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The Dynamics of the Spruce Budworm-Bird
System on Time Scale∗
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Abstract We perform a geometric analysis focusing on relaxation oscilla-
tions and canard cycles within a singularly perturbed predator-prey system
involving budworm and birds. The system undergoes a comprehensive sta-
bility analysis, leading to the identification of canard cycles in proximity to
the Hopf bifurcation points. The study particularly highlights the transition
from smaller Hopf-type cycles to larger relaxation cycles. And the expression
of transition threshold µc(

√
ε) of the spruce budworm-bird system is obtained

innovatively. Furthermore, numerical simulations are carried out to validate
the theoretical findings.
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1. Introduction

Relaxation oscillations represent a form of periodic solutions prevalent in slow-
fast systems, extensively utilized in modeling chemical and biological processes.
These oscillations manifest as sequential cycles characterized by alternating phases
of dissipation and abrupt changes. Specifically, within the domain of relaxation
oscillations lie the noteworthy phenomena of canard cycles, depicting trajectories
within slow-fast systems that persist in proximity to a repelling slow manifold for a
duration of O(1) time [1]. Notably, recent years have witnessed a revitalized interest
in the study of canard cycles, a resurgence intertwined with both the theoretical
underpinnings of dynamical systems and their practical applications.

In the realm of smooth slow-fast systems, the emergence of a Hopf bifurcation
occurs when the slow nullcline intersects the fast nullcline transversely, commonly
near a fold or local extremum referred to as the critical manifold. This pivotal
occurrence transpires particularly when the fast nullcline assumes an ’S’-shaped
structure. Subsequently, the evolution of Hopf cycles gradually transforms into
relaxation oscillations. This intriguing transition from Hopf cycles to relaxation
oscillations takes place within an exponentially minute parameter range, recognized
as a canard explosion [2, 3].
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Around the era of 1980, the conception of geometric singular perturbation the-
ory, pioneered by Fenichel [4], explicated the formation and dynamic analysis of
canard explosions. This theory adopts a geometric approach in addressing singular
perturbation quandaries, prominently involving the crucially significant normally
hyperbolic condition. Noteworthy advancements have surfaced in recent years, in-
troducing a prevalent mechanism aimed at scrutinizing instances where the condi-
tion of normal hyperbolicity fails. This innovative approach amalgamates blow-up
techniques and dynamical systems, originally introduced by Dumortier and Rous-
sarie [5], later harnessed by Krupa and Szmolyan [1].

In recent years, Brons et al. [6,7] conducted an analysis on mixed-mode oscilla-
tions arising from canard-type and singular Hopf bifurcations in a model represent-
ing a forest pest ecosystem. Izhikevich [8] explored bifurcations in both resting and
active states of the burster, introducing a comprehensive theoretical classification
method termed ‘top-down’ fast/slow dynamics bifurcation analysis. This method-
ology facilitated a meticulous examination and elucidation of diverse bifurcation
mechanisms governing discharge rhythm in fast/slow neuron models [9, 10].

Since the initial discovery of the correlation between canards and Mixed-Mode
Oscillations (MMOs) in neuron models by [11], subsequent research consistently
demonstrated and established the potential link between these phenomena [12,13].
A detailed theoretical exposition is provided in the literature [14,15].

It is well-acknowledged that predation can induce oscillations in interacting
species, and numerous field and experimental data showcase periodic fluctuations in
both predator and prey populations [16]. The existence of limit cycles in predator-
prey models has been extensively investigated (see, for instance, [17]). Regarding
the presence of relaxation dynamics, pertinent references include [18].

In the realm of biology and ecology, there is notable interest in exploring the
dynamics of slow-fast prey-predator systems when the predator’s death rate remains
exceptionally low. For instance, predator animals like birds may only feed once
every two or three hours due to low hunting success. Conversely, prey such as the
spruce budworm reproduces rapidly, with a single female capable of producing tens
of thousands of offspring in a short period. Their reproductive and mortality rates
exhibit considerable variation over the same time frame. Hence, it is judicious to
investigate slow-fast predator-prey systems incorporating small parameters.

In this paper, we study relaxation oscillations and canard cycles of the spruce
budworm-bird system by combining geometric singular perturbation theory [4] and
the Hopf bifurcation Theorem [1]. Specifically, in Section 2, the stability analysis of
the system is performed. Then in Section 3 we introduce the slow-fast system. In
Section 4 we discussed GSPT and blow-up technique for a detailed mathematical
analysis of slow-fast systems. Finally, the conclusion of our work is drew in Section
5.

2. Model and its linear stability analysis

2.1. Predator-prey model

First, the dynamics of the budworm population without the action of predation will
be described by the logistic equation

dω

dt
= rω

(
1− ω

K

)
,
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where ω represents the budworm density, r denotes the maximum growth rate of
ω,K represents the carrying capacity of the forest. We describe the predation of
birds on aphids using the following equation

αB
ω2

A2 + ω2
,

which represents a Type-III S-shaped functional response.α signifies the maximum
predation rate of an individual bird (on average), B represents the bird density and
the parameter A corresponds to the budworm population when the predation rate
is at half of its maximum. Therefore, for the dynamic density of budworm under
predation by birds, we have the following equation

dω

dt
= rω

(
1− ω

K

)
− αB

ω2

A2 + ω2
.

The above formula has been studied by Ludwig, Jones and Holling [19], under the
assumption of a constant bird density B.

In this paper we assume that some birds may leave the system if the budworm
population goes down. Let µ denotes the rate at which birds exit the system through
migration or death while c quantifies the predation efficiency-defined as the number
of new birds generated for each budworm killed. Thus the equation for bird density
is given by

dB

dt
= −µB + cα

Bω2

A2 + ω2
.

Combining the above assumptions, the classical budworm-bird model with the
Type-III S-shaped functional response is considered [20–22]. Let ω and B be the
budworm and bird densities at time t, respectively. The model is given by the
following equations: 

dω

dt
= rω

(
1− ω

K

)
− αB

ω2

A2 + ω2
,

dB

dt
= −µB + cα

Bω2

A2 + ω2
.

(2.1)

We have judiciously selected dimensionless variables and parameters, following
the conventions outlined in [23]. The substitutions ω = ω̄A, t = τ

cα , and B = cAB̄
lead to the formulation of the rescaled system

dω̄

dτ
= f

(
ω̄, B̄

)
= r̄ω̄

(
1− ω̄

K̄

)
− B̄ω̄2

1 + ω̄2
,

dB̄

dτ
= g

(
ω̄, B̄

)
= −µ̄B̄ +

B̄ω̄2

1 + ω̄2
,

(2.2)

where r̄ = r
cα , K̄ = K

A , µ̄ = µ
cα .

Note that ω̄ signifies the proportion of budworms relative to the variable A, while
B̄ denotes the ratio between bird density and the product of predation efficiency
and A. Additionally, τ represents the time, rescaled by the duration required for
birds to consume budworms. Throughout the subsequent sections of this paper, we
adopt the simplified notation ω,B, t, r,K, µ, for the rescaled variables ω̄, B̄, τ , and
parameters r̄, K̄, µ̄, respectively.
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Given the inherent characteristics of species, it is often observed that the prey
population exhibits a considerably higher growth rate than its predator. A no-
table example is illustrated by the interaction between budworms and birds, where
budworms manifest a substantially faster reproductive rate than birds. This phe-
nomenon has motivated researchers to introduce a small timescale parameter, de-
noted as ε with the constraint 0 < ε ≪ 1, into the foundational model (2.2). The
parameter ε is construed as the ratio between the linear death rate of the predator
and the linear growth rate of the prey, as discussed by previous studies [24]. The
underlying assumption associated with ε posits that a single generation of predators
may engage with multiple generations of prey [25]. Consequently, acknowledging
the timescale discrepancy, the slow-fast version of the dimensionless model (2.2) is
articulated as follows


dω

dt
= f (ω, B) = rω

(
1− ω

K

)
− Bω2

1 + ω2
,

dB

dt
= εg (ω, B) = ε

(
−µB +

Bω2

1 + ω2

)
.

(2.3)

Since the prey population grows faster compared to the predator, ω and B are
referred to fast and slow variables, respectively, and time t is called fast time.

2.2. Stability analysis

System (2.3) and system (2.2) share identical linear stability results, as the analyt-
ical conditions are independent of ε. The equilibria of system (2.2) are as follows:

E1 = (0, 0),

E2 = (K, 0),

E3 =

− µ√
µ− µ2

,
r√

µ− µ2

1− µ

K
(√

µ− µ2
)
 ,

E4 =

 µ√
µ− µ2

,
r√

µ− µ2

1− µ

K
(√

µ− µ2
)
 .

It is worth noting that the extinct equilibrium E1 and the prey-only equilibrium
point E2 always exist. However, since E3 has negative (or complex) coordinates,
it lacks biological significance and is therefore not considered in this context. Re-

garding E4, this point holds biological relevance when 0 < µ < K2

1+K2 , as otherwise,
negative or non-real populations are managed. The coordinates of E4 are denoted
as (ω∗, B∗), where

ω∗ =
µ√

µ− µ2
,

B∗ =
r√

µ− µ2

1− µ

K
(√

µ− µ2
)
 .
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To assess the stability of the equilibrium point, we linearize system (2.2) by
calculating the Jacobian matrix:r

(
1− 2ω

K

)
− 2Bω

(1+ω2)2 − ω2

1+ω2

2Bω
(1+ω2)2

ω2

1+ω2 − µ

 . (2.4)

For a two-dimensional system, stability can be assessed by examining the trace
T and determinant ∆ of matrix (2.4) evaluated at the equilibrium point. A point
is considered stable if ∆ > 0 and T < 0. In this analysis, we specifically focus on
the positive equilibrium E4.

Theorem 2.1. For the stability of E4 (ω∗, B∗), the following results hold.

(i) E4 is stable for µ < µH .

(ii) E4 loses its stability via Hopf bifurcation when µ = µH .

(iii) E4 is unstable and surrounded by a limit cycle for µ > µH , in which µH

satisfies that

K =
2µ2

H

(2µH − 1)
√

µH − µ2
H

.

Proof. Substituting E4 = (w∗, B∗) into (2.4), we obtain the following Jacobian
matrix: r

(
2µ− 1− 2µ2

K
√

µ−µ2

)
−µ

2r
(
K(µ−1)+

√
µ−µ2

)
K 0

 . (2.5)

The matrix has a trace T = r

(
2µ− 1− 2µ2

K
√

µ−µ2

)
and a determinant ∆ =

2rµ
(
K(µ−1)+

√
µ−µ2

)
K . Given that µ < K2

1+K2 (or equivalently, K < µ√
µ−µ2

), we have

∆ > 0. For the case where µ < 0, it is evident that T < 0, establishing stability for
E4 if µ < 1

2 .

Now, if µ > 1
2 , an additional condition for stability of E4 is K < 2µ2

(2µ−1)
√

µ−µ2
.

When T = 0, E4 loses its stability through a supercritical Hopf bifurcation. The
Hopf threshold µ = µH can be expressed by an implicit function, simplified to:

K =
2µ2

H

(2µH − 1)
√

µH − µ2
H

. (2.6)

The transversality condition for the Hopf bifurcation is satisfied at µ = µH .
The coexistence steady state E4 is stable for µ < µH and destabilizes for µ > µH ,
surrounded by a limit cycle.

Interestingly, the linear stability results remain unchanged even in the presence
of slow-fast timescales. However, the linear stability analysis falls short in capturing
the complete dynamics of the slow-fast system (2.3) when 0 < ε ≪ 1. The system
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(2.3) undergoes a catastrophic transition that eludes standard stability analysis. In
some cases, the model may tend to overestimate ecological resilience.

To delve into the comprehensive dynamics of the system, we turn to geometric
singular perturbation theory and employ blow-up techniques. These approaches,
crucial for a nuanced understanding, will be discussed in the upcoming sections.

3. Slow-fast system

In this section, we delve into describing the dynamics of the slow-fast system (2.3).
To effectively study the system’s dynamics, we analyze the behaviors of the two
subsystems corresponding to (2.3) by setting ε to 0. The system’s behavior in its
singular limit, ε = 0, can be obtained as follows:

dω

dt
= f = rω

(
1− ω

K

)
− Bω2

1 + ω2
,

dB

dt
= 0.

(3.1)

The above system is known as the fast subsystem or layer system corresponding
to the slow-fast system (2.3). The rate of change in predator density is 0. In the
sense that B can be rewritten as a constant c, determined by the initial condition
B(0) = c. Therefore, system (3.1) reduces to a degenerate differential equation:

dω

dt
= f = rω

(
1− ω

K

)
− cω2

1 + ω2
, (3.2)

with the initial condition ω(0) > 0. The direction of the fast flow depends on the
choice of initial conditions ω(0), B(0), and other parameter values. We use green
horizontal lines to indicate the track of system (3.1) in Fig. 1. By expressing system
(2.3) in terms of slow time τ := εt(ε > 0), an equivalent system in terms of slow
time is obtained: 

ε
dω

dτ
= f = rω

(
1− ω

K

)
− Bω2

1 + ω2
,

dB

dτ
= g =

(
−µB +

Bω2

1 + ω2

)
.

(3.3)

Substituting ε = 0 into the above system of equations, we obtain the differential
algebraic equation (DAE)

f = rω
(
1− ω

K

)
− Bω2

1 + ω2
= 0,

dB

dτ
= g =

(
−µB +

Bω2

1 + ω2

)
,

(3.4)

which is known as the slow subsystem corresponding to the slow-fast system (3.3).
The solution of the above system is constrained to the set{

(ω,B) ∈ R2
+ : f (ω,B) = 0

}
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and is known as critical manifold M0. This set corresponds one-to-one to the equi-
librium set of system (3.2). The critical manifold consists of two distinct manifolds

M0
0 =

{
(ω, B) ∈ R2

+ : ω = 0, B ≥ 0
}
,

M1
0 =

{
(ω, B) ∈ R2

+ : B = q (ω) :=
r
(
1 + ω2

) (
1− ω

K

)
ω

, ω > 0, B > 0

}
,

such that M0 = M0
0 ∪M1

0 , where M0
0 is the positive v-axis and M1

0 is a portion of
the cubic curve in the first quadrant shown in Fig. 1, which is marked with bluish
violet color. The slow flow on the critical manifold is given by

dω

dτ
=

g (ω,B)

q′ (ω)
.
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Figure 1. Dynamics of the slow-fast system (2.3) where green line represents slow flow and bluish violet
line represents fast flow.

When ε > 0 is sufficiently small, the solution of system (2.3) cannot be ap-
proximated by its limiting solution at ε = 0. Thus, ε = 0 is the singular limit of
system (2.3). Combined with the solution of the system in its singular limit, the full
system solution is obtained. We employ two subsystems based on the region of the
phase space. For r = 2.53,K = 7.348, and µ = 0.62, the coexistence steady state
is unstable for 0 < ε ≤ 1 and is surrounded by a stable limit cycle. Notably, the
size and shape of the stable limit cycle change with the variation of ε, as shown in
Fig. 2. The size of the closed curve attractor is significantly different at ε = 1 and
ε = 0.001. However, keeping other parameters fixed, as we decrease ε ≪ 1, there
is a small change in the solution, and the change in the shape of the limit cycle is
not clearly distinguishable. This observation is based on numerical simulation, and
a detailed analysis is needed to understand the possible shape of the trajectories
in the singular limit ε → 0. For ε = 0.001, the closed curve attractor (depicted
in red) consists of two horizontal segments with fast flow and two curved segments
with slow flow. This solution can be viewed as a perturbation of the ε = 0 solution
achieved by combining the solutions of the layer system (3.1) and the slow subsys-
tem (3.4). The two horizontal segments of the attractor (depicted in red) represent
perturbed trajectories associated with the layers, signifying rapid fluctuations in
prey species while predator density remains unchanged. The two curvilinear parts
closely align with the critical manifold M1

0 . Changes in the shape and size of the
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attractor are not solely dependent on the magnitude of ε but also on the parameters
related to reaction kinetics and time scale parameters.
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Figure 2. Limit cycles for different values of timescale parameter ε = 1 (blue), ε = 0.1 (orange),
ε = 0.01 (green), ε = 0.001(red). Mainfold(dotted line).

When we increase the parameter µ, the image transforms into a canard cycle
with a head. Conversely, when we decrease the parameter µ, the image changes to
a cycle without a head. It is noteworthy that when µ = 0.5999, the canard cycle
without a head transforms into a canard cycle with a head (see Fig. 3).

In the time series image, the transition between the fast, small loop and the
slow, large loop is prominently observable. The budworm population experiences
rapid reproduction at a specific time, swiftly reaching its peak within a short period,
depicted as the sharp vertical rise in (b). Subsequently, the budworm population
begins to decline due to bird predation. With an increase in the bird population,
this decline accelerates, reaching its minimum. Thereafter, it reverts to a lower
count, awaiting the next population surge.
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Figure 3. (a) canard cycle for µ = 0.5999. (b) time series image.

In the next section, we will derive the analytical conditions for the existence of
a canard cycle. The analytical results will aid us in identifying the domains in the
parametric plane where we can find these different types of closed curve attractors.
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4. Analysis of slow-fast system

The critical manifold M1
0 can be divided into two parts: one part consists of the

attractors of the fast subsystem, and the other part is repelling in nature. The
attracting and repelling parts of the manifold are separated by a non-degenerate
fold point P . The fold point P (ωf , Bf ) is characterized by the following conditions:

∂f

∂ω
(ωf , Bf ) = 0,

∂f

∂B
(ωf , Bf ) ̸= 0,

∂2f

∂2ω
(ωf , Bf ) ̸= 0, and g(ωf , Bf ) ̸= 0.

According to the above conditions, we obtain two points: the minimum point
P1(ω1, B1) and the maximum point P2(ω2, B2) of the critical manifold. The fold
point divides the critical manifold into attracting M1,a

0 and repelling M1,r
0 subman-

ifolds given by

M1,a
0 =

{
(ω,B) ∈ R2

+ : B = q(ω), 0 < ω < ω1 or ω2 < ω
}
,

M1,r
0 =

{
(ω,B) ∈ R2

+ : B = q(ω), ω1 < ω < ω2

}
.

Define M
′

0 = M1,a
0 ∪M1,r

0 , and it is straightforward to observe that it is obtained
from M0 by removing the two extreme points P1 and P2. All the eigenvalues of
∂B
∂ω (ω,B) that take values on M

′

0 have nonzero real parts; consequently, M
′

0 is

considered hyperbolic. Clearly, it is also a compact manifold. M
′

0 plays a crucial
role in the research and analysis of Mε. The relationship between them is explained
by the following theorem.

Theorem 4.1. Let M
′

0 be a compact normal hyperbolic manifold of system (9).
Then for a sufficiently small ε, there exists a manifold

Mε =
{
(ω,B) ∈ R2

+ : B = q (ω, ε) = q0 (ω) + εq1 (ω) + ε2q2 (ω) ,

0 < ω < ω1 or ω1 < ω < ω2 or ω2 < ω
}

where

q0 (ω) =
−rmv

ω
, q1 =

rm j v

w g
,

q2 =

rm j v

(
2 r j v

g − µm
w2 +

rm ( 2µ
w − 2µm

w3 ) v
w g + rm j

K w g − rm j v
w2 g − rm j v h

w g2 + 1

)
w g2

,

m = w2 + 1, v =
w

K
− 1, h =

4 r

K
− 2 r v

w
− 2 rm

K w2
+

2 rmv

w3
,

g = 2 r v +
rm

K w
− rmv

w2
, j =

µm

w2
− 1,

such that

(i) Mε is diffeomorphic to M
′

0.

(ii) Mε is locally invariant with respect to the flow of system (2.3).
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(iii) For 0 < r < +∞, Mε is Cr-smooth.

Proof. (i) To prove Mε is diffeomorphic to M
′

0, it has to prove that there exist
two mapping. One mapping is from M

′

0 to Mε, and the other mapping which is
also the inverse of the previous mapping is from Mε to M

′

0.
According to the expression of Mε and M

′

0, any point in M
′

0 can be written
(ω, q0 (ω)) explicitly as

q0 (ω) =
r
(
1 + ω2

) (
1− ω

K

)
ω

.

Any point in Mε can be written (ω, q (ω, ε)) as

q (ω, ε) = q0 (ω) + εq1 (ω) + ε2q2 (ω) .

About q1, it rewrites the format to include q0,

q1 (ω) =
q0 (ω) ·

(
−1 + µ 1+ω2

ω2

)
q′0 (ω)

. (4.1)

Similarly, let q2 become a form containing q0 and q1,

q2 (ω) =
q1 (ω) ·

(
−1 + µ 1+ω2

ω2

)
− q1 (ω) · q′1 (ω)

q′0 (ω)
. (4.2)

Combined with the above expression, then there is

q (ω, ε) =q0 (ω) + ε
q0 (ω) ·

(
−1 + µ 1+ω2

ω2

)
q′0 (ω)

+ ε2

q0(ω)·
(
−1+µ 1+ω2

ω2

)
q′0(ω)

−1 + µ 1+ω2

ω2 −

(
q0(ω)·

(
−1+µ 1+ω2

ω2

)
q′0(ω)

)′
q′0 (ω)

.

(4.3)

From the above expression, any point A (ω, q0 (ω)) in M
′

0 is mapped to
B (ω, q (ω, ε)) in Mε. That is to say that the mapping f : M

′

0 → Mε is founded.
Next, let ε = 0 and the following equality holds

q0 (ω) = q (ω, 0) . (4.4)

Similarly, by the above formula any point C (ω, q (ω, ε)) in Mε is mapped to
D (ω, q0 (ω)) in M

′

0. The map g : Mε → M
′

0 is founded. And since M
′

0 and Mε

have the same range of values for ω, f and g are bijective. To sum up, Mε is
diffeomorphic to M

′

0.
(ii) To prove that Mε =

{
(ω,B) ∈ R2

+ : F (ω, q (ω, ε)) = B − q (ω, ε) = 0
}
is in-

variant in the sense that

F (ω, q (ω, ε)) · [0, t] ⊂ F (ω, q (ω, ε) · [0, t])

with respect to the flow of system (9), it means to prove the invariance condition [4]

dB

dt
=

dq (ω, ε)

dω

dω

dt
+O

(
ε2
)
.



774 Y. Zhang & Y. Pei

Using the explicit expression for dB
dt and dω

dt from (2.3), the equation becomes(
−µB +

Bω2

1 + ω2

)
= ε

dq (ω, ε)

dω

(
rω
(
1− ω

K

)
− Bω2

1 + ω2

)
+O

(
ε2
)
. (4.5)

Substituting the expressions for q0, q1, and q2, we verify that the equality holds.
(iii) According to the expression of q0 and the value of the domain of definition,

q0 is continuous. Take into account of the above fact, q
′

0 is in fractional form and
(4.3), we find that Mε is Cr-smooth.

By the above theorem, the expression for Mε is obtained, which is plotted in
the Fig. 4. It reveals the tight connection between Mε and M

′

0.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

Manifold

P
1

P
2

Figure 4. Mε with ε = 1(blue), ε = 0.1(yellow), ε = 0.01(purple). M
′
0 (solid black line).

For various ε values, the approximation of invariant manifolds is depicted in
Fig. 4. This representation displays two non-removable discontinuities near the
non-hyperbolic points P1 and P2. The critical manifold M

′

0 is hyperbolic except
at P1 and P2, and the same holds for Mε. Consequently, trajectories originating
near the attractor submanifold M1,a

0 and the repulsive submanifold M1,r
0 cannot

pass through the fold points P1 and P2. Upon observing Fig. 4, it’s evident that for
sufficiently small ε, the trajectory closely approaches the attractive manifold M1,a

0

and traverses through point P1.

4.1. Slow-fast normal form

The theory presented in the previous section is insufficient to determine an analytical
expression for a perturbed submanifold near M1

0 that is continuous near a non-
hyperbolic point. Therefore, to construct a trajectory passing near point P , it is
necessary to remove the singularity associated with this point.

Depending on the parameter µ, the predator nullcline intersects either M1,a
0 or

M1,r
0 or passes through the fold point P1. Hence, the coexistence equilibrium point

E4 of system (2.3) either lies on M1,a
0 , or on M1,r

0 , or coincides with P1. When E4

is located on M1,a
0 , it is globally asymptotically stable, and every trajectory con-

verges to E4. When E4 coincides with the fold point P1, then f(E4) = 0, g(E4) = 0,
fω(E4) = 0, fB(E4) ̸= 0, and fωω(E4) ̸= 0. This point is called the canard point.
For the system (2.3), the Hopf point coincides with the canard point. The solu-
tions through the vicinity of this point are called canard solutions. For µ > µH , the
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coexisting equilibrium point E4 lies on the repulsive submanifold M1,r
0 , which is un-

stable, and we obtain a special periodic solution consisting of two fast flows (almost
horizontal) and two slow flows (passing near M1,a

0 ), called relaxation oscillations.
We will discuss the existence of such solutions in the following subsections.

To eliminate the singularity at the fold point, we employ a blow-up transforma-
tion at the non-hyperbolic fold point, extending the system over a 3-sphere in R4,
denoted by S3 = {x ∈ R4 : ||x|| = 1}. Through the use of the blow-up technique,
we successfully remove the singularity from the system and ascertain the canard
solution passing through this point. To facilitate the blow-up technique, we first
transform the slow-fast system (2.3) into the desired slow-fast normal form.

The fold point P1 coincides with the coexisting equilibrium point at µ = µ∗.
Consequently, the following conditions hold:

f(ω∗, B∗, µ∗) = 0, g(ω∗, B∗, µ∗) = 0,

fω(ω∗, B∗, µ∗) = 0, fB(ω∗, B∗, µ∗) = 0,

gω(ω∗, B∗, µ∗) = 0, gµ(ω∗, B∗, µ∗) = 0,

fωω(ω∗, B∗, µ∗) = 0.

(4.6)

Using the transformation U = ω − ω∗, V = B − B∗, λ = µ − µ∗, we translate the
fold point to the origin. Together with the conditions (4.6), the system reduces to
the slow-fast normal form near (0, 0) as follows:

dU

dt
= −V h1(U, V ) + U2h2(U, V ) + εh3(U, V ),

dV

dt
= ε(Uh4(U, V )− λh5(U, V ) + V h6(U, V )),

(4.7)

where
h1 = K(U + ω∗)

2,

h2 = r

(
U +

µ∗√
µ∗ − µ2

∗

)(
−U +

−4µ2
∗ + 3µ∗

(2µ∗ − 1)
√
µ∗ − µ2

∗

)
,

h3 = 0,

h4 =
B∗K(U + 2ω∗)

1 + ω2
∗

,

h5 = K(V +B∗)(1 + (U + ω∗)
2),

h6 = K
U2 + 2ω∗U

1 + ω2
∗

.

(4.8)

4.2. Blow-up

The fold point P1 and the equilibrium point E∗ in system (2.3) coincide with the
Hopf bifurcation threshold. Thus, P1 is a Canard point. We apply a geometric
transformation so that the non-hyperbolic equilibrium point is “blown up” into a
sphere called the blow-up space [5]. In this case, we consider the blow-up space as
a 3-sphere, S3 =

{
(Ū , V̄ , λ̄, ε̄) ∈ R4 : Ū2 + V̄ 2 + λ̄2 + ε̄2 = 1

}
. Let I := [0, ρ] where

ρ > 0 is a small constant, and let r ∈ I. We define a manifold M := S3 × I and the
blow-up map, ϕ : M → R4 where

ϕ(Ū , V̄ , λ̄, ε̄, r̄) = (r̄Ū , r̄2V̄ , r̄λ̄, r̄2ε̄) = (U, V, λ, ε). (4.9)
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Using the above map to study the dynamics of the transformed system on and
around the hemisphere S3

ε , we will introduce the charts with direction blow-up
maps [26].

The critical threshold for the transition from the canard cycle without a head
to the canard cycle with a head is computed by the following lemma. When exactly
this threshold is reached, the canard cycle is called the maximal canard curve.

Lemma 4.1. [1] Let (U, V ) = (0, 0) be the canard point of the slow-fast normal
form (18) at λ = 0 such that (0, 0) is a folded singularity and G(0, 0, 0) = 0. Then,
for ε > 0 sufficiently small there exists a maximal canard curve λ = λc(

√
ε), i.e.,

the parametric curve of maximal canard solution such that the slow flow on the
normally hyperbolic invariant submanifolds M1,a

ε connects with M1,r
ε in the blow-up

space. λc(
√
ε) is given by

λc(
√
ε) = −

(
a1 + a5

2
+

A

8

)
ε+O

(
ε

3
2

)
,

where a1 = ∂h3

∂x (0, 0, 0, 0), a2 = ∂h1

∂x (0, 0, 0, 0), a3 = ∂h2

∂x (0, 0, 0, 0), a4 = ∂h4

∂x (0, 0, 0, 0),
a5 = h6(0, 0, 0, 0), and A = −a2 + 3a3 − a4 − a5.

For system 2.3, there is a result given by (4.8). Further, it can be obtained that.

a1 = 0, a2 = 2Kω∗, a3 = r
−6µ2

H + 4µH

(2µH − 1)
√

µH − µ2
H

,

a4 =
B∗K

1 + ω2
∗
, a5 = 0,

A = −a2 + 3a3 − a4 − a5

= − 4µ2
H

(2µH − 1) (1− µH)
+ r

−18µ2
H + 12µH

(2µH − 1)
√

µH − µ2
H

− r
2

2µH − 1
.

(4.10)

According to the above lemma and 4.10, the following theorem holds.

Theorem 4.2. The maximal canard curve, along which the canard cycle with head
appears for the system (2.3) is given by

µc = µH+
1

4

(
2µ2

H

(2µH − 1) (1− µH)
− 2r(−9µ2

H + 6µH)

(2µH − 1)
√
µH − µ2

H

+
1

2µH − 1

)
ε+O

(
ε

3
2

)
.

Keeping r, K and ε(> 0) fixed, then µH is going to be fixed. Therefore, µc gives
the threshold for the existence of canard cycle with a head. A schematic diagram
of the threshold curves in µ− ε plane is illustrated in Fig. 5 and it divides the µ− ε
parametric plane into three zones.
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c

Zone 1: 

stable point

Zone 2: canard cycle without head

Zone 3: canard cycle with head

Figure 5. Schematic diagram showing singular Hopf bifurcation curve µH (cyan), maximal canard curve
µc (orange).

In Zone 1, when µ < µH , the coexistence equilibrium point is stable. As we
decrease µ from Zone 1 to Zone 2 with a fixed ε > 0, small-amplitude canard cycles
appear after crossing the Hopf bifurcation threshold µ = µH .

In Zone 2, where µH < µ < µc, the system undergoes a transition from a canard
cycle with a head to a canard cycle without a head. The size of the canard cycle
increases as µ is raised, and the cycle transforms into a canard with a head at
µ = µc. The canard cycle with a head persists in a narrow Zone 3, where µ > µc.

With further increases in µ, the unstable equilibrium point is surrounded by a
stable periodic attractor known as relaxation oscillation. This periodic attractor
comprises two concatenated flows: one slow (close to the critical manifold) and the
other fast (almost horizontal and away from the critical manifold).

It’s noteworthy that for sufficiently small ε, this transition from a small canard
cycle to relaxation oscillation through a canard cycle with a head occurs within a
narrow interval of the parameter µ, a phenomenon known as canard explosion.

4.3. Canard explosion

In the preceding sub-sections, we observed the periodic dynamics of the slow-fast
system near the canard point, where the predator nullcline intersects the non-trivial
prey nullcline at the fold point. This intersection occurs at a specific threshold of
the parameter µ. At this point, the coexistence equilibrium loses stability through
singular Hopf bifurcation, giving rise to a small-amplitude stable limit cycle. As
the parameter µ increases, the initially Hopf bifurcating stable cycle grows in size
and eventually settles into a relaxation oscillation. The rapid transition in the size
of the limit cycle, from small canard cycles to relaxation oscillation, occurs within
an exponentially small range of the parameter µ. This phenomenon is commonly
referred to as canard explosion.

Now, with ε = 0.001 and keeping other parameters as mentioned above constant,
except for µ. A slight variation in µ just above µH leads to a rapid change in the
size and shape of the periodic attractor (see Fig. 6). A small limit cycle (blue)
emerges for µ = 0.5995, referred to as the canard cycle without a head. This cycle
undergoes a change in curvature at µ = 0.6082, resulting in the canard cycle with
a head (orange). Further increasing µ to 0.7 causes the system to settle into a
closed cycle, known as relaxation oscillation. Subsequent increases in µ do not alter
the size and shape of the closed attractor, and trajectories converge to the stable
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relaxation oscillation cycle for sufficiently small ε.
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Figure 6. (a) Canard cycle without head for µ = 0.5995(bule), canard cycle with head for µ =
0.6082(orange), relaxation oscillation for µ = 0.7(green). Mainfold (dotted line). (b) Enlarge figure.

The family of canard cycles is depicted in Fig. 6 for a fixed ε and three values of
µ close to the singular Hopf bifurcation threshold µH . The coexistence equilibrium
is stable for µ < µH , and the trajectory converges to the stable steady state for any
initial condition, making it the global attractor.

For µ just above µH , a stable limit cycle grows in size, giving rise to a new
periodic solution known as the canard cycle without a head (Fig. 6, blue color).
This marks the onset of the canard explosion. Upon further increasing µ slightly,
another canard cycle, known as canard with head (Fig. 6, orange color), emerges.
This cycle is special in the sense that it follows the repelling slow manifold M1,r

0 for
O(1) time from the vicinity of the fold point before jumping to another attracting
manifold. The maximal canard is achieved at µ = µc. After crossing the maximal
canard threshold, the system settles down to a large stable periodic solution called
a relaxation oscillation, signifying the end of the canard explosion. This orbit is
characterized by the fact that the slow flow, upon reaching the vicinity of the fold
point, directly jumps to another attracting slow manifold, as studied in the previous
section.

As ε → 0, all trajectories asymptotically converge to a stable limit cycle com-
prising alternate slow and fast transitions of prey and predator densities. This cycle
can be interpreted as follows: when the predator population reaches a high den-
sity, there is a rapid decline in the prey population due to excessive consumption
by the specialist predator, leading to a significantly low prey level. Consequently,
the predator population declines slowly until it reaches a low threshold density, at
which point the prey population starts growing again. As a result, the prey re-
generates within a very short time while the predator density remains more or less
constant. As the prey density approaches its carrying capacity, the predator popu-
lation grows slowly due to the abundance of resources. Finally, when the predator
density reaches its maximum level, the slow-fast cycle completes, and this dynamic
continues over time.

5. Discussion

In the present article, we investigated the spruce budworm-bird model with slow-fast
timescales, conducting a thorough slow-fast dynamic analysis. During this process,
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the blow-up technique [5] was employed to obtain the analytical expression for the
singular Hopf bifurcation curve µH(

√
ε), along which the eigenvalues singularly vary

as ε → 0.
By using Melnikov’s distance function in the blow-up space, we explicitly derived

a special slow-fast solution known as canards (with or without a head) [27]. In
addition, we innovatively determined the analytical expression of the maximum
canard curve µc(

√
ε) of the spruce budworm-bird system. Another type of periodic

solution was identified, consisting of two slow and fast flows connected in series,
referred to as relaxation oscillations. Finally, we validated our results numerically.

Our findings confirm several intriguing biological phenomena: the populations
of the spruce budworm and bird exhibit periodic fluctuations. The spruce budworm
undergo rapid reproduction, reaching near environmental capacity within a short
timeframe, followed by a gradual decline due to predation by birds over a longer
duration. Subsequently, the population stabilizes for a period before the cycle
repeats itself over time.

The distinct timescale differences between prey and predator species give rise
to interesting features in their respective populations. On the one hand, changes
in prey populations occur on faster timescales compared to predator populations,
with predator populations remaining almost constant during the rapid growth and
decline of prey populations. On the other hand, changes in predator populations
occur more slowly relative to prey populations.
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