solitary wave solutions, kink and anti-
kink wave solutions as well as compacton families can be proved. Possible exact
explicit parametric representations of the traveling wave solutions are given.
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1. Introduction

More recently, in [5], the authors studied exact Jacobi elliptic solutions for the
following abcd-system:

ηt + wx + (wη)x + awxxx − bηxxt = 0,

wt + ηx + wwx + cηxxx − dwxxt = 0,
(1.1)

where a, b, c, and d are real constants and θ ∈ [0, 1] that satisfy

a+ b =
1

2

(
θ2 − 1

3

)
, c+ d =

1

2
(1− θ2), a+ b+ c+ d =

1

3
. (1.2)

System (1.1) was introduced by Bona et al. in [1] and [2] to describe the wave
motion of small amplitude, long wavelength gravity waves on the surface of water.
The functions η(x, t) and w(x, t) are real valued and x, t ∈ R.
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A traveling-wave solution to the system (1.1) is a vector solution (η(x, t), w(x, t))
of the form

η(x, t) = ϕ(x− σt) = ϕ(ξ), w(x, t) = ψ(x− σt) = ψ(ξ), ξ = x− σt, (1.3)

where σ denotes the speed of the waves.
Substituting (1.3) into (1.1) and integrating the obtained system once, we have

− σϕ+ ψ + ϕψ + aψ′′ + bσϕ′′ = g1,

− σψ + ϕ+
1

2
ψ2 + cϕ′′ + dσψ′′ = g2,

(1.4)

where ”′” denotes the derivative in ξ, g1 and g2 are two integral constants. System
(1.4) can be written as:(

1− ψ

σ

)
ϕ− bϕ′′ = g1 +

1

σ
(aψ′′ + ψ),

ϕ+ cϕ′′ = g2 − dσψ′′ − 1

2
ψ2 + σψ.

(1.5)

(1.5) implies that if c ̸= 0 and a2 + b2 ̸= 0,

ϕ = F (ψ,ψ′′) =
b(g2 − dσψ′′ − 1

2ψ
2 + σψ) + c(g1 +

1
σ (aψ

′′ + ψ))

(b+ c)− c
σψ

. (1.6)

Notice that

dϕ

dξ
=
∂F

∂ψ
ψ′ +

∂F

∂ψ′′ψ
′′′,

d2ϕ

dξ2
=
∂2F

∂ψ2
(ψ′)2 +

∂F

∂ψ
ψ′′ +

∂2F

(∂ψ′′)2
(ψ′′′)2 +

∂F

∂ψ′′ψ
′′′′.

(1.7)

Generally, substituting (1.6) and (1.7) into the second equation of (1.5), we obtain a
fourth order ordinary differential equation about the variable ψ, because it contains
a fourth order derivative ψ′′′′ with respect to ξ.

If c ̸= 0, a = b = 0 or a = d = 0, then, we can obtain a second order traveling
wave differential equation.

Obviously, to investigate the traveling wave solutions of the PDE system (1.1),
we must study the all solutions of the corresponding ordinary differential equation
(traveling system). [5] did not discuss the dynamics of solutions for the traveling
system of system (1.1). Therefore, the conclusions in their paper are not complete
and some results are incorrect.

By choosing specific values for the parameters a, b, c, and d, the system (1.1) in-
cludes a wide range of other systems that have been derived over the last few decades
such as the classical Boussinesq system, the Kaup system, the coupled Benjamin-
Bona-Mahony system (BBM-system), the coupled Korteweg-de Vries system (KdV-
system), the Bona-Smith system, and the integrable version of Boussinesq system.
In particular, these specializations are (see Bona et al. [1]):

(i) Classical Boussinesq system (θ2 = 1
3 , a = b = c = 0, d = 1

3 ) :

ηt + wx + (wη)x = 0,

wt + ηx + wwx −
1

3
wxxt = 0.

(1.8)
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(ii) Coupled BBM-KdV system (θ2 = 2
3 , a = d = 0, b = c = 1

6 ):

ηt + wx + (wη)x −
1

6
ηxxt = 0,

wt + ηx + wwx +
1

6
ηxxx = 0.

(1.9)

(iii) Coupled KdV-BBM system (θ2 = 3
2 , b = c = 0, a = d = 1

6 ):

ηt + wx + (wη)x +
1

6
wxxx = 0,

wt + ηx + wwx −
1

6
wxxt = 0.

(1.10)

(iv) Kaup system (θ2 = 1, b = c = d = 0, a = 1
3 ):

ηt + wx + (wη)x +
1

3
wxxx = 0,

wt + ηx + wwx = 0.

(1.11)

(v) Coupled BBM-system (θ2 = 2
3 , a = c = 0, b = d = 1

6 ):

ηt + wx + (wη)x −
1

6
ηxxt = 0,

wt + ηx + wwx −
1

6
wxxt = 0.

(1.12)

(vi) Bona-Smith system

(
θ =

( 4
3−µ)
(2−µ) , µ < 0, arbitrary, a = 0, b = d

)
:

ηt + wx + (wη)x − bηxxt = 0,

wt + ηx + wwx + cηxxx − bwxxt = 0.
(1.13)

(vii) Coupled KdV-system (θ2 = 2
3 , b = d = 0, a = c = 1

6 ) :

ηt + wx + (wη)x +
1

6
wxxx = 0,

wt + ηx + wwx +
1

6
ηxxx = 0.

(1.14)

In this paper, we generally investigate the traveling wave solutions for systems
(1.8)-(1.11) by using the method of dynamical systems. We show that depending on
the changes of some parameters, system (1.1) with respect to the variable w = ψ(ξ)
has families of periodic wave solutions, solitay wave solutions, kink and anti-kink
wave solutions as well as compacton solution families. Under some special parameter
conditions, we can find the exact parametric representations for the traveling wave
solutions.

The article is organized as follows. In sections 2-5, we discuss respectively the
dynamics and possible exact solutions of the corresponding traveling wave sys-
tems of equations (1.8)-(1.11). In section 6, we give the traveling system for the
w−component of equations (1.12) and show that it is a non-integrable equation.
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2. The dynamics and possible exact solutions of the
traveling wave system of the classical Boussinesq
system (1.8)

Substituting (1.3) to (1.8) and integrating the obtained system once, we have

− σϕ+ ψ + ϕψ = g1,

− σψ + ϕ+
1

2
ψ2 +

1

3
σψ′′ = g2,

(2.1)

where ”′” denotes the derivative in ξ. We see from the first equation of (2.1) that
ϕ = g1−ψ

ψ−σ = g1−σ
ψ−σ − 1. Thus, by the second equation of (2.1), we obtain

1

3
σψ′′ − σψ +

1

2
ψ2 +

g1 − ψ

ψ − σ
− g2 = 0, (2.2)

which is equivalent to the planar dynamical system as follows:

dψ

dξ
= y,

dy

dξ
=

−3ψ3 + 9σψ2 + αψ + β

2σ(ψ − σ)
, (2.3)

where α = 6(−σ2 + g2 − 1), β = 6(−g2σ + g1).
System (2.3) is called a singular traveling wave system of the first kind defined

by [6], [7]. Because it defines a piecewise smooth vector field in two-half phase planes
in the two sides of the singular straight line ψ = σ and near this singular straight
line, the solution orbits have two time scales. Therefore, one must understand the
dynamical behavior of the solutions of singular nonlinear traveling wave systems.

System (2.3) has the first integral

H1(ψ, y)

=
1

2
y2 −

(
3σ2 +

1

2
α+

1

2σ
β

)
ln |ψ − σ|+ 1

2σ
ψ3 − 3

2
ψ2 −

(
3σ +

1

2σ
α

)
ψ = h.

(2.4)

We next consider the associated regular system of system (2.2) as follows:

dψ

dζ
= 2σ(ψ − σ)y,

dy

dζ
= −3ψ3 + 9σψ2 + αψ + β, (2.5)

where dξ = 2σ(ψ−σ)dζ. For ψ ̸= σ, this system has the same first integral as system
(2.3). The dynamics of systems (2.3) and (2.5) are different in the neighborhood of
the straight line ψ = σ. Specially, under some parameter conditions, the variable ζ
is a fast variable while the variable ξ is a slow variable in the sense of the geometric
singular perturbation theory (see [7]).

Write that f(ψ) = 3
(
ψ3 − 3σψ2 − 1

3αψ − 1
3β

)
, G(α, σ) = 729σ6 + 243ασ4 +

27α2σ2+α3. For a given parameter pair (α, σ), when S(σ, α, β) = 1
36β

2+ 1
18σ(6σ

2+
α)β − 1

108α
2σ2 − 1

729α
3 < 0, i.e.

β ∈
(
−6σ(σ2 + α)− 2

9

√
G(α, σ),−6σ(σ2 + α) +

2

9

√
G(α, σ)

)
, (2.6)
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the function f(ψ) has three real zeros ψj , j = 1, 2, 3. It means that system (2.5) has
three equilibrium points Ej(ψj , 0).

Especially, when α = −6σ2, β = 0, i.e., g1 = 1, g2 = σ, system (2.3) becomes

dψ

dξ
= y,

dy

dξ
=

3

2σ
ψ(2σ − ψ), (2.7)

with

H1(ψ, y) =
1

2
y2 +

1

2σ
ψ3 − 3

2
ψ2 = h. (2.8)

Let M(ψj , 0) be the coefficient matrix of the linearized system of system (2.5)
at an equilibrium point Ej(ψj , 0). and J(ψj , 0) = detM(ψj , 0). We have J(ψj , 0) =
2σ(ψj − σ)f ′(ψj).

By the theory of planar dynamical systems, for an equilibrium point of a planar
integrable system, if J < 0, then the equilibrium point is a saddle point; if J > 0
and Trace(M(ψj , 0))

2 − 4J(ψj , 0) < 0, then it is a center point; if J > 0 and
(Trace(M(ψj , 0)))

2 − 4J(ψj , 0) > 0, then it is a node; if J = 0 and the Poincaré
index of the equilibrium point is 0, then it is a cusp.

Write that hj = H1(ψj , 0), where H1(ψ, y) is given by (2.4).
By using the above information to do the qualitative analysis, when there exist

three equilibrium points of system (2.5), we have the following bifurcations of the
phase portraits of system (2.5) which are shown in Figure 1.

(a)
0 < ψ1 < σ < ψ2 < ψ3.

(b) α = −6σ2, β = 0. (c)
0 < ψ1 < ψ2 < σ < ψ3.

Figure 1. The bifurcations of phase portraits of system (2.3).

We see from Figure 1(a) and Figure 1(c) that the following two conclusions hold.

Theorem 2.1. For a given parameter pair (α, σ) and β satisfying (2.6) such that
system (2.3) has phase portrait Figure 1(a).

(i) Corresponding to the homoclinic orbit defined by H1(ψ, y) = h2, the w-
component of the classical Boussinesq system (1.8) has a smooth solitary wave so-
lution (see Figure 2(a)).

(ii) Corresponding to the family of periodic orbits defined by H1(ψ, y) = h, h ∈
(h3, h2), w−component of the classical Boussinesq system (1.8) has a smooth family
of periodic wave solutions (see Figure 2(b)).

(iii) Corresponding to the two families of open orbits defined by H1(ψ, y) =
h, h ∈ (h2, h1), which tend to the singular straight line ψ = σ when |y| → ∞,
w−component of the classical Boussinesq system (1.8) has two smooth compacton
solution familes (see Figure 2(c) and (d)).
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(a) Solitary wave. (b) Periodic wave.

(c) Compactons. (d) Compactons.

Figure 2. The wave profiles of the orbits in Fig. 1 (a).

Theorem 2.2. For a given parameter pair (α, σ) and β satisfying (2.6) such that
system (2.3) has the phase portrait given by Figure 1(c).

(i) Corresponding to the homoclinic orbit defined by H1(ψ, y) = h1, w−component
of the classical Boussinesq system (1.8) has a pseudo-peakon solution (see Figure
3(a)).

(ii) Corresponding to the two families of periodic orbits defined by H1(ψ, y) =
h, h ∈ (h1 − ϵ, h1), 0 < ϵ ≪ 1, which enclose the singular points E2(ψ2, 0) and
E3(ψ3, 0), respectively, w−component of the classical Boussinesq system (1.8) has
two families of pseudo-periodic peakon solutions (see Figure 3(b) and (c)).

(a) Pseudo-peakon. (b) Pseudo-periodic
peakon.

(c) Pseudo-periodic
peakon.

Figure 3. The wave profiles of the orbits in Fig. 1 (c).

For the homoclinic orbit in Figure 1(b) defined by H1(ψ, y) = 0 in (2.8),
we have y2 = 3ψ2 − 1

σψ
3. By using the first equation of system (2.7), we have
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1√
σ
ξ =

∫ 3σ

ψ
dψ

ψ
√
3σ−ψ . Thus, we obtain the following exact solitary wave solution of

the w−component and an unbounded solution of η−component:

w = ψ(ξ) = 3σsech2
(
3

2

√
σξ

)
,

η = ϕ(ξ) =
1− σ

ψ(ξ)− σ
− 1 =

(1− σ) cosh2
(
3
2

√
σξ

)
σ
(
3− cosh2

(
3
2

√
σξ

)) − 1.

(2.9)

Corresponding to the periodic orbit family defined by (2.8) with H1(ψ, y) =
h, h ∈ (−2σ2, 0), we see that y2 = 2h+3ψ3− 1

σψ
3 = 1

σ (r1−ψ)(ψ−r2)(ψ−r3), r3 <
0 < r2 < 2σ < r1 < 3σ. By using the first equation of system (2.7), we have
1√
σ
ξ =

∫ r1
ψ

dψ√
(r1−ψ)(ψ−r2)(ψ−r3)

. It gives rise to the following exact periodic wave

solutions of the w−component and η−component:

w = ψ(ξ) = r1 − (r1 − r2)sn
2(Ω1ξ, k),

η = ϕ(ξ) =
1− σ

ψ(ξ)− σ
− 1 =

1− σ

r1 − σ − (r1 − r2)sn2(Ω1ξ, k)
− 1,

(2.10)

where k2 = r1−r2
r1−r3 ,Ω1 =

√
r1−r3
2
√
σ
, sn(ξ, k) is the Jacobian elliptic function (see [3]).

3. The dynamics of the traveling wave system of
the coupled BBM-KdV system (1.9)

Substituting (1.3) to (1.9) and integrating the obtained system once, we have

− σϕ+ ψ + ϕψ +
1

6
σϕ′′ = g1,

− σψ + ϕ+
1

2
ψ2 +

1

6
ϕ′′ = g2,

(3.1)

where ”′” denotes the derivative in ξ. (3.1) implies that

ϕ = F (ψ) =
1
2σψ

2 − (σ2 + 1)ψ + g

ψ − 2σ
, (3.2)

where g = g1 − σg2. We next take g1 = g2 = g = 0. Then, we have

dϕ

dψ
=
σ(ψ2 − 4σψ + 4σ2 + 4)

2(ψ − 2σ)2
,

d2ϕ

dψ2
= − 4σ

(ψ − 2σ)3

and

d2ϕ

dξ2
=

4σ

(ψ − 2σ)3

[
1

8
ψ3 − 3

4
σψ2 +

1

2
(3σ + 1)ψ + σ(σ + 1) + (ψ′)2

]
.

Thus, we know from the second equation of (3.1) that

ψ′′ =
−8σ(ψ′)2 + 6ψ(ψ2 − 3σψ + 2σ2 − 2)(ψ − 2σ)2

σ(ψ − 2σ)(ψ2 − 4σψ + 4σ2 + 4)
, (3.3)
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which is equivalent to the planar dynamical system as follows:

dψ

dξ
= y,

dy

dξ
=

−8σy2 + 6ψ(ψ2 − 3σψ + 2σ2 − 2)(ψ − 2σ)2

σ(ψ − 2σ)(ψ2 − 4σψ + 4σ2 + 4)
. (3.4)

System (3.4) has the first integral as follows:

H2(ψ, y) =
σ(ψ − 2σ)4y2 + (420− 108σ2)ψ3 + (648σ2 − 1464)σψ2

(ψ2 − 4σψ − 4(σ2 + 1))2

+
(−1296σ4 + 480σ2 + 1392)ψ + (864σ4 + 1536σ2 + 672)σ

(ψ2 − 4σψ − 4(σ2 + 1))2

− 4ψ3 + 6σψ2 + 168ψ

+ 240σ ln(ψ2 − 4σψ − 4(σ2 + 1)) + (90σ2 − 510) arctan

(
1

2
ψ − σ

)
= h.

(3.5)

Consider the associated regular system of system (3.4) as follows:

dψ

dζ
= σy(ψ−2σ)(ψ2−4σψ+4σ2+4)),

dy

dζ
= −8σy2+6ψ(ψ2−3σψ+2σ2−2)(ψ−2σ)2,

(3.6)
where dξ = (ψ − 2σ)(ψ2 − 4σψ + 4σ2 + 4))dζ, for ψ ̸= 2σ.

Notice that ψ2 − 3σψ + 2σ2 − 2 = 0 has two real roots r1 = 3
2σ − 1

2

√
σ2 + 8

and r2 = 3
2σ+

1
2

√
σ2 + 8. Clearly, if σ ̸= 1, system (30) has three singular points at

O(0, 0), E1(r1, 0), E2(r2, 0). The straight line ψ = 2σ is a solution of system (3.6).
When σ = 1, we have r1 = 0.

Write that h0 = H2(0, 0), hj = H2(rj , 0), j = 1, 2 and hs = H2(2σ, 0). Similar
to the discussion in section 2, for σ > 0, we obiain the bifurcations of the phase
portraits of system (3.6) which are shown in Figure 4.

(a) 0 < σ < 1, h1 < hs <
h0 < h2.

(b) σ = 1. (c)
σ > 1, h2 < h0 < hs < h1.

Figure 4. The bifurcations of the phase portraits of system (3.6).

We see from Figure 4(a) that as h is varied, the level curves defined byH2(ψ, y) =
h are changed which are shown in Figure 5.

Theorem 3.1. For a given parameter 0 < σ < 1, system (3.4) has the phase
portrait given by Figure 3(a).

(i) Corresponding to the family of periodic orbits defined by H2(ψ, y) = h, h ∈
(h1, hs), which enclose the singular points E1(ψ1, 0), w−component of the coupled
BBM-KdV system (1.9) has a family of periodic wave solutions (see Figure 5(b)).
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(a) −∞ < h < h1. (b) h ∈ (h1, hs).

(c) h ∈ (hs, h0). (d) h = h0.

(e) h ∈ (h0, h2). (f) h = h2. (g) h ∈ (h2,∞).

Figure 5. The changes of the level curves defined by H2(ψ, y) = h of system (3.4) in Fig. 4 (a).
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(ii) Corresponding to the family of periodic orbits enclosing the singular points
E1(ψ1, 0) and two open orbit families which tend to the singular straight line ψ = 2σ
when |y| → ∞, defined by H2(ψ, y) = h, h ∈ (hs, h0) (see Figure 5(c)), w−component
of the coupled BBM-KdV system (1.9) has a family of periodic wave solutions and
two families of compacton solutions.

(iii) Corresponding to the homoclinic orbit enclosing the singular points E1(ψ1, 0)
and an open orbit tending to the singular straight line ψ = 2σ when |y| → ∞, defined
by H2(ψ, y) = h0 (see Figure 5(d)), the w−component of the coupled BBM-KdV
system (1.9) has a solitry solution and a compacton solution.

(iv) Corresponding to two open orbit families tending to the singular straight line
ψ = 2σ when |y| → ∞, defined by H2(ψ, y) = h, h ∈ (h0, h2) (see Figure 5(e)), the
w−component of the coupled BBM-KdV system (1.9) has two families of compacton
solutions.

(v) Corresponding to an open orbit family tending to the singular straight line
ψ = 2σ when |y| → ∞, defined by H2(ψ, y) = h, h ∈ [h2,∞) (see Figure 5(f)
and (g)), the w−component of the coupled BBM-KdV system (1.9) has a family of
compacton solutions.

Similarly, for the orbits in Figure 4(b) and (c), we have corresponding conclusions
about the traveling wave solutions.

Clearly, we can not use H2(ψ, y) and the first equation of system (3.4) to calcu-
late any exact explicit solution of system (3.4).

4. The dynamics and possible exact solutions of the
traveling wave system of the coupled KdV-BBM
system (1.10)

Substituting (1.3) to (1.10) and integrating the obtained system once, we have

− σϕ+ ψ + ϕψ +
1

6
ψ′′ = g1,

− σψ + ϕ+
1

2
ψ2 +

1

6
σψ′′ = g2.

(4.1)

where ”′” denotes the derivative in ξ. By the second equation of (4.1) we have
ϕ = σψ − 1

2ψ
2 − 1

6σψ
′′ + g2. Hence, we see from the first equation of (4.1) that

ψ′′ =
3ψ3 − 9σψ2 − (6− 6σ2 + 6g2)ψ + 6(σg2 + g1)

σ2 + 1− σψ
, (4.2)

which is equivalent to the planar dynamical system as follows:

dψ

dξ
= y,

dy

dξ
=

3ψ3 − 9σψ2 − (6− 6σ2 + 6g2)ψ + 6(σg2 + g1)

σ2 + 1− σψ
, (4.3)

with the singular straight line ψ = ψs =
σ2+1
σ .
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When σ ̸=
√
3
3 , system (4.3) has the first integral:

H3(ψ, y) =
1

2
y2 +

1

σ
ψ3 + 3

(
1

2σ2
− 1

)
ψ2 + 3

(
1− σ2(2g2 + 3)

σ3

)
ψ

+ 3

(
1

σ4
− 2

σ2
+

2g1
σ

− 2g2
σ2

)
ln |σψ − (σ2 + 1)| = h.

(4.4)

Assume that g1 = g2 = 0. Then, f(ψ) = ψ2 − 3ψσ + 2(σ2 − 1) = (ψ − r1)(ψ − r2),
where r1 = 3

2σ − 1
2

√
σ2 + 8, r2 = 3

2σ + 1
2

√
σ2 + 8.

When σ =
√
3
3 , r2 = σ2+1

σ . Hence, system (4.3) becomes that

dψ

dξ
= y,

dy

dξ
= −

√
3ψ

(
3ψ +

√
3
)

(4.5)

with the first integral

H3(ψ, y) =
1

2
y2 +

√
3ψ3 +

3

2
ψ2 = h. (4.6)

Obviously, when σ ̸=
√
3
3 , system (4.3) has three singular points at E1(r1, 0), O(0, 0)

and E2(r2, 0). When σ = 1, r1 = 0, r2 = 3. When σ > 1, 0 < r1 <
σ2+1
σ < r2.

Write that h0 = H3(0, 0), hj = H2(rj , 0), j = 1, 2 and hs = H3(ψs, 0). Similar
to the discussion in section 2, for σ > 0, with the change of σ, we obtain the
bifurcations of the phase portraits of system (4.3) which are shown in Figure 6.

As an example, we consider the changes of the level curves defined by H3(ψ, y) =
h of system (4.3) in Figure 6(e), which are shown in Figure 7.

We see from Figure 7, the following conclusion holds.

Theorem 4.1. Suppose that g1 = g2 = 0, σ > 1. System (4.3) has the phase portrait
Figure 6(e).

(i) Corresponding to the family of periodic orbits defined by H3(ψ, y) = h, h ∈
(h2, h1), which enclose the singular point E1(r2, 0), w−component of the coupled
KdV-BBM system (1.10) has a family of periodic wave solutions.

(ii) Corresponding to the two families of periodic orbits defined by H3(ψ, y) =
h, h ∈ (h1, h0), which enclose the singular points E1(r1, 0) and E2(r2, 0), respec-
tively, w−component of the coupled KdV-BBM system (1.10) has two families of
periodic wave solutions.

(iii) Corresponding to the homoclinic orbit and a periodic orbit enclosing the
singular point E2(r2, 0) defined by H1(ψ, y) = h0, w−component of the coupled
KdV-BBM system (1.10) has a pseudo-peakon solution and a pseudo-periodic peakon
solution.

(iv) Corresponding to the family of periodic orbits defined by H1(ψ, y) = h, h ∈
(h0,∞), which enclose the singular points E2(r2, 0), w−component of the coupled
KdV-BBM system ((1.10) has a family of pseudo-periodic peakon solutions.

For the homoclinic orbit in Figure 6(b) defined by H3(ψ, y) = 1
2y

2 +
√
3ψ3 +

3
2ψ

2 = 1
6 , i.e., y

2 = 2
√
3
(
ψ +

√
3
3

)2 (√
3
6 − ψ

)
, by using the first equation of (4.5),
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(a)

0 < σ <
√

3
3
, h0 < h1 < h2.

(b) σ =
√
3
3
, 0 = h0 < h1 = 1

6
. (c)√

3
3

< σ < 1, h0 < h1 < h2.

(d) σ = 1, h0 = h1 < h2. (e) σ > 1, h2 < h1 < h0.

Figure 6. The bifurcations of the phase portraits of system (4.3).

(a) h ∈ (h2, h1]. (b) h ∈ (h1, h0).

(c) h = h0. (d) h ∈ (h0,∞).

Figure 7. The changes of the level curves defined by H3(ψ, y) = h of system (4.3) in Fig. 6 (e).
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we have
√
2
√
3ξ =

∫ √
3

6

ψ
dψ

(ψ+
√

3
3 )

√√
3

6 −ψ
. It gives rise to the following exact solution:

w = ψ(ξ) = ψ0(ξ) = −
√
3

3
+

√
3

2
sech2

(
1

2

√
3ξ

)
,

η = ϕ(ξ) = σψ0(ξ)−
1

2
(ψ0(ξ))

2 − 1

6
σ(ψ0(ξ))

′′.

(4.7)

For the periodic orbit family in Figure 6(b) defined by H3(ψ, y) =
1
2y

2+
√
3ψ3+

3
2ψ

2 = h, h ∈
(
0, 16

)
i.e., y2 = 2h− 3ψ2 − 2

√
3ψ3 = 2

√
3(z1 −ψ)(ψ− z2)(ψ− z3), by

using the first equation of (4.5), we have the following exact periodic solution:

w = ψ(ξ) = ψp(ξ) = z1 − (z1 − z2)sn
2(Ω2ξ, k),

η = ϕ(ξ) = σψp(ξ)−
1

2
(ψp(ξ))

2 − 1

6
σ(ψp(ξ))

′′,
(4.8)

where k2 = z1−z2
z1−z3 ,Ω2 =

√
2
√
3(z1−z3)
2 .

5. The exact solutions and dynamics of the travel-
ing wave solutions of the Kaup system (1.11)

Substituting (1.3) to (1.11) and integrating the obtained system once, we have

− σϕ+ ψ + ϕψ +
1

3
ψ′′ = g1,

− σψ + ϕ+
1

2
ψ2 = g2,

(5.1)

where ”′” denotes the derivative in ξ. We see from the second equation of (5.1) that
ϕ = g2 + σψ − 1

2ψ
2. Thus, we obtain from the first equation of (5.1) that

ψ′′ − 3

2
ψ3 +

9

2
σψ2 + 3(g2 + 1− σ2)ψ − 3(σg2 + g1) = 0. (5.2)

Write α = −2(g2 + 1 − σ), β = 2(σg2 + g1). We next assume that β = 0, i.e.,
g2 = − g1

σ . Consider the planar cubic system:

dψ

dξ
= y,

dy

dξ
=

3

2
ψ(ψ2 − 3σψ + α) (5.3)

with the first integral

H4(ψ, y) =
1

2
y2 − 3

8
ψ4 +

3

2
σψ3 − 3

4
αψ2 = h. (5.4)

When ∆ = 9σ2 − 4α > 0, system (5.3) has three singular points O(0, 0) and
E1(r1, 0), E2(r2, 0), where r1 = 3

2σ − 1
2

√
∆, r2 = 3

2σ + 1
2

√
∆.

We have h0 = H4(0, 0) = 0 and

h1 = H4(r1, 0) =
1

16

[
81σ4 − 54ασ2 + 6α2 + (12ασ − 27σ3)

√
∆
]
,
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h2 = H4(r2, 0) =
1

16

[
81σ4 − 54ασ2 + 6α2 − (12ασ − 27σ3)

√
∆
]
.

α = 2σ2 implies that h2 = h0 = 0 and α = 9
4σ

2 implies that ∆ = 0, h1 = h2.
By using the above fact to do qualitative analysis, for a fixed σ > 0, we have

the bifurcations of the phase portraits of system (5.3) for α > 0 which are shown in
Figure 8.

(a) 0 < α < 2σ2. (b) α = 2σ2.

(c) 2σ2 < α < 9
4
σ2. (d) α = 9

4
σ2.

Figure 8. The bifurcations of the phase portraits of system (5.3) for α > 0.

We next calculate the exact solutions for system (5.3).
(i) Corresponding to the homoclinic orbit defined by H4(ψ, y) = 0 in Figure

8(a), we have y2 = 3
4ψ

2(ψL − ψ)(ψM − ψ), where ψM = 2σ −
√
4σ2 − 2α,ψL =

2σ +
√
4σ2 − 2α. By using the first equation of (5.3), we know that 1

2

√
3ξ =∫ ψM

ψ
dψ

ψ
√

(ψL−ψ)(ψM−ψ)
. It gives rise to the following solitaty wave solution of the

Kaup system (1.11):

ψ(ξ) = ψho(ξ) =
2ψLψM

(ψL − ψM ) cosh
(
1
2

√
3ψLψMξ

)
+ (ψM + ψL)

,

ϕ(ξ) = −g1
σ

+ σψho(ξ)−
1

2
ψ2
ho(ξ).

(5.5)

(ii) Corresponding to the periodic orbit family defined by H4(ψ, y) = h, h ∈
(h1, 0) in Figure 8(a), we have y2 = 3

4 (z1 − ψ)(z2 − ψ)(ψ − z3)(ψ − z4), z4 < 0 <

z3 < ψ1 < z2 < ψ2 < z1 and 1
2

√
3ξ =

∫ ψ
z3

dψ√
(z1−ψ)(z2−ψ)(ψ−z3)(ψ−z4)

. Thus, we

obtain the parametric representations of the family of periodic wave solutions of
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the Kaup system (1.11) as follows:

ψ(ξ) = ψper(ξ) = z4 +
z3 − z4

1− α̂2sn2(Ω1ξ, k)
,

ϕ(ξ) = −g1
σ

+ σψper(ξ)−
1

2
ψ2
per(ξ),

(5.6)

where α̂2 = z2−z3
z2−z4 , k

2 = α̂2(z1−z4)
z1−z3 ,Ω1 = 1

4

√
3(z1 − z3)(z2 − z4).

(iii) Corresponding to the heteroclinic orbits defined by H4(ψ, y) = 0 in Figure

8(b), we have y2 = 3
4ψ

2(2σ − ψ)2 and 1
2

√
3ξ =

∫ ψ
σ

dψ
ψ(2σ−ψ) . Hence, we obtain the

parametric representations of a kink wave solution and an anti-kink wave solution
of the Kaup system (1.11) as follows:

ψ(ξ) = ψkink(ξ) =
2σ

1 + e∓
√
3σξ

,

ϕ(ξ) = −g1
σ

+ σψkink(ξ)−
1

2
ψ2
kink(ξ).

(5.7)

(iv) Corresponding to the homoclinic orbit defined by H4(ψ, y) = h2 in Figure
8(c), we have y2 = 3

4 (r2 − ψ)2(ψ − ψm)(ψ − ψl). By using the first equation of

(5.3), we know that 1
2

√
3ξ =

∫ ψ
ψm

dψ

(r2−ψ)
√

(ψ−ψm)(ψ−ψl)
. It gives rise to the following

solitaty wave solution of the Kaup system (1.11):

ψ(ξ) = ψhom(ξ)=r2−
2(r2 − ψm)(r2 − ψl)

(ψm−ψl) cosh
(

1
2

√
3(r2−ψm)(r2 − ψl)ξ

)
+(2r2 − ψm − ψl)

,

ϕ(ξ) = −g1
σ

+ σψhom(ξ)− 1

2
ψ2
hom(ξ).

(5.8)

(v) Corresponding to the periodic orbit family defined by H4(ψ, y) = h, h ∈
(h1, 0) in Figure 8(b) and H4(ψ, y) = h, h ∈ (h1, h2) in Figure 8 (c), we have the
same parametric representations of the family of periodic wave solutions of the Kaup
system (1.11) as (5.6).

To sum up, we obtain the following conclusion.

Theorem 5.1. (i) The Kaup system (1.11) has an exact explicit solitary wave
solutions given by (5.5) and (5.8);

(ii) The Kaup system (1.11) has an exact explicit kink wave and an anti-kink
wave solution given by (5.7);

(iii) The Kaup system (1.11) has an exact explicit periodic wave solution family
given by (5.6).



1140 J. Li & Z. Shi

6. The traveling wave equation of the coupled BBM
system (1.12)

Substituting (1.3) to (1.12) and integrating the obtained system once, we have

− σϕ+ ψ + ϕψ +
1

6
σϕ′′ = g1,

− σψ + ϕ+
1

2
ψ2 +

1

6
σψ′′ = g2,

(6.1)

where ”′” denotes the derivative in ξ. We see from the second equation of (6.1) that
ϕ = g2 + σψ− 1

2ψ
2 − 1

6σψ
′′. Thus, by taking g1 = g2 = 0, from the first equation of

(6.1), we obtain

ψ′′′′ = 12ψ′′ − 6

σ
(ψ′)2 − 12

σ
ψψ′′ − 18

σ2
ψ3 +

54

σ
ψ2 + 36

(
1

σ2
− 1

)
. (6.2)

Making the transformation ψ = σ(1− Y ), (6.2) becomes that

Y ′′′′ = 12Y Y ′′ + 6(Y ′)2 − 18Y 3 + 18

(
1 +

2

σ2

)
Y − 16

σ2
. (6.3)

Equation (6.3) is a fourth order ordinary differential equation, in [8], [9], [10], by
using Cosgrove’s higher-order Painleve equations (see [4]), we have obtained a lot
of exact explicit solutions for some higher-order traveling wave systems. We notice
that equation (6.3) is not the Cosgrove’s higher-order Painleve equations (F-III),
(F-V) and (F-VI), i.e.,

y(iv) = 15yy′′ +
45

4
(y′)2 − 15y3 + αy + β, (6.4)

y(iv) = 20yy′′ + 10(y′)2 − 40y3 + αy + β, (6.5)

y(iv) = 18yy′′ + 9(y′)2 − 24y3 + αy2 +
1

9
α2y + β. (6.6)

Therefore, equation (6.3) is not an integrable system. We can not obtain the exact
explicit solution for equation (6.3).
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