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Existence of Weak Solutions for a Kind of
Parabolic Steklov Problems
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Abstract Our focus in this study revolves around investigating the following
parabolic problem 

ut −∆u+ u = 0 in Ω, t > 0,
∂u
∂ν

= g(u) on ∂Ω, t > 0,

u(x, 0) = u0(x) in Ω.

By using the Galerkin approximation and a family of potential wells, we obtain
the existence of global solution and finite time blow-up under some suitable
conditions. On the other hand, the results for asymptotic behavior of certain
solutions with positive initial energy are also given.
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1. Introduction and preliminaries

The motivation for parabolic problems in the context of partial differential equa-
tions (PDEs) comes from various fields of physics, engineering and applied sciences.
Parabolic equations model phenomena that evolve in time and space, where diffusion
plays an important role, such as heat diffusion (heat equation), matter diffusion (dif-
fusion equation), viscous fluid motion (Navier-Stokes equation), wave propagation
in a dissipative medium, etc. (see [3, 7–10, 13, 17, 19, 21, 22]). The physical mod-
eling of such equations often involves the numerical resolution of these equations
using methods such as the finite difference method, the finite element method or
the finite volume method. These methods discretize the continuous equations onto
a spatial grid and solve the problem numerically to obtain an approximate solution
that represents the physical behavior of the system under study (see [1,2,5,15,16]).
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In the present article, we mainly study the following Steklov parabolic problem
ut −∆u+ u = 0 in Ω, t > 0,
∂u
∂ν = g(u) on ∂Ω, t > 0,

u(x, 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with a smooth boundary ∂Ω, and
g(u) satisfies the conditions as follows:

(C)


g ∈ C1 and g(0) = g′(0) = 0,

g(u) is monotone, and is convex for u > 0, concave for u < 0,

(p+ 1)G(u) ⩽ ug(u), |ug(u)| ⩽ µ|G(u)|,
(1.2)

where

G(u) =

∫ u

0

g(s)ds,

and {
2 < p+ 1 ⩽ µ < ∞ if N = 2,

2 < p+ 1 ⩽ µ ⩽ 2(N−1)
N−2 if N ⩾ 3.

In the literature, there are several works dealing with Steklov-type parabolic
problems (see [11,14,18]). For example, in [11] C. Enache has treated the following
quasilinear initial-boundary value problem:

ut = div(b(u)∇u) + f(u) in Ω, t > 0
∂u
∂n + κu = 0 on ∂Ω, t > 0,

u(x, 0) = h(x) ≥ 0 in Ω.

Under the suitable assumptions on the functions b, f and h, the author established
a sufficient condition to guarantee the occurrence of the blow-up. Moreover, a lower
bound for the blow-up time was obtained.

Also, L. E. Payne and P. W. Schaefer in [18] considered the heat equation subject
to a nonlinear boundary condition, i.e.

ut −∆u = 0 in Ω, t > 0,
∂u
∂ν = f(u) on ∂Ω, t > 0,

u(x, 0) = g(x) ≥ 0 in Ω,

where Ω is a bounded smooth convex domain in R3 and f satisfies the condition

0 ⩽ f(s) ⩽ ks(n+2)/2, s > 0,

for some positive constants k and n ⩾ 1. By using a differential inequality technique,
the authors determined a lower bound on the blow-up time for solutions of the heat
equation when the solution explosion occurs. In addition, a sufficient condition
which implies that blow-up does occur was determined.

In [14], A. Lamaizi et al. have considered the following problem:
ut −∆u+ u = 0 in Ω× (0, T ),
∂u
∂ν = λ|u|p−1u on ∂Ω× (0, T ),

u(x; 0) = u0(x) in Ω,
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where Ω ⊂ Rn is an open bounded domain for n ≥ 2 with a smooth boundary ∂Ω,
ν is the outward unit normal vector on ∂Ω, ut denotes the partial derivative with
respect to the time variable t and ∇u denotes the one with respect to the space
variable x, λ > 0, and p satisfies

(H)

{
1 ≤ p ≤ n

n−2 if n > 2,

1 ≤ p < ∞ if n = 2.

By using the Galerkin approximation, they established the existence of global weak
solution and finite time blow-up under some suitable conditions. So, a natural
question arises, can we obtain some qualitative results such as the existence and
blow up of solutions if we replace the term λ|u|p−1u by the function g(u) which
satisfies condition (C)? Then, the goal of this article is to give a positive answer
to this question. More precisely, we will establish existence and blow up results by
applying Galerkin approximation and similar techniques to those used in [14].

Throughout this work, we designate the Lebesgue space Lp(Ω) by :

Lp(Ω) =

{
u : Ω → R measurable such that

∫
Ω

|u(x)|pdx < +∞
}

equipped with the norm

∥u∥p =

(∫
Ω

|u(x)|pdx
) 1

p

.

For p = ∞, we denote

L∞(Ω) =

{
u : Ω → R measurable such that ess- sup

Ω
|u| < +∞

}
with

ess- sup
Ω

|u| = inf{C > 0 such that |u(x)| ≤ C a.e. Ω}.

Especially, for p = 2, the scalar product of L2(Ω) will be denoted by ⟨·, ·⟩ and the
scalar product of L2(∂Ω, ρ) will be denoted by ⟨·, ·⟩0 :

⟨u, v⟩ =
∫
Ω

uv dx, ⟨u, v⟩0 =

∮
∂Ω

uv dρ.

Moreover, usual Sobolev space on Ω is defined by

W 1,2(Ω) =
{
u ∈ L2 (Ω) : |∇u| ∈ L2 (Ω)

}
,

and it is equipped with the norm

∥u∥21,2 = ∥u∥22 + ∥∇u∥22.

Recall the following embedding result.

Lemma 1.1. (See [4]) The trace operator u : W 1,q(Ω) → Lr(∂Ω, ρ) is continuous
if and only if {

1 ≤ r ≤ q∂ if q ̸= N,

1 ≤ r < ∞ if q = N,

where

q∂ :=

{
q(N−1)
N−q if 1 < q < N,

∞ if q ≥ N.
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Let X be a Banach space and T > 0. Denote the following spaces:

C([0, T ];X) = {u : [0, T ] −→ X continue },

Lp(0, T ;X) =

{
u : [0, T ] −→ X is measurable such that

∫ T

0

∥u(t)∥pXdt < ∞

}
,

equipped with the norm

∥u∥Lp(0,T ;X) =

(∫ T

0

∥u(t)∥pXdt

) 1
p

,

and

L∞(0, T ;X)

= {u : [0, T ] −→ X is measurable such that : ∃C > 0; ∥u(t)∥X < C a.e.t} ,

endowed with the norm

∥u∥L∞(0,T ;X) = inf {C > 0; ∥u(t)∥X < C a.e.t} .

Next, let us introduce some sets and functions as follows

B(u) =
1

2
∥u∥21,2 −

∫
∂Ω

G(u)dρ,

A(u) = ∥u∥21,2 −
∫
∂Ω

ug(u)dρ,

and
S =

{
u ∈ W 1,2(Ω) | A(u) > 0, B(u) < h

}
∪ {0},

where
h = inf

u∈Y
B(u),

Y =
{
u ∈ W 1,2(Ω) | A(u) = 0, ∥u∥1,2 ̸= 0

}
,

and
U =

{
u ∈ W 1,2(Ω) | A(u) < 0, B(u) < h

}
.

For δ > 0 we further define

Aδ(u) = δ∥u∥21,2 −
∫
∂Ω

ug(u)dρ,

h(δ) = inf
u∈Yδ

B(u),

Yδ =
{
u ∈ W 1,2(Ω) | Aδ(u) = 0, ∥u∥1,2 ̸= 0

}
,

Sδ =
{
u ∈ W 1,2(Ω) | Aδ(u) > 0, B(u) < h(δ)

}
∪ {0}, 0 < δ < b,

and
Uδ =

{
u ∈ W 1,2(Ω) | Aδ(u) < 0, B(u) < h(δ)

}
.
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2. Global existence

In this section, we prove the existence of a global weak solution to our problem. We
prepare the proof by a series of lemmas.

Lemma 2.1. ( [17]). Let g(u) satisfy (C). Then

1. |G(u)| ⩽ M |u|µ for some M > 0 and all u ∈ R.
2. G(u) ⩾ N |u|p+1 for some N > 0 and |u| ⩾ 1.

3. The equality u (ug′(u)− g(u)) ⩾ 0 holds only for u = 0.

As a result, the following corollary is obtained.

Corollary 2.1. Let g(u) satisfy (C). Then

1. |ug(u)| ⩽ µM |u|µ, |g(u)| ⩽ µM |u|µ−1 for all u ∈ R.
2. ug(u) ⩾ (p+ 1)N |u|p+1 for |u| ⩾ 1.

Lemma 2.2. Suppose that 0 < B(u) < h for some u ∈ W 1,2(Ω), δ1 < δ2 are the
two roots of equation h(δ) = B(u). Then the sign of Aδ(u) does not change for
δ1 < δ < δ2.

Proof. Arguing by contradiction, we assume that the sign of Aδ(u) is changeable
for δ1 < δ < δ2, then there exists a δ0 ∈ (δ1, δ2) such that Aδ0(u) = 0. From
B(u) > 0 we get ∥u∥1,2 ̸= 0, hence u ∈ Yδ0 , consequently B(u) ≥ h(δ0), which
contradicts

B(u) = h (δ1) = h (δ2) < h(δ0).

Lemma 2.3. Let g(u) satisfy (C), u0(x) ∈ W 1,2(Ω), 0 < e < h and δ1 < δ2 be the
two roots of equation h(δ) = e. Then, all weak solutions u(t) of problem (1.1) with
B (u0) = e belong to Sδ for δ1 < δ < δ2, 0 ≤ t < T, provided A (u0) > 0.

Proof. By B (u0) = e,A (u0) > 0 and Lemma 2.2, we can deduce Aδ (u0) > 0 and
B (u0) < h(δ), i.e., u0(x) ∈ Sδ for δ1 < δ < δ2. Let u(t) be any weak solution of
problem (1.1) with B (u0) = e and A (u0) > 0, and let T be the maximal existence
time of u(t). Arguing by contradiction, we suppose that there exists a δ0 ∈ (δ1, δ2)
and t0 ∈ (0, T ) such that Aδ0 (u (t0)) = 0, ∥u (t0)∥1,2 ̸= 0 or B (u (t0)) = h (δ0) .
From (2.2), we get∫ t

0

∥uτ∥22 dτ +B(u) ≤ B (u0) < h(δ), δ1 < δ < δ2, 0 ≤ t < T. (2.1)

Therefore B (u (t0)) ̸= h (δ0) . If Aδ0 (u (t0)) = 0, ∥u (t0)∥1,2 ̸= 0, then the definition
of h(δ) implies that B (u (t0)) ≥ h (δ0) , which contradicts (2.1).

Definition 2.1. Let T > 0. A function u = u(x, t) ∈ L∞ (0,∞;W 1,2(Ω)
)
∩

C
(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
with ut(t) ∈ L2

(
0,∞;L2(Ω)

)
is said to be a weak

solution to the problem (1.1) in Ω× [0, T ), if u(x, 0) = u0 ∈ W 1,2(Ω), and satisfies

⟨ut, v⟩+ ⟨u, v⟩+ ⟨∇u,∇v⟩ = ⟨g(u), v⟩0, ∀v ∈ W 1,2(Ω), t ∈ (0, T ).

Moreover, ∫ t

0

∥ut∥22 dτ +B(u) ⩽ B (u0) , ∀t ∈ [0, T ). (2.2)
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Now, we present the first main result of this paper.

Theorem 2.1. Let u0(x) ∈ W 1,2(Ω) and g(u) satisfy (C). Suppose that 0 <
B(u0) < h and A (u0) > 0. Then problem (1.1) admits a global weak solution u(t) ∈
L∞ (0,∞;W 1,2(Ω)

)
∩ C

(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
with ut(t) ∈ L2

(
0,∞;L2(Ω)

)
and u(t) ∈ S for 0 ⩽ t < ∞.

Proof of Theorem 2.1 The idea of proof is classical. For more information see
[12,20]. Let wj(x) be a system of base functions inW 1,2(Ω). Define the approximate
solutions um(x, t) of problem (1.1) by

um(x, t) =

m∑
j=1

Φjm(t)wj(x), m = 1, 2, . . . ,

verifying

⟨umt, ws⟩+ ⟨um, ws⟩+ ⟨∇um,∇ws⟩ = ⟨g (um) , ws⟩0, s = 1, 2, . . . ,m, (2.3)

um(x, 0) =

m∑
j=1

ajmwj(x) → u0(x) in W 1,2(Ω). (2.4)

Multiplying (2.3) by Φ′
sm(t) and summing for s yields∫ t

0

∥umt∥22 dτ +B(um) ⩽ B (u0) < h, ∀t ∈ [0, T ), (2.5)

and um ∈ S for sufficiently large m and 0 ⩽ t < ∞ (see the proof of Lemma 2.3).
Combining (2.5) and

B (um) =
1

2
∥u∥21,2 −

∫
∂Ω

G (um) dρ ⩾
1

2
∥u∥21,2 −

1

p+ 1

∫
∂Ω

umg (um) dρ

=

(
1

2
− 1

p+ 1

)
∥u∥21,2 +

1

p+ 1
A (um)

⩾
p− 1

2(p+ 1)
∥u∥21,2,

we obtain ∫ t

0

∥umt∥22 dτ +
p− 1

2(p+ 1)
∥um∥21,2 < h, 0 ⩽ t < ∞ (2.6)

for sufficiently large m.
From (2.6), we get

∥um∥21,2 <
2(p+ 1)

p− 1
h, 0 ⩽ t < ∞, (2.7)

∥um∥2µ,∂Ω ⩽ C2
∗∥um∥21,2 < C2

∗
2(p+ 1)

p− 1
h, 0 ⩽ t < ∞, (2.8)

where C∗ is the embedding constant from W 1,2(Ω) into Lµ(∂Ω, ρ).

∥g (um)∥qq,∂Ω ⩽
∫
∂Ω

(
µM |um|µ−1

)q
dρ

= (µM)q ∥um∥µµ,∂Ω

⩽ (µM)qCµ
∗

(
2(p+ 1)

p− 1
h

)µ/2

, q =
µ

µ− 1
, 0 ⩽ t < ∞,

(2.9)
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and ∫ t

0

∥umt∥22 dτ < h, 0 ⩽ t < ∞. (2.10)

Therefore, there exist u, ϕ and a subsequence {uv} of {um} such that,

uv → u in L∞ (0,∞;W 1,2(Ω)
)
weakly star and a.e. in Ω× [0,∞),

uvt → ut in L2
(
0,∞;L2(Ω)

)
weakly star,

g (uv) → ϕ in L∞ (0,∞;Lq(∂Ω)) weakly star and a.e. in ∂Ω× [0,∞).

Consequently, from Lemma 1.3 in [15] we obtain ϕ = g(u). In (2.3) for fixed s
letting m = v → ∞ we have

⟨ut, ws⟩+ ⟨u,ws⟩+ ⟨∇u,∇ws⟩ = ⟨g(u), ws⟩0 ∀s,

and

⟨ut, v⟩+ ⟨u, v⟩+ ⟨∇u,∇v⟩ = ⟨g(u), v⟩0 ∀v ∈ W 1,2(Ω), t > 0.

By (2.4), we obtain u(x, 0) = u0(x) in W 1,2(Ω). Then u(x, t) is a global weak
solution of problem (1.1).

3. Finite time blow-up

In this section, we prove the blow-up of solutions to problem (1.1) when the initial
energy satisfies a certain condition. In order to prove our main result, we will use
the following auxiliary results.

Lemma 3.1. Let g(u) satisfy (C). Assume that Aδ(u) < 0, then ∥u∥1,2 > z(δ). In
particular, if A(u) < 0, then ∥u∥1,2 > z(1),

where

z(δ) =

(
δ

aCµ
∗

)1/(µ−2)

,

and

a = sup
ug(u)

|u|µ
.

Proof. Aδ(u) < 0 gives

δ∥u∥21,2 <

∫
∂Ω

ug(u)dρ ⩽ a∥u∥µµ,∂Ω ⩽ aCµ
∗ ∥u∥

µ−2
1,2 ∥u∥21,2. (3.1)

Consequently, (3.1) implies ∥u∥1,2 > z(δ).

Lemma 3.2. Let g(u) satisfy (C), u0(x) ∈ W 1,2(Ω) and 0 < e < h, where δ1 < δ2
are the two roots of equation h(δ) = e. Suppose that A (u0) < 0, then all weak
solutions of problem (1.1) with B (u0) = e belong to Uδ for δ ∈ (δ1, δ2).
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Proof. Let u(t) be any solution of problem (1.1) with B (u0) = e and A (u0) < 0,
and let T be the existence time of u(t). First from B (u0) = e, A(u0) < 0 and
Lemma 2.2 we can deduce Aδ (u0) < 0 and B (u0) < h(δ), i.e. u0(x) ∈ Uδ for
δ1 < δ < δ2. Next we prove u(t) ∈ Uδ for δ1 < δ < δ2 and 0 < t < T . If it is false,
let t0 ∈ (0, T ) be the first time such that u(t) ∈ Uδ for 0 ⩽ t < t0 and u (t0) ∈ ∂Uδ,
i.e. Aδ (u (t0)) = 0 or B (u (t0)) = h(δ) for some δ ∈ (δ1, δ2). So (2.1) implies
B (u (t0)) = h(δ) is impossible. If Aδ (u (t0)) = 0, then Aδ(u(t)) < 0 for 0 < t < t0
and Lemma 3.1 yields ∥u(t)∥1,2 > z(δ) and ∥u (t0)∥1,2 ⩾ z(δ). Therefore, by the
definition of h(δ) we have B (u (t0)) ⩾ h(δ), which contradicts (2.1).

Now, we present the second main result of this paper.

Theorem 3.1. Let u0(x) ∈ W 1,2(Ω) and g(u) satisfy (C). Assume that B (u0) < h
and A (u0) < 0. Then the solution of problem (1.1) must blow up in finite time i.e.
there exists a T > 0 such that

lim
t→T

∫ t

0

∥u∥22 dτ = +∞. (3.2)

Proof of Theorem 3.1 Let u(t) be any solution of problem (1.1) with B (u0) < h
and A (u0) < 0.

We consider the auxiliary function

φ1(t) =

∫ t

0

∥u∥22 dτ.

A direct calculation gives
φ̇1(t) = ∥u∥22,

and
φ̈1(t) = 2⟨ut, u⟩ = 2

(
⟨g(u), u⟩ − ∥u∥21,2

)
= −2A(u). (3.3)

By (3.3), (2.2) and ∫
∂Ω

ug(u)dρ ⩾ (p+ 1)

∫
∂Ω

G(u)dρ,

we can deduce

φ̈1(t) ⩾ 2(p+ 1)

∫ t

0

∥ut∥22 dτ + (p− 1)∥u∥21,2 − 2(p+ 1)B (u0)

⩾ 2(p+ 1)

∫ t

0

∥ut∥22 dτ + (p− 1)φ̇1(t)− 2(p+ 1)B (u0) ,

and

φ1φ̈1 −
p+ 1

2
(φ̇1)

2 ⩾2(p+ 1)

[∫ t

0

∥u∥22 dτ

∫ t

0

∥ut∥22 dτ −
(∫ t

0

⟨u, ut⟩dτ
)2
]

+ (p− 1)φ1φ̇1 − (p+ 1) ∥u0∥22 φ̇1

− 2(p+ 1)B (u0)φ1 +
p+ 1

2
∥u0∥22 .
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According to the Hölder inequality, we deduce that

φ1φ̈1 −
p+ 1

2
(φ̇1)

2 ⩾(p− 1)φ1φ̇1 − (p+ 1) ∥u0∥22 φ̇1

− 2(p+ 1)B (u0)φ1 +
p+ 1

2
∥u0∥22 .

(3.4)

1. If B (u0) ⩽ 0, then

φ1φ̈1 −
p+ 1

2
(φ̇1)

2 ⩾ (p− 1)φ1φ̇1 − (p+ 1) ∥u0∥22 φ̇1.

The following task is to claim that A(u) < 0 for t > 0. Arguing by contradic-
tion, we assume that there exists a t0 > 0 such that A (u (t0)) = 0. Let t0 > 0
be the first time such that A(u(t)) = 0. Then A(u(t)) < 0 for 0 ⩽ t < t0.
From Lemma 3.1 we obtain ∥u∥1,2 > z(1) for 0 < t < t0. Consequently, we
get ∥u (t0)∥1,2 ⩾ z(1) and B (u (t0)) ⩾ h which contradicts (2.2). Then, from

(3.3) we have φ̈1(t) > 0 for t > 0. By this and φ̇1(0) = ∥u0∥22 ⩾ 0 there exists
a t0 ⩾ 0 such as φ̇1 (t0) > 0 and

φ1(t) ⩾ φ̇1 (t0) (t− t0) + φ1 (t0) ⩾ φ̇1 (t0) (t− t0) , t ⩾ t0.

Then for sufficiently large t we can deduce (p− 1)φ1 > (p+ 1) ∥u0∥22 and

φ1 (t) φ̈1 (t)−
p+ 1

2
(φ̇1 (t))

2
> 0. (3.5)

Since, for t > 0(
φ−β
1 (t)

)′′
= − β

φβ+2
1 (t)

(
φ1 (t) φ̈1 (t)− (β + 1)φ̇1 (t)

2
)
,

we see that for β = p−1
2 we have

(
φ−β
1 (t)

)′′
< 0. Therefore φ−β

1 (t) is concave

for sufficiently large t, and there exists a finite time T such that φ−β
1 (t) → 0.

In other words,
lim

t→T−
φ1(t) = +∞.

2. If 0 < B (u0) < h, then by Lemma 3.2, we have u(t) ∈ Uδ for 1 < δ < δ2
and t > 0, where δ2 is the larger root of equation h(δ) = B(u0). Therefore
Aδ(u) < 0 and (From Lemma 3.1) ∥u∥1,2 > z(δ) for δ ∈ (1, δ2) and t > 0.
Then, we have Aδ2(u) ⩽ 0 and ∥u∥1,2 ⩾ z (δ2) for t > 0.Thus (3.3) gives

φ̈1(t) = −2A(u) = 2 (δ2 − 1) ∥u∥21,2 − 2Aδ2(u) ⩾ 2 (δ2 − 1) z2 (δ2) > 0,

0 ≤ t < ∞,

φ̇1(t) ⩾ 2 (δ2 − 1) z2 (δ2) t+ φ̇1(0) ⩾ 2 (δ2 − 1) z2 (δ2) t, 0 ≤ t < ∞,

φ1(t) ⩾ (δ2 − 1) z2 (δ2) t
2 + φ1(0) = (δ2 − 1) z2 (δ2) t

2, 0 ≤ t < ∞.

Therefore for sufficiently large t we get

1

2
(p− 1)φ1(t) > (p+ 1) ∥u0∥22 ,

1

2
(p− 1)φ̇1(t) > 2(p+ 1)B (u0) .

Hence from (3.4) we again obtain (3.5) for sufficiently large t. The remainder
of the proof is similar to that in the proof of (i).
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4. Asymptotic behavior

In this final section, we prove the asymptotic behavior of weak solutions. The main
result is given in the following theorem.

Theorem 4.1. Let u0(x) ∈ W 1,2(Ω) and g(u) satisfy (C). Suppose also that
B (u0) < h and A (u0) > 0. Then, for the weak global solution u of problem (1.1),
there exists a constant ω > 0 such that

∥u∥22 ≤ ∥u0∥22 e
−ωt, 0 ≤ t < ∞. (4.1)

Proof of Theorem 4.1 By Theorem 2.1, we know that there exists a global
weak solution u(t) ∈ L∞ (0,∞;W 1,2(Ω)

)
∩C

(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
to problem

(1.1). Let u(t) be any global weak solution of problem (1.1) with B (u0) < h and
A (u0) > 0. Consequently,

⟨ut, v⟩+ ⟨u, v⟩+ ⟨∇u,∇v⟩ = ⟨g(u), v⟩0, ∀v ∈ W 1,2(Ω), t ∈ (0, T ). (4.2)

Multiplying (4.2) by any h(t) ∈ C[0,∞), we have

⟨ut, h(t)v⟩+ ⟨u, h(t)v⟩+ ⟨∇u,∇(h(t)v)⟩ = ⟨g(u), h(t)v⟩0, ∀v ∈ W 1,2(Ω), t ∈ (0, T )

and

⟨ut, φ⟩+ ⟨u, φ⟩+ ⟨∇u,∇φ⟩ = ⟨g(u), φ⟩0, ∀φ ∈ L∞ (0,∞;W 1,2(Ω)
)
, t ∈ (0, T ).

(4.3)
Setting φ = u, (4.3) implies

1

2

d

dt
∥u∥22 +A(u) = 0, 0 ≤ t < ∞. (4.4)

By 0 < B (u0) < h,A (u0) > 0 and Lemma (2.3), we get u(t) ∈ Sδ for δ1 < δ < δ2
and 0 ≤ t < ∞, where δ1 < δ2 are the two roots of equation h(δ) = B (u0) .
Consequently, we obtain Aδ(u) ≥ 0 for δ1 < δ < δ2 and Aδ1(u) ≥ 0 for 0 ≤ t < ∞.
Then, (4.4) leads to

1

2

d

dt
∥u∥22 + (1− δ1) ∥u∥21,2 +Aδ1(u) = 0, 0 ≤ t < ∞,

accordingly
1

2

d

dt
∥u∥22 + (1− δ1) ∥u∥22 ≤ 0, 0 ≤ t < ∞.

Finally, Gronwall’s inequality leads to

∥u∥22 ≤ ∥u0∥22 e
−2(1−δ1)t, 0 ≤ t < ∞.

This completes the proof of the Theorem.
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