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Orbital Stability of the Sum of N Peakons for the
CH-mCH Equation®
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Abstract This paper is concerned with a generalization of the modified
Camassa-Holm equation with both cubic and quadratic nonlinearities (also
known as the CH-mCH equation). We mainly prove the orbital stability of
the train of peakons for the CH-mCH equation in energy space, using energy
arguments and combining the method of orbital stability of a single peakon
with the monotonicity of the local energy norm.
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1. Introduction

In this paper, we consider the multi-peakon solutions of the following CH-mCH
equation [15]

my + k1 ((W? — u2)m), + ka(2uym + umy) = 0,t > 0,2 € R, (1.1)

where m = u — Uz, k1 and ks are two arbitrary constants, Eq. (1.1) is completely
integrable and admits the Lax pair and bi-Hamiltonian structure [38]. The Cauchy
problem and well-posedness were considered in [28].
Notice that when k1 = 0,ky = 1, Eq. (1.1) reduces to the Camassa-Holm (CH)
equation
my + 2uzm+umg =0, m=1u— Uy, (1.2)

which was derived as a model for shallow water waves [3], where u(t, x) denotes the
free surface above the flat bottom. Eq. (1.2) has many interesting properties: the
existence of peaked solutions and multi-peakons [1, 3], wave-breaking phenomena
[7-9] and geometric formulations [6]. Fuchssteiner and Fokas [16] first noted that
Eq. (1.2) has a bi-Hamiltonian structure and hence infinitely many conservation
laws. Camassa and Holm [3] obtained the single peakons of Eq. (1.1), which takes
the form [30],

u(t, ) = cp(z — ct) = ce”1*7¢ ¢ eR, (1.3)
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and the multi-peakons
N

u(t,z) = Zpi(t)e_lx_‘“(t)‘, (1.4)

=1

where p;(t) and ¢;(¢) satisfy the Hamiltonian system

Pi = Y i pipsign(q — gj)e 1101 = — G
(1.5)
i = X, pyelnol = 22,
with the Hamiltonian N
H :% Z pipje_‘q"_qﬂ". (1.6)

i,5=1

Constantin and Strauss [11] proved orbital stability using energy as a Lyapunov
function and basing on the conservation law of the CH equation. A variational ap-
proach for proving the orbital stability of the peakons was introduced by Constantin
and Molinet [10]. The variational approach was extended to prove the orbital sta-
bility of the peakons for the other nonlinear wave equations [4,17,22, 25,29, 33,41].
Orbital stability of multi-peakon solutions was discussed by Dika and Molinet in [14].

When ky = 1,ky =0, Eq. (1.1) reduces to the mCH\FORQ equation

my+ ((u? —uZ)m) =0, m=1— U (1.7)

The orbital stability of the single peakons and the train of peakons for (1.7) was
proved in [24] and [35], respectively. After that, Li [19] established the orbital
stability of the peakons under H' N W4 norm.

We also introduce the gmCH equation proposed in [2]:

me + ((uzf’ui)”m)w =0, Mm=1u— Uy, (1.8)
where n > 1 is a positive integer. Eq. (1.8) becomes the fifth-order CH-type
equation when n = 2. The orbital stability of periodic peakons was examined
by [32]. When n = 3, Liu [26, 27] investigated the orbital stability of a higher-
order nonlinear modified Camassa-Holm equation with peakons and multi-peakons.
The local well-posedness and blow-up mechanism of Eq. (1.8) have been discussed
in [39]. The orbital stability of peakons for Eq. (1.8) has been demonstrated by
Guo et al. in [18]. Deng and Chen [13] have also proved the orbital stability of the
sum of N peakons. Recently, a variety of CH-type equations have been explored,
including the mCH-Novikov equation [31], the generalized cubic-quintic Camassa-
Holm type equation [37], the b-family of FORQ/MCH equations [40], etc. Orbital
stability of the single peakons and multi-peakons for the mCH-Novikov equation
and the generalized cubic-quintic Camassa-Holm type equation has been proved
by [5,12,36,37]. For the Camassa-Holm-type equations, different wave profiles of
 for different types of phase orbits were classified using dynamical system theory
in [20, 21].

More generally, Eq. (1.1) also has single peakons, periodic peakons and multi-
peakons. Its orbital stability has been proved by Liu et al. in [23]. In this paper,
we prove that the multi-peakons of Eq. (1.1) are orbitally stable in energy space.
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For the convenience of narration, we introduce the relevant definition of Sobolev
space. Let 2 C R™ be an open set. For positive integer n and 1 < p < oo, we
denote D"u = {DPu : || = n},

2 P

|Dnu|: Z ‘Dﬁu|2 ’ ||Dnu||p,Q: Z /Q‘Dﬁu|pd$

|Bl=n. |Bl=n

Definition 1.1. Assume that k is a positive integer, define W} (Q) = {u: Du €
LP(Q),|5] < k}, then the norm

1
P
2 DMl g )  1<p<oo,
Jullwe @) = \n<k
;k esssupg |D™u|, p = oco.
nx~

From the above definition, the space Wli“ that gives the norm || - HW;(Q) is a Banach
space. When p = 2, it is denoted as WX (Q) = H*(Q), then H*(R") is the integral
exponential Sobolev space. Let s € R, define the real exponential Sobolev space
H*(R") := {u € S'"(R") : (1+ |y|?>)24 € L?(R™)}, where @ is the Fourier transform
of u and §'(R™) is the dual space of the rapidly decreasing function space S(R™).

According to the above explanation, the main result of this paper is described
as the following theorem.

Theorem 1.1. Let 0 < ¢; < --+ < ¢y be given. There exist A, ey, Lo > 0 such
that for any ug € H*(R) with some s > 5/2 which satisfies 0 < (1 — 02)ug(z) Z 0,
any 0 < e <gg and L > Ly, if

N
w—Y g (=) << (1.9)
i=1 H'(R)
for some 29 satisfying
2 =20 >0 (i=2,...,N), (1.10)

then the corresponding solution u(t,z) € C([0,T), H*(R)) N C1([0,T), H*~1(R))
with nitial data w(0,z) = ug(x) and mazimal existence time T > 0 exists, and
there exist x1(t),...,xn(t) defined on [0,T), such that

sup
tef0,T)

N
ut,) = pe, (- = zilt))
i=1

<A(\/E+L—%) (1.11)

H(R)

and fori=2,..., N,

JCl(t) — .Ti_l(t) > —, YVt € [O,T) (1.12)

The remainder of this paper is organized as follows. In Section 2, we provide
a set of definitions and lemmas that need to be used below. In Section 3, we go
through four subsections to finish the proof portion of Theorem 1.1. In Subsection
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3.1, we will show the crucial Lemma 3.1, which requires a large number of sum-
mation formulas and a large number of estimates for its proof. In Subsection 3.2,
we demonstrate the monotonicity of functionals. In Subsection 3.3, we obtain a
global identity and local estimator for conserved quantities. In Subsection 3.4, we
summarize the proof of Theorem 1.1.

2. Preliminaries

In this section, we present some definitions and lemmas used in the subsequent
proofs. We first review the local well-posedness results for the Cauchy problem
associated with Eq. (1.1), some properties for strong solutions, and two basic
invariants, which will be frequently used in the rest of the paper. We are concerned
with the Cauchy problem for the CH-mCH equation on both the line and the unit
circle:

me + k1 ((u? — u2)m), + ka(2uzm + umy) = 0,t > 0,z € R,
M= U — Ugy, (2.1)

u(0,2) = up(x),z € R.

We first give the definition of a strong solution as follows.

Definition 2.1 ( [23]). Ifu € C([0,T), H*(R))NC([0,T), H*"1(R)), with s > 5/2
and some T > 0, satisfies (2.1), then w is called a strong solution on [0,T"). If u is a
strong solution on [0,T") for every T > 0, then it is called a global strong solution.

Lemma 2.1 ( [23]). Let ug € H*(R), with s > 5/2. Then there exists a time
T > 0 such that the initial value problem (2.1) has a unique strong solution u €
C([0,T), H*(R)) N CL([0,T), H"1(R)) and the map ug + u is continuous from a
neighborhood of ug in H*(R) into C([0,T), H*(R)) N C1([0,T), H*~(R)).

Since m = u — Uz, Eq. (1.1) can be rewritten as the following nonlinear partial
differential equation:

1
ut—i—kl(u ~ 3Ua >u$+k1(1—82) Lo, ( u +uu>+];1(1—8§)_1(u§)

1
+ kouuy + ko(1 — 35)_1855 <u2 + QUIQ) =0. (2.2)
Notice that (1 —62)_1f = G« f for all f € L?, where G(z) £ e~ I*1/2. In fact,
from this formulation, one can define weak solutions of (2.1) as follows.

Definition 2.2 ( [23]). Given initial data ug € W3(R), a function u € L2 ([0,T),
W,L3(R)) is said to be a weak solution to the initial value problem (2.1) if it satisfies

loc

the following identity:
ki 3 2 2 3 2
Uat¢+3uaw¢+ Ll +ky(1—02)7" U +uui |09

o) ) o+ 2o+ k- 02) (u +;u) zqﬁ]dxdt
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+ / o () b(a, 0)dzr = 0, (2.3)
R
for any smooth test function ¢(¢,x) € C([0,T) x R). If u is a weak solution on
[0,T) for every T > 0, then it is called a global weak solution.

Lemma 2.2 ( [23]). If the initial data ug € H*(R) with s > 5/2, then the following
two functions

E(u) = / (u® +u?) dz (2.4)
R
and
F(u) = / Ky (u* + 2uu2 — 1ui) + 2k (u® + wul)da (2.5)
R

are invariants for Eq. (1.1). Furthermore, if mg = (1 —0%)ug does not change sign,
then m(t, ) will not change sign for any t € [0,T). It turns out that if my > 0,
then the corresponding solution u(t,x) is positive and satisfies [34]

lug(t, )| < ul(t,z), ¥Y(t,z)e[0,T)xR. (2.6)

Remark 2.1. Notice that F(u) and F(u) represent conservation of energy, and
E(u) and ||u| g1 (r) have a special relationship, namely E(u) = ||u||§{1(R). Therefore,
space H'(R) is also called the energy space.

Lemma 2.3 ( [23]). For any ¢ > 0, the peaked function of the form
u(t, ) = po(x — ct) = ae”1*¢, (2.7)
where

3—k2:|: k2+§klc 2 8
q = 8 TREVETINC 420k + Shie 2 0,

is a global weak solution to the Eq. (1.1) in the sense of Definition 2.2.

Lemma 2.4 ( [23]). Let k1 > 0 and ko < 0. Let . be the peaked soliton defined in
(2.7), with wave speed satisfying ¢ > 2k3/3ky. Assume that ug € H*(R), s > 5/2,
satisfies 0 # mo(x) = (1—02)ug(z) = 0. Then there exists o > 0, depending on k1,
ko, ¢ and |luo|| gs(r), such that if

luo — pellar ) <0, 0 <6 < do,

then the corresponding positive solution u(t,x) of the Cauchy problem for the CH-
mCH equation (2.1) with initial data w(0,x) = ug(x) satisfies

sup lu(t, ) = @e(- = £(t)) ||y < A5,
te[0,T)

where T > 0 is the mazimal ezistence time, £(t) € R is the point at which the
solution u(t,-) achieves its mazimum, and the constant A > 0 depends on ki, ks,
the wave speed c and the |Jug|| g1 (w)-
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3. Proof of Theorem 1.1

In this section, the proof of Theorem 1.1 is divided into four parts. The following
H?' neighborhood is defined for o > 0 and L > 0 for all the sums of N peakons of
fixed speeds cq,...,cn, with spatial shifts z; that satisfied z; — z;_1 > L,

N
U= Z@Ci(' - Zl)
i=1

By a standard continuity argument, as u(t,x) is continuous in H*(R) < H'(R),
with s > 5/2, to prove Theorem 1.1, it suffices to show that there exist A > 0, Lg
0, and €9 > 0 such that for all L > Ly and 0 < € < €, if ug satisfies mg > 0, (1.9)
and (1.10), and if for some 0 < t* < T,

Ula,L) =< ue H(R); inf

zi—zi—12L

<ayp. (31
HI(R)

u(t) e U (A (ﬁ+ L—%) g) . Ve o, (3.2)
then

. A 1y 2L
u(t)eU(Q(\/E+L )3) (3.3)
Therefore, we only have to verify (3.3) for some L > Ly and 0 < € < € under the
hypothesis of (3.2), with A, Ly, and g to be specified later.

3.1. Modulation

In this subsection, we will be proving that if the solution wu(t) is still close to a
manifold of the train of N peakons for ¢t € [0,t*], we can decompose u(t) into
the sum of N modulated peakons plus a function v(¢) that stays small in H*(R):
u(t,x) = vazl @e, (x—Z;(t)) +v(t, z). Moreover, it will be shown that the different
bumps of u that are individually close to a peakon get away from each other as time
evolves.

Lemma 3.1. Let the initial data ug satisfy the assumptions given in Theorem 1.1.
There exist ag < 1 and Lo > 1 depending only on (c;)Y; such that if for 0 < a <
ag and L > Lg, the corresponding solution u(t) satisfies for some 0 < t* < T,

u(t) e U (a, g) . Ve [0,e7], (3.4)

then there exist unique C' functions
Z; 1 [0,t"] =R, i=1,...,N, (3.5)
such that if we define v(t,z) by

N

v(t) =u(t) = > Ri(t), where Ri(t) = ¢, (- — &i(t)), (3.6)

=1

then the following properties hold for all j € {1,2,...,N} and t € [0,t*] :

/R o(£)0s Rydar = 0, (3.7)
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o))l g @y < O(Ve),
|5(t) = ¢;| < O(va) + O(L™),

3L (¢;—ci 1)t
350 — ()] > 2+ %

Furthermore, define J;(t) = [y;(t),y;+1(t)], with

Ti-1(t) +7;(t)

Y1 =—00, yn41 = +o0 and y;(t) = —————>, j=2,...

2
it holds

&)~ (0] < 15,

where &1(t),...,En(t) are any points such that

u(t,&;(t)) = max wu(t,z), t€[0,t*], j=1,...,N.
(1.6,0) = max ulta), t€0.r]. )

(3.8)

(3.9)

(3.10)

N, (3.11)

9 9

(3.12)

(3.13)

Proof. According to the proof method in [14,24], we can create N C'-functions
Z1(t),...,&;(t) on [0,t*] meeting an appropriate orthogonality condition by using
the implicit function theorem. We only need to prove (3.9) here, the rest of the
proof is similar to [14,24]. Now, we prove that the speed of Z; stays close to ¢; on

[0,t*]. Notice that
O2R;(t) = —2a;0(Z;(1)) + R;(t).

Differentiating (3.7) with respect to ¢, we get

[ 00R, () = 550 @R, (0. ()

(3.14)

=7,(t) (/R Ri(t)v(t)dz — 2ajv(t,:zj(t))) ;

therefore,

Avt(t)asz(t)dw < [2;10(lvllzr) < O(lvllzr)|z; = e + O(lvll). - (3.15)

o8

On the other hand, substituting u(t,z) =

i=1

following equation of R;(t):

amw%@—m@&+m<f—;wﬁmﬂ@&

k1
3

R;(t)+v(t, z) into (2.2) and using the

2 3
F k(11— 82), (3Rf + Ri(awRif) + 21— 92! <6wRi)

+ kR, 0, R; + ko(1 — 02) 710, (Rf + (asz) =0.

N



Orbital Stability of the Sum of N Peakons 801

We find that v(t, x) satisfies on [0, t*]:

vy — i(il —¢)0.R
i=1
. ’ﬁam<(v+i&>3 im) . k?ax<<v+im)zim>
3 i=1 = 2 i=1 i
ey N 3 N \
+3 ((w + ;&Ri) -2 (0. R;) )

N 2 1 N 2
—ka(1-02)" 10, ((v + Zsz) +5 (vm + Z@Rz)
N -
72R2 - Z (02 Ri)2> . (3.16)

Using the L?(R)-scalar product with 0. R; and integrating by parts, we get for
t € [0,t*],

~(; = 0) [ (@R o
—— [wuRyts + (b - ) [ @)@ )

i#]

+ﬁ <<U+ZR> in’)&ijdx

+ ﬁ ((vw Za R; ) - ZN: (8wRi)3> d.Rjdz + B(t)

/ v 0y Rjdx + Z i — Ci) /(amRi)(asz)dx +T1+ T2+ B(t), (3.17)
i#] R

& N 2 N
B(t) :;/R<<U+ZRi> —ZRE)@jRjda:

i=1

ey - N 3 N ,
*g/]R(l*ar) UrJF;asz‘ *Z(amRi) aerd:r

i=1



802 D. He, K. Zhang & S. Tang

9 N 3 N N 2
+ kl/ - (3 (v + Z&) + <v + Zm) (vz + Zm&)
R i=1 i=1 i=1
o NV N
i=1 i=1
N 2 . N 2
+k2/ (1-92)"" ((UJrZRi) + 2(7}1 +28IRZ-)
R i=1 i=1

N

N
-> R - % Z(amRif) 9 R;da.
i=1

i=1

To estimate T}, we denote
N 3N
V=<U+ZR1> —ZR?
i=1 i=1
N N 2 N 3 N
=v?+ 302 R +3U<ZRZ'> + (Z&) -> R,
; ' i=1

i=1

it follows from (3.14) that

iT’l = 72(1jV(t, fij(t)) -+ / VRJdZE
k1 R

Since [|v||Lem®) < gHUHHl(R) < O(y/a), using the exponential decay of R;, we
derive for all x € R that

V(t,2)| < (0(Va) + 0(1)0(Va) + 0 () (3.18)
and
/RVRjd:r < (0(Va) + 0(1)0(va) + O (e*%) . (3.19)
Together with (3.18) and (3.19), we conclude that
T, <O(/a) + 0 (e*%) . (3.20)
Next, estimating T5 above, we directly compute to get

N
3
b Z/Uﬁaijdx+3/vi@ijZBxR,-dx
! R R i—1

N 2
+3/ 020, R, (Z asz) dx
R i=1
N 3 N
Jr/ <Z aTRZ) - Z (arR7>3 aqujd:E.
R i—1 -

=1



Orbital Stability of the Sum of N Peakons 803

Since (1 — 82) ug(z) = 0 for all z € R, it follows from (2.6) that

ZaR

=1

Vel oo r) < Mt oo r) +

L (R)
N

< Nullpoe@) + Y 10aRill e gy

i=1
N N
ﬁ v+ Z R; + Z a?

HY(R) =1

< O(Wa)+ O(1).

Hence
A@m&M<%mmm®AﬁM<mwa+mmm@%y

By Holder’s inequality, we conclude that

N 2
/v 0. R; Za Rdx+3/vw8ij (Z&IRl) dx
i=1

i=1
<C [ 2o+ Cllolln < € (ol + 1) ol
R
<(0O(Wa) +0(1))0(Va).
Applying the exponential decay of 0, R;, we have

T, < O(va) + 0 (e*%) . (3.21)

Using the same method as above to estimate B(t), we obtain
L
B(t) < O(va) + 0 (e—é) . (3.22)

It can be concluded that the results involved in (3.20)—(3.22) depend only on (cz)fil
As a result, using (3.17) and the decay of 0, R;, we present

00|t~

a? |z; — )
<] + 3 s+ )

/vta R;dz| +
i#i

<O |a:]—cj|—|—0 \/a)—FO(e*%)a

/ (0.R) (0, R;) dx
R

+O(Ja)+0 (e*

)

which proves (3.9). This completes the proof of Lemma 3.1. O

3.2. Monotonicity property

In this subsection, we will illustrate the monotonicity of functionals. First, we need
to present the following fundamental identity, which is based on weighted energy.
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Lemma 3.2. Let ug(x) € H*(R), s > 5/2 and T > 0 be the mazimal time of
existence of the corresponding strong solution u(t,x) with initial data uo(x). Then
for any smooth function w(x), the following identity holds:

(u? + u?)wdx

dt
k 2k,
=2 [ —u?)de + 22 / ule'dx
2 R 3 R
4k
+ ko / w'dx + 71 u(l — 82)71(113 + 3uui)w’dx
R R

— 2k / u(l — 32) (u m)w'dx + ko / u(l — 8%)71(2u2 + ui)w’daz, (3.23)
R R

for allt €10,T).

Proof. Since u € C([0,T), H*(R))NC*([0,T), H*~Y(R)) with s > 5/2, we assume
that u(t, x) is smooth. Taking the derivative of (2.2) with respect to z gives

Uy = — k1 (uui + wl g, — uium — 3“3)
— ko (1u + UlUgy — U ) - k1(1 — 83)*1 (;ul% + uui)
on-1( o 15 1 2\ 1 3
—ko(1-02) (u + 2uz) - gkl(1 —07) 0 (u)). (3.24)

Integrating by parts yields
7 (u? + v )wdr = 2/ umwdz — 2/ wugew'dr == I + Is. (3.25)
R R R

Using the equations for (1.1) and m, it is obtained by direct calculation that

11:—2/R (k1 (W — u2)m), + ko (2ugm + um,)|wdz

1
:2/ Uy {kl (u® —u2) m+ ks (3u2 — —u? - uum)]wdm
A 2" 2

1
+ 2/ {kl (u —u )m + ko <3u2 - fui uum>}w’dz. (3.26)
e 2" T3
Since
2k / uy (0 —ul) mwde = —— [ (u® —u2)?w'dzs (3.27)
R 2 R
and
32 1, 3
2y [ up( Su? — cud — iy, |wdr = ko [ (u® — uu?)w'dz, (3.28)
R 2 2 R
then

L=—— [ (W —u))w dﬂc—i—Zkz/(u — gy )w'dz
2 R R
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+ 2k /(u4 — WUy — uPUE A+ utui Uy, )W du. (3.29)
R
On the other hand, it follows from (3.24) that
2 2 2 2.3\
Iy =2k | u | uuy + U Ugy — UL Uzg — gu w'dx
R

-1(2
+ 2k / u(l—02) ' (3u3 + uui) w'dx
R

+ %kjl / u(l- 85)71 Oz (ul) w'dx
R

1
+ 2ko / U (ufC + Uty — u2> w'dr
R 2
1
+ 2ko / u(l—92)~* <u2 + 2u§> w'dzx
R
I:Al +A2 +A3 +A4+A5 (330)

It is not difficult to estimate that

k 2
L +A +A = ——1/ (u2 — ui)Qw'dx + =k / wrw'dz + ko / wuw'dz. (3.31)
2 Jr 3 Jr R

For the term Ajs, the calculation gives

Ay = 72k1/Ru((1782)—1 (uim)>w’d;ﬂ+2k1/ﬂ§u((1f8§)—1 (2)) o' de.

(3.32)
Thus, with the above calculations, we introduce from (3.25) that
at Jy (u® + ui) wdz
k 2k
= _—1/ (v — ui)%/da: + =2 / uw'dr + ko /uuiw'daz
2 Jr 3 Jr
4k 1, -
+ ?1 u ((1 —92) ' (u® + 3uui)) w'dx
R
o, / u((1-02)7" (u2m)) w'do
R
+ ko / u(l— 8§)_1 (20 + u2) w'dz, (3.33)
R
which proves this lemma. O

Next, we will prove the almost monotonicity of functions that are very close to
the energy at the right of the (i — 1)th bump of u, i« = 2,..., N. Considering the
C® function ¥ defined on R satisfying

0<¥(z) <1, U(x) >0, zeR,
(0" (2)] < 109/ (2), ze[-1,1],



806 D. He, K. Zhang & S. Tang

and
¥(z) = el 2 < -1,
1—e ol 2 >1.
Let Vg = ¥(5), K > 0, we define the weight function ®; = ®;(¢,x) by
Dy =1-Usy, Oy=Ung, Bi=U,p—Vip1 g, i=2...,N—1,

where for 1 =2,..., N,

U, k(t,2) = Ui (x —y;(t)) with y;(¢) defined in (3.11). (3.34)

N
We find that > ®,(t,z) =1, z € R, t € [0,¢*]. Taking L > 0 and L/K > 0 large

enough from ‘élzlé progressive nature of the exponential of ®,, it is inferred that
11— ®;] < 4e 7% on [a?i—i,zfci—&—i] (3.35)
and
|®,| < 4e” 3K on [:zj - %,az«j + ﬂ , for j #1i. (3.36)
Define the following localized conserved version of E and F' as
B(t) = Biu(t) = [ (2 +42)0.(0)da. (3.37)
Fi(t) = Fi(u(t))
(3.38)

= / (kl (u4 + 2u2ui — éui) + 2ko (u3 + uui))@(t)da?.
R

Considering the weight function ¥; (¢, ) defined in (3.34), we introduce for j =
2 N

geeey 5

To(t) = /R (2(t, 2) + (¢, 2)) ¥, (£, 2)de. (3.39)

In the following Lemma, we indicate that for a solution u of Eq. (1.1) in Lemma
3.1, the function Z; k (t) is almost decreasing with time. Assuming 0 < ¢; < ¢z <
- < cn, we set

1
= Zmin{cl,@ —Cly,...,CN — CN—1}- (3.40)

Lemma 3.3. Let u(t,z) be the strong solution of the Eq. (1.1) satisfying (3.4)
on [0, t*] with initial data u(0,x) = ug(x). Assume ug(x) satisfies the assumptions
given in Theorem 1.1. There exist ag > 0 and Lo > 0 depending only on (c;)N,
such that if 0 < a < ag and L > Lg, then for 4 < K = O(L'Y?),

C

i k(t) = Tk (0) < —e ok, (3.41)
0o

for each j € {2,..., N} and any t € [0,¢*] with a positive constant C.
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Proof. First, we fix j € {2,..., N}, establish with w = ¥, i in (3.23), and use
4y, k(t,x) = —9;(t)0,V; k (t, ), we obtain that for ¢ € [0, ¢"],

d d
@IJ}K(t) == /]R (u® +u?) ¥ k(t, x)dz

=_ yj(t)/ (u2 + ui) 0.V rdx — %/(u2 — ui)gawkllj’K(t,x)dm
R R

23ﬁ / u48m\11j_,K(t, x)dx + ko / uui@z\llj,K(L x)dx
R R
4k _
71 u(l—082) ' (u® + 3uul) 0,V i (t, x)dx
R

— 2k / u(l-— 3%)_1 (uzm) 0,V k (t, x)dz
R
+ ko / w(1—=02)7" (20® +u2) 8,5 (¢, ) da. (3.42)
R
According to (3.9) in Lemma 3.1, for 0 < a < ag and L > Ly, there are

i‘j(t) —Cj _ i’j—l(t) —Cj—1 _ Cj—1 + Cj

_y,(t) - _
! 2 2 2 (3.43)
¢j-11¢ —1 1
<-428 4 0(Va) + 07 < —er.

Next, aligned with (3.42), we only cover two scenarios in this discussion: (1) k1 > 0,
ko > O; (2) k1 > O,kQ <0.
(1) k1 > 0,ke > 0, using the inequality of (2.6) and 9,V x = %\IJ’(%]“)) > 0,
we reduce (3.42) to

d c

alj’;{(t) < — 51‘/]1% (u2 _|_’LL926) ax\I/j’Kd.’E

2k
Jr?l/uzkﬁxllfj,;((t,x)deer/uui@wlﬂj,;{(t,x)dz
R

R
% u(l- 8%)71 (u® + 3uul) 0,V i (t, x)da
R
+ ko / u(l-— 85)71 (20 +u2) 0,V K (t, z)dx. (3.44)
R

For further estimates, we define the interval D; by
. L _ L
and divide R as R = D; U D§. Note that according to (3.10) and (3.40), for x € DS,

i) —F1() L _c¢j—cji-1, L L
—_ P ASY A Eub LA B bk = > o9t + = 3.45
|z —y;(t)] 5 1 itz ottt (3.45)

and then for K = O(v/L) and a large enough Lo,

e~ y(0)] _ oot + &

> 1 3.46
e = > 1L (3.46)
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which implies by definition of ¥ that

1 — vyt 1
0.V, k(t,x) = ?\I// (xKij> < ?e_%WOH%), T € D;. (3.47)
Thus, using the conservation of E(u) = ||u|\%,1(R)7 there exists a constant C' > 0
such that
2 C _1(got+L
§k1/ w0,V gdr < EHUOH%I(R)G % (oot §) (3.48)
and
2 ¢ 3 — A (oot+%)
ko uuy 0y Vi dr < E”UJO”Hl(R)e N s (3.49)

Moreover, notice that |z — Z;(t)| > L/4 for any « € D; and each i € {1,...,N}.
Thus, from (3.8) and the exponential decay of ., (x — Z;(t)), we have

[[u(t, 2)l| Lo (D))

N N
=2 ee(e = () > ¢a(z—ai1)

L=(p; =1 Lo=(D;)
N N
< - Z@m — (1)) JFZ||900i(5”*ii(t))HLoo(Dj)
i=1 H'(R) i=1
— O(v/a) + O(e™%). (3.50)

Therefore, using (3.48), (3.49) and (3.50), we obtain
2 4
*kl u ax\I/j’de
3 /e

2 2
:71@1/ u4axx11jde+fk1/ w0,V dx
37 b ’ 3 . ’

J

2 C
< Shalelleoy [ 020, dn+ ol e #H)

C
fé (u? + u2)0, Y, reda + — Hu0||§p(R)e*%<oot+%> (3.51)
and
kg/uuf@w\lfj,;(d:c
R

J

= kz/ uui@m\IlLKdI + kz/ Uuiaﬂ:\PLKdI
D e
J

C o

<’€2H“<t>|\mw]~>/ U200 W o + oy gye 0 E)
D;

C1

C
<16 (u? + )0,V edx 4 — ||u0||H1(R)e x (o0t +g), (3.52)
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By a similar method as above, we get

4
§k1 / u(l—02) " (u® + 3uu2)0, ¥, kdx
D

<
J

< 4k |Jul| oo (r) sup [0,V k (t, )| / G * (u® + uul)dx
IED]C- R

< 4k1\|u||2Loo(R) sup |05V, k (t, )| / G (u? +u2)dx
zeDy R

< 2k1HU||QLw(R) seug |aw‘1’j,K(t,$)|/Re_"”‘dx/R(uQ+ui)d$
2€Dg

C 1 (ppttL
< 2 lwol s e 0%, (3.53)

where G(x) = e~1*1/2 is the Green function of (1 —§2)~!.
However, according to the definition of ¥, |9 (z)| < 10¥’/(z),z € R, we discover

that

(1 - 02)8, 9, (t, ) = B,V (¢, ) — L g (“”_yf(t)>

K3 K
10
when the parameters K > 4, we have
2\ —1 10\
(1 — 830) 893\11.7'7]{(@1‘) g 1-— ﬁ 8w\Dj,K(t,x). (355)

Taking K > 4 and noting that mo # 0 and 9,V x (¢, z) > 0, we conclude that

4
§k1/ u(l —02) H(u® + 3uu?)0, V; dax
DA

< 4k1|\u||Loo(Dj) /(u3 + uui)(l — 6§)_16$\I/j7kdx
R
< Cllull (o el 1R / (u? + u2)0, 0, ged. (3.56)
R

Using (3.8), for ¢ € [0, t*],

lw() | ) = ol @) < llvollmr @) +

N
D e (- — #:(0))

=1

HY(R)

(3.57)
N N
< O(\/&) + Z H‘Pm HHl(R) = O(\/a) + Z \[26”,

which along with (3.50) gives

4
gkl / u(l —02)H(u® + 3uu?)0, V; edx
D.

J
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N
< C(O(Va) + 0(e™ %)) (owa) + Z \/iaz-) /R(u? +u2)0,V; dz.  (3.58)

Therefore, there exist ag < 1 and Ly > 1 such that for 0 < a < ag and L > Ly,
combining with (3.53), it gives rise to

4
§k1 / u(l —02)H(u® + 3uu?)0, ¥, xdx
R

4
:§k1 / u(l — 02) H(u® + 3uu?)0, ¥, xdx
D

J

4
+ §k1/ u(l — 02~ (u® + 3uu?)0,V; dx

C
<3 [ 0+ 200, e+ L luollfp e ¥ OHE (3.50)
R
Similarly, we can calculate that

ko / u(l — 02 (2u? + u2)0,V; edx
i

C
< fé (u? +u2)0,V; edr + — ||u0|\?}11(R)e_%(”°t+§). (3.60)

Combining (3.51), (3.52), (3.59) and (3.60), we infer that

d c
ZLx(t) < S W 4+ u2)0, T eda + ?e*%“’o”%). (3.61)

R

Using the Gronwall argument on [0, ] with ¢ < ¢*, we find that for any ¢ € [0,¢*],

C

T; i (t x0Tt E)dr < Lo~
w0 - T < 5 [ r< e

S

(2) k1 > 0, ks < 0, similarly, we deduce by (3.42) that

din,K(t) < — al ( 24 ) 0,V gdr + 2k u48,3\11j7K(t,x)dx
7 2 | 3 Ju
—l——];l u(l—@i)f1 (u + 3uu )8 U, i (t, x)dz.
R

Similar to the discussion method in (1) above, we obtain the results that

dI'K(t)g C1

C
% s _Z (u2 + ui)aszdex =+ Eei%(gob’?%).
R

Integrating for time [0, ¢] with ¢ < ¢t*, we summarize that for ¢ € [0, ¢*],

1 c

7 k() — <z / ek R < e

S

This completes the proof of Lemma 3.3. O
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3.3. Global identity and localized estimate

In this subsection, we establish the global identity and the localized estimate. For
Z = (21,...,2n), we denote

R, (%) = @, (& — 2) = aip(x — ) = ae” 1777l (3.62)
It is obvious that R, (z) has the peak at = z; and hence
max R, (z) = R,,(2:) = a;. (3.63)

A direct calculation shows
E(R,,) = / (92 + 0pp2)) dx = 247 (3.64)
R

and
ol
F(R.,) :/ k1 <so‘é. + 207,05 — ””)
g\ P TSP g
3 2 4 3
+ 2ko (gpci + @, gax) do = 30 (k1a; + 2ks) . (3.65)
Using (3.64), we provide a global identity, which is the generalization of Lemma 2.3
in [23].

Lemma 3.4. For any (21,...,2n) € RY such that |z; — zi_1| > L/2 with L >
0,i=2,..., N, and any u € H'(R), we have

2

N
u(r) - Z R, (z)

H'(R)
N N
= E(u) - Z E(pe,) —4 Z a;(w(z;) — a;) + O(e 1/, (3.66)
i=1 i=1
where the constant involved in O(efL/‘l) depends only on c1,...,CN.

Proof. This lemma has been proved in [14,24], and we leave out the steps here.

O

In the following lemma, we build a localized estimate that establishes a connec-

tion between FE; and F; through polynomial inequalities, where the functions F;

and F; are independent of time since we fix ; < --- < Zn. For convenience, we
take K = \/f/ 8 to derive the appropriate estimates.

Lemma 3.5. Given N real numbers &1 < --- < Iy with &; — Z;—1 > 3L/4. Define
the interval J; as in (3.11). Suppose that, for any fized positive function u € H*(R)
with s > 5/2, and each i = 1,..., N, there exists & € J; such that

L
u(€) = maxu(a) and [ — ] < -2 (3.67)
Then, for eachi=1,..., N, we have
_4
3

4

kM —

4 ,
Fi(u) < (Skle + 2k2MZ—) E;i(u) kaM3 +O(L%).  (3.68)
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Proof. Leti=1,..., N be fixed and take & € J; satisfying (3.67). We set
u(z) —ug(x), x <&,
gi(x) =
u(z) +ug(x), = >¢&.
Direct computation yields
&i 5 “+o0o )
/ g7 (2)®;(x)dx z/ (u — ug)” Pydx + / (u+ ug)” Pdx
R — 00 i
&i 400
:/ (u2 + ui) ®,dz — 2/ uu, ®;dx + 2/ u, P;dx
R — 00 i
& 400
=FE;(u) — 2M?®;(&) + / u?0, ®;dx — / u?0,®;dx. (3.69)
Next, following [23], we define the functions as follows
u?(x) — %u(x)uw(x) — %ui(m), x <&,
hi(z) = (3.70)
W2(@) + Zu(@)ua(2) — Lud(e), @ > &
and
ho(x) = u(x). (3.71)
Therefore, using (3.70) and (3.71), we denote
[ 1) ) @1 () do
R
=k / hy (x) g7 (x) ®; (x) dx + 2ks / hy (x) g7 (x) ®; () da. (3.72)
R R
A direct calculation indicates that
2 Sl 2 1 5 2
hi (z) g; () ®; (x) dx = u” = Ul — U (u—ug)” D;dx
R —o0
Ly 2 1, 2
+ u” + Uz~ Uy (u+ ug)” O;dx
4 22 14 4.0
= u® + 2utuy — —uy | Pidr — - M, (&)
R 3 3
2 &i 9 ptoo
+ g/ ut0,®;dx — g/ u0,®;dx. (3.73)

Using a similar method as above, one derives

&i 9 ) )

/ hy (z) g7 (z) ®; (z) dx :/ u(u—ug)” O;dx + / u(u+ ug)” O;dx
R

—00 i

4
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9 (& N
+§/ w30, ®;dx — g/ u30,®;dx. (3.74)

—00 Si

Combining (3.73) with (3.74), we obtain

/h (z) gi2 (z) ®; (x) dx
R
4 2[5, 2. [,
8, . 4. (5 4. >,
— ngMi [OF (g,) + gk‘g w0, ®;dx — §k2 u” 0, ®;dx. (375)

We know hy (z) < 3u?(z) < 3 M2 and hy (z) < M;, so from (3.69), we deduce that

/h1 (z) g* (x) ®; (z) dx
R
< [ @6 @0 () da
3 Jr
4
:g/u() (2)®; dx+f Z/ VO, () da
Ji Ic;ézk 1
<hrm- S+l ¥ | @
k;ézk 1
4 & 4
+§Mf/ u28x<I>idx—§Mi2/ u?0, ®;dx. (3.76)

In a similar manner, we get

/ hs () g2 (2) @ (2) da
R
<M;E; (u) — 2MP®; Z / &, (x)da
Ic;éz k=1
&
+ M; / w20, ®;dx — M; 428, ®,dx. (3.77)
&

Due to the construction of ®; and the exponential decay of ¥, taking K = /L /8,
clearly there are constants C' > 0,

1
0:%:] = =¥ < 2= SO(L7H),. (3.78)
Using (3.72), (3.75)-(3.78) and the Sobolev embedding [[u| L@ < %2|ullm =)
estimates can be derived that

4 4 4
<§/€1Mi2Ei (u) — gklel + §k1Mi4 (11— (&%)
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On the other hand, since |§; — ;| < L/12, using (3.35), we find
11— ®,(&)] < 4”7k < O(L7 7). (3.80)

From (3.79) and (3.80), we deduce that
4 44 i

which proves this lemma. O
In the next lemma, we use the method in [24] to estimate the differences between
the local maximum of the solution (¢, z) and the maximum of each single peakon.

Lemma 3.6. Let u(t, ) be the strong solution of (1.1) satisfying (3.4) on [0,t*] as
in Lemma 3.1 with initial data u(0,x) = up(x) satisfying the assumptions given in
Theorem 1.1. Let us set fori € {1,...,N},

M;(t) = ZIEI%)U(t yx) = u(t, &(t), Vtel0,t"], (3.81)

where the interval J;(t) is defined in (3.11). Then, we have the estimate

N /4 3 )
Z (3]@‘1@12 =+ 2]4126%) |M1(t) — CLi| < 0(8) =+ O(L_Z), (382)

i=1

N

where the constants in O(-) depend on (c;);Z, and ||uol| s (w)-

Proof. By the construction of ®;, for any v € H*(R)(s > 5/2), we have

E(u) =) Ei(u), F(u) =3 Fiu), (3.83)

where F;(u), F;(u) are defined by (3.37) and (3.38). Furthermore, since ug satisfies
(1.9) and (1.10), there exist 29 < 23 < --- < 2% satisfying 20 —2{ ;| > L/2, meaning
that if we denote

N
RZO = ngci ( - Z?) )
=1

then
luo = Rzoll g1 z) < €. (3.84)
Using (3.84) and applying Minkowski inequality, we have
[E(uo) — E(Rzo))|

< <||U0||H1(R) + ”RZOHHl(R)) ‘HUOHHl(R) = [[Rz0 |l g1 ()

<

/N

Juo — RZOHHI(R) + 2| Booll s sy ) o = Rl iy

(5 + 22 ||S%||H1(R)>
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<0(2), (3.85)

which means that

N N
|E(uo) = ) E(pe,)| < |B(uo) = E(Rgo)| +|E(Rzo) = Y Elpe,)

i=1 i=1

<O +0(e %). (3.86)

We fix t € [0,t*] and note that by (3.68) in Lemma 3.5, the following inequality
holds

4 4 4
Fi(u) — ( ’;’1 M2 4 2k, M > () + %M{* + ’52 MP<O(LY).  (3.87)
Now, we define the polynomial P(y) by
. 4k 4k 4k
Pi(y) = 713/4 + Tng — ( 31 2 4 2k2y) Ei(u) + Fi(u). (3.88)

Associated with the peakon ¢, , using (3.64) and (3.65), P'(y) takes the form

4k, 4ko 4k,
Pi(y) = 3y4+3y3—<3 2

Mt (B 2k2?f> (262) + 300 (aa + 28,

3 3 3
Ak 5 8k dky Ak o | 8k
=(y—a; oy + =2y + —La? + 22a; ). 3.89
(y a)<3 Yo+ ey + 5yt —a +3> (3.89)

According to (3.87), (3.88) and (3.89), we obtain
, , 4k
Py(M;) = P (M;) + <31Mi2 + 2k2Mi> (Bi(u) — B(pe,)) — (Fi(u) = F(ee,)),
(3.90)
which yields
4k 8k 4k
<31a§ + 3%) (Mi(t) — a;)” g( “EME 4 2k M, ) (Ei(u) — E¢e,))

— (Fi(w) = F(pe))) +O(L75),  (3.91)

where the solution u(t, z) is positive. Summing over ¢ from (3.91), we get

N
Z<43k1a3 + 8];2@1) (Ml(t) — ai)Q

=1

<" Qi(Ei(u) - Ei(up) +ZQ1 E(pe,))

— " (Fi(u) - F(ge,)) + O(L7?)

i=1
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=P, + P, + Ps + O(L™?), (3.92)

4k
where @Q; = 31

estimate the term P,. Using (3.86), we infer that

M; 2 1 2ky M; ) We now derive three useful estimates. We first

M) < fu(t o)l < (3B G0) )

( ZE %) +0()+0(e %) < <2§:a§>é, (3.93)

i=1

for 0 < e < g9, L > Ly with 0 < g9 < 1 and Ly > 1 both depending only on
(¢;),. Then, by (3.84), the exponential decay of ¢, and ®;, and the definition of
E;, it follows that

N
Z|Ei(uo) — E(pe,)]

Mz

013717 o) = e V301 o | + O3

i=1
N N
<Y | lwo = Roollm oy + D leellan o
=1 k=1,k+#i
N
. (H’U,o — RZOHHI(R) + 2\/5204) + O(L_%)
i=1

<O(?) + O(L™3),

which together with (3.93) yields

<OE)+0(L72). (3.94)

N
4k
Py<y (;M? + 2k2Mi> |Ei(uo) — E(pe,)

Since ug satisfies (3.84), similar arguments were used in Lemma 3.5 in [18], we

have
()

this means that from z{ — 22 | > L/2 and (3.83) that
N

F(ug) = Y F (e,
i=1

N
F(ug) — F (Z‘Pw( . —z?)) +

—%). (3.95)

< 0(?),

F (i%(-—ﬁ)) —ﬁ:F(%i)

i=1
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Using (3.83) along with the definition of the weight function ®; and the Abel trans-

form, we obtain

UO))

N-1 . 7

=2 Q) = Qi) D (Bi(u(®) = Ei(uo))

fv__l -

(Qj+1(t) — Q;(t))

. ( (W2(8) + a2(8)) (1 = U1 1) dar — / (w2 +u2,) (1 - mMK)dx)

R R

(Qj+1(t) = Qi (1)) (Zj+1.5(t) — Tj4+1,x(0)).

j=1

According to (3.12), one obtains

L
&(t) —fi(t)‘ <1y W€ [O,t*}
which along with (3.8) gives rise to
N
- Z Pe; (:L' - gl(t))
i= H(R)
N
< ult, x) — Z Pe (x - fl(t))
i=1 H(R)
N
+ Z x —&i(t) Z goc x— Ty(t
i=1 H(R)
N
< ”U(tvm)”Hl(R) + Z H@Cl (LE - &(t)) — Pe; (1' - jl(t)) ||H1(]R)
i=1

< O(Va) 4+ 0(e™ 7).

that
Ju(t,&(1)) - ail
< u t & Z‘Pc] 52 ))
< |u(t, z(t) —Z(pcj(x
j=1

L(R)

<O(Va)+0(e ),

(3.96)

Therefore, employing (3.8), (3.10), (3.12) and the exponential decay of ¢, , it seems

N

D e (&) - &)

JF#LI=1

L

+0(e™1)
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that is,
[Mi(t) — ai] < O(v/a) + O(e™ %),
This implies that
My (t) > My_1(t) > --- > M;(t) >0, (3.97)
fora<land L > 1, dueto 0 < c¢; < --- < ¢y and the positivity of the solution

u(t, ). Notice that a = O(y/z + L~/8).
Using (3.97), Qj4+1 — Q; > 0, we infer that

D=

P < Ce sk =0(L™ %), (3.98)

because of K = O(VL).
Substituting (3.94), (3.95) and (3.98) into (3.92) yields

N/ ak 8k >
> (31%2 + ;a) (M;(t) — a;)” < O(e?) + O(L‘é). (3.99)
i=1

Hence, the desired result follows immediately from (3.99), that is

N faky o, 8k \?
Z(;af—&-;ai) IMi(t) - ai] <O(e) +O(L74), veefo.r],
i=1

where the terms O(-) depend on (¢;)X; and |luo|| g+ (r)- O

3.4. End the proof of Theorem 1.1

To complete the proof of Theorem 1.1, in view of (3.3), it suffices to prove that
there exists a constant C' > 0 independent of A such that at time ¢*, there exist
21 < 29 < -+ < zy with z; — z;; > L/2 > Lo/2 > 1 satisfying

< O(ve + LF).
H(R)

N
u(t*,x) — Z‘Pq (x — 2;)

To this end, we need to take in (3.66), z; = &(t*) € J;(t*,x),i = 1,..., N, where
&(t*), 1 < i < N are defined by (3.13), which implies that

M;(t*) = wer{17?()t(*) u(t*, x) = u(t™, &(t")).

Using (3.10) and (3.12), it is observed that

\

§i(t7) = &ia(t7) 2 2a(t7) — Zia (87) — [&:(t7) = 2a(8)| = 162 (87) — Zia (7))
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From (3.66), (3.82) and (3.86), it follows that

2

Z% (1))

Hl(R)

N
= E(u(t")) — Z (pe;) 42% i(t°) —ai) + O(e™

L
1

)

N N i
- ZE(%J + 42 a;| M;(t*) — a;| + O(e” 1)

)-

Therefore, for 0 < € < g9, L > Lo with 0 < g9 < 1 and Lg > 1 both depending
only on (¢;)¥, we conclude that

Z% &(t))

MH

<O0(e)+O(L™

C(Ve+L7%),

H(R)

where the positive constant C' depends only on (¢;)i; and [lug|| g1 (r), not on A.

Therefore, by choosing A = 2C, we obtain Theorem 1.1.
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